天文定位联合 SLR 的单站定轨

1. 中科院上海天文台

2. 中国科学院研究生院

陈国平^{1,2} 胡小工¹ 黄勇¹ 于涌¹ 唐正宏¹ 张忠萍¹ 宋叶志¹

摘 要:天文定位联合 SLR 的单站定轨,观测技术原理是在光电望远镜系统上增加激光测距设备,在对空间目标天文 定位测角的同时进行激光测距,将测角和测距资料联合处理,实现单站定轨。本文对卫星 Ajisai 实测数据进行了单站单圈 和多圈定轨分析。由于实测数据有限,为使分析结论更具普适性,仿真了三种轨道高度的目标,并进行单站定轨分析。通 过对实测和仿真数据的研究表明,测距数据的加入极大地提高了定轨精度和 24 小时预报精度。

关键词:单站定轨;精密定轨;激光测距;天文定位

0 引言

随着国际上对航天探测的不断扩大,地球附 近空间碎片数量与日俱增,对已在轨或今后将发 射的航天器及航天任务产生的影响日益严重,并 增加了对载人航天的潜在危害。应对该威胁的直 接方法是利用各种技术手段精密监测空间碎片位 置与运动规律,并在此基础上开展空间碎片的碰 撞预警、规避与清除。中高轨微小空间目标的亮 度较暗,根据公式可归算出,在同步轨道上直径 10cm 的空间目标的亮度仅为 20 星等^[1],只有大 口径光学望远镜才能观测到。在另一方面,激光 雷达的测距精度高,不过要实现对低轨目标进行 漫反射激光测距,必须利用高功率激光器配合大 口径接收望远镜。

上海天文台研制一种在大口径光电望远镜系 统上增加大功率激光测距设备,利用光电望远镜 对空间目标进行观测,以天文定位的方式获得目 标的测角资料^[4],同时进行激光测距获得测距资 料^[6]。本文的主要研究内容是高精度激光测距资 料的加入,对空间目标单站单圈和单站多圈定轨 精度及预报精度的影响。

1 实测数据单站定轨

本文使用了卫星 Ajisai 的实测激光测距数据

和天文定位的测角数据。该卫星的轨道高度为 1485km,倾角50°,运行周期为116min。实测的 激光测距数据来源于上海天文台的佘山激光观测 站,实测的天文定位测角数据来自两个设备:一 个是在佘山激光观测站的测距望远镜上安装光学 镜头,测角和测距交替观测;另一个是浙江安吉 天荒坪的旋转 CCD 漂移扫描光电设备。经过整理 分析,可将测角和测距资料归为同圈的共有5个 圈次,如表1所示。

表1 卫星 Ajisai 实测测距和测角资料

圈次	测距起始时间 UTC	测距时长 (min)	测角起始 时间 UTC	测角时长 (min)
1	2011. 03. 07 11: 46: 50	1. 2	11: 40: 57	6. 8
2	2011. 03. 30 11: 16: 51	4. 8	11: 12: 29	7.5
3	2011. 11. 15 19: 03: 23	4. 3	19:08:59	5. 1
4	2011. 11. 15 21: 03: 25	5.6	21:09:09	10. 2
5	2011. 11. 21 11: 36: 16	0.4	11: 29: 29	5. 5

实测数据中最长的测距时长为 5.6min, 最短

的测距时长为 0.4 min;最长的测角时长为 10.2 min,最短的测角时长为 5.1 min。圈次 1 和 2 的 测角数据来源于浙江安吉天荒坪,圈次 3、4、5 的测角来源于佘山。由于浙江安吉天荒坪与上海 佘山距离较近,后续处理中,近似认为测角与测 距数据属于同站。

1.1 实测数据的精度

在应用上述数据之前,需要对数据精度进行 分析,以便在定轨时设置相应的权重。ILRS 网站 的数据显示,2011 年 3 月 1 日至 2012 年 2 月 29 日,上海佘山激光测距站对卫星 Ajisai 的最大测 距误差为 43.92mm,均值为 27.36 ± 6.35mm。

测角数据的精度通过对比卫星 Ajisai 的精密 星历得到,如表2所示。精密星历是利用全球联 测的 SLR 数据进行精密定轨得到的,卫星 Ajisai 的精密星历精度约为1m^{[5]。} 圈次1和2的测角数 据精度为4.7至5.7arc sec,高于圈次3、4、5的 8.1至16.7arc sec。主要原因是因为前两组数据 是由旋转漂移扫描设备得到,该设备口径大 (30cm),所处的安吉天荒坪台站夜天光背景好 (暗于19星等),并且在旋转漂移扫描模式下, 参考星和目标的星象均可保持圆形,这些因素有 利于获得较高精度的天文定位结果。

圈次	方位精度 arc sec	仰角精度 arc sec
1	5.3	5.5
2	4.7	5. 7
3	16. 7	13. 7
4	13.6	9.5
5	9.7	8. 1

表 2 卫星 Ajisai 实测测角资料精度

1.2 实测数据单站单圈定轨

卫星 Ajisai 实测数据单站单圈定轨采用数值 方法^[2]:重力场为 JGM - 3 模型,取 20 × 20 阶; 固体潮摄动;大气阻力摄动,大气阻力系数 Cd 取值 2.2,质量取 685kg,面积取 3.63 ㎡, 大气 密度模型为 Jacchia - 77;光压摄动,系数 Cr 取值 1.0;日月引力摄动;对观测资料的高度截止角为 10°,不解算大气阻力系数和光压阻力系数^[3]。定 轨结果与卫星 Ajisai 的精密星历进行比较,如表 3 所示。

r												
	定轨类型		定轨	精度/m			24 小时预报精度/m					
圈次		R 方向	T 方向	N方向	三维位置	R 方向	T方向	N方向	三维位置			
1	测角	356. 0	400. 4	250.0	443. 4	3646.4	215060.0	13844.0	215250.0			
1	测角 + 测距	147.0	64. 8	112.0	195. 9	405.8	12850. 0	1035.5	12872.0			
	测角	1855. 7	1168.6	418.9	1970. 1	69081.0	1053500. 0	66727.0	1055100. 0			
2	测角 + 测距	16. 5	15.6	33.6	35.4	58.3	3363.5	173. 8	3364. 5			
2	测角	2543.7	2547.0	1002. 9	3693. 1	336670. 0	2148200.0	134060. 0	2175000.0			
3	测角 + 测距	10. 4	20. 9	44.8	50. 5	32.6	2067. 2	93. 2	2068. 5			
4	测角	75.7	140. 2	48.2	166. 1	1191.7	71999.0	4571.2	72052. 0			
4	测角 + 测距	20. 0	37.5	68.9	73. 2	27.3	1321. 1	175. 9	1323. 4			
5	测角	1126. 3	1090. 9	517.7	1651. 3	94832.0	1243500.0	79964.0	1248500.0			
	测角 + 测距	136. 9	108.9	85.7	194. 8	2142. 2	120050.0	7860. 5	120290. 0			

表3 卫星 Ajisai 实测数据单站单圈定轨结果

表4 卫星 Ajisai 实测数据单站多圈定轨结果

			定轨	精度/m		24 小时预报精度/m				
圈次	定轨类型	R 方向	T方向	N方向	三维位置	R 方向	T方向	N方向	三维位置	
2.1	测角	31. 1	49.5	13.9	50. 8	44.4	348.9	24. 1	349.0	
3+4	测角 + 测距	2.8	2.9	2.9	5.0	4.8	18.1	4.0	18. 1	

从表3可以看出,当只采用测角数据进行单 站单圈定轨时,定轨精度从166.1m到3693.1m 不等,再根据表2中所列的测角时长,圈次4的 测角时长最长,为10.2min,其定轨精度也最高, 为166.1m,圈次3的测角时长最短,为5.1min, 其定轨精度也最低,为3693.1m;24小时预报精 度从72km至2175km不等,与测角时长有一定的 关系。

当测角和测距数据联合定轨时,定轨精度和 24小时预报精度都得到了极大的提高。圈次2、 3、4的定轨精度优于80m,24小时预报精度优于 3.5km;圈次1、5的定轨精度优于200m。但是 圈次1的24小时预报误差接近13km,圈次5的 24小时预报误差更是达到120km。通过仔细研究 表2中所列的数据,即可发现圈次1和5定轨结 果较差的原因:圈次1的测距时长只有1.2min, 圈次5的测距时长只有0.4min,圈次2、3、4的 测距时长都大于4.3min。可见联合定轨时精度的 提高主要是由于高精度测距数据的贡献,测距时 长越长则定轨结果通常会越好。

无论是只用测角数据定轨还是测角测距联合 定轨,24小时预报误差主要集中在T方向,即沿 迹方向上。

1.3 实测数据单站多圈定轨

从表2可以看出,圈次3和4的观测时间是 同一天,可以用于两圈定轨,其它圈次间隔时间 较长,不适合用于多圈定轨。定轨设置与1.2节 相同,通常的多圈定轨会解算大气和光压系数, 但在此算例中,由于两圈资料的时间跨度较短, 只有2小时,因此没有解算大气和光压。通过实 验也发现,如若此算例解算大气和光压,会导致 预报误差迅速增大。当然,这只是一个特例,通 常观测资料较长时,解算大气和光压结果会更好 些。定轨结果与卫星 Ajisai 的精密星历进行比较, 如表4 所示。

从表4可以看出,当只采用测角数据进行两 圈定轨时,定轨精度接近50m,24小时预报精度 优于350m。表4的24小时预报精度要明显优于 表3,即两圈测角数据定轨产生的24小时预报精 度,要明显好于单圈测角测距联合定轨产生的预 报精度。其主要原因是两圈测角数据比单圈测角 测距数据能更好的约束卫星轨道。

当测角和测距数据联合定轨时,定轨精度优于5m,24小时预报精度优于20m。一方面是由于高精度测距数据的加入,极大的提高了定轨精度;另一方面是因为卫星 Ajisai 的轨道高度为1485km,受大气影响较小,从而预报误差也较小。

无论是只用测角数据定轨还是测角测距联合 定轨,24 小时预报误差主要集中在 T 方向。

2 仿真数据单站定轨

由于实测数据有限,为使分析结果更具普适性,本文仿真了三种不同的轨道高度目标: 1500km、800km和400km。倾角均取80°。

2.1 仿真条件

仿真测站:上海佘山;仰角噪声:2 arc sec; 仰角系统误差:1 arc sec;方位噪声:2 arc sec; 方位系统误差:1 arc sec;测距噪声:1.0m;测 距系统误差0.4m;高度截至角:10°;观测条件: 地影不观测,白天不观测。

动力学模型为:重力场采用 JGM - 3 模型, 取20×20 阶;固体潮摄动;大气阻力摄动,大气 阻力系数 Cd 取值 2.2,质量取 1000kg,面积取

				定轨	精度/m		24 小时预报精度/m				
圈次	数据时长 (min)	定轨类型	R 方向	T方向	N方向	三维位置	R 方向	T 方向	N方向	三维位置	
1	1 16.0	测角	49. 1	37.4	11.2	59. 1	579.0	30994. 0	2438. 4	31084. 0	
1	16.0	测角 + 测距	5.5	3.2	5.8	8.5	14. 3	383. 8	27.1	384.6	
	12.2	测角	57.9	44. 9	49. 9	84. 5	726.0	43585.0	3381.0	43711.0	
	13. 3	测角 + 测距	4.1	5.7	2.4	7.2	10. 0	122. 6	13.6	123. 4	
2	0.0	测角	252. 7	148. 7	149. 7	326.4	2328.9	140710.0	11366. 0	141170. 0	
3	9.0	测角 + 测距	1.3	2.7	1.4	3.2	20. 5	1099. 1	85.6	1102. 5	
	11.7	测角	45.5	23.4	59.7	76. 7	474.0	27528.0	2092. 2	27533.0	
4		测角 + 测距	9.0	6.5	3.0	11.5	26.6	445.9	34.9	447.0	

表5 仿真 1500km 目标单站单圈定轨结果

20 m²,大气密度模型为 Jacchia - 77;光压摄动, 系数 Cr 取值 1.0;日月引力摄动。

仿真数据单站定轨包括单站单圈定轨和单站 多圈定轨两种类型,每种类型又包括只用测角数 据定轨和测角测距联合定轨两个方面,均采用数 值法。单站单圈定轨参数设置为:重力场为 JGM -3 模型,取 20×20 阶;固体潮摄动;大气阻力 摄动,大气阻力系数 Cd 取值 2.2,质量取 1000kg,面积取 20 ㎡,大气密度模型为 Jacchia – 77;光压摄动,系数 Cr 取值 1.0;日月引力摄 动;对观测资料的高度截止角为 10°,不解算大 气阻力系数和光压阻力系数。单站多圈定轨的参 数设置与单圈定轨设置基本相同,差别在于解算 了大气阻力系数和光压阻力系数。

通过仿真观测资料,1500km 的目标 4 天内可 观测 16 圈,800km 的目标 7 天内可观测 9 圈, 400km 的目标在只考虑地影不观测的条件下,4 天 内可观测 4 圈。本文对每个仿真目标均选取 4 圈数 据进行分析,主要考虑了观测时长、升降段等因素。

2.2 仿真数据单站单圈定轨

1500km 的仿真目标轨道周期为 116min, 定 轨结果如表 5 所示。

从表5给出的仿真定轨结果可以看出,对于

轨道高度为1500km的目标,只采用测角数据进 行单站单圈定轨时,定轨精度从59.1m到 326.4m不等。圈次1的观测时长为16.0min,定 轨精度为59.1m,24小时预报精度为31km;圈 次3的观测时长为9.0min,定轨精度为326.4m, 24小时预报精度为141km。定轨精度和24小时 预报精度与定轨时采用的观测数据时长有一定的 关系:通常观测数据越长,定轨精度和24小时预 报精度越高。

当测角和测距数据联合定轨时,定轨精度从 3.2m 至 11.5m,24 小时预报精度 123.4m 至 1102.5m。预报误差主要集中在T方向上。测距 数据的加入,使得定轨精度和预报精度得到了极 大的提高。

800km 的仿真目标轨道周期为101min, 定轨结 果如表6所示。从表6仿真计算结果可以看出, 对 于轨道高度为800km 的目标, 当只有测角数据进 行单站单圈定轨时, 定轨精度从36.5m 到244.0m 不等, 24 小时预报精度从29.9km 到181.8km。测 距数据的加入, 使得定轨精度提高到4.4m 至 8.8.3m, 24 小时预报精度提高到273.6m 至 1033.0m 以内。预报误差主要集中在T方向上。

400km 的仿真目标轨道周期为 93min, 定轨 结果如表 7 所示。

				定轨	.精度/m	· · · · · · · · · · · · · · · · · · ·	24 小时预报精度/m				
圈次	数据时长 (min)	定轨类型	R 方向	T方向	N方向	三维位置	R方向	T方向	N方向	三维位置	
1	5.0	测角	126. 9	83. 3	191.0	244.0	4753.3	181580. 0	12626.0	181750. 0	
	5.0	测角 + 测距	3.5	0.6	2.6	4.4	17. 1	1032.0	74.8	1033. 0	
	10.2	测角	42. 4	47.7	16. 8	64. 4	730. 4	49656.0	3440. 0	49679. 0	
	10. 3	测角 + 测距	2.9	0.7	7.8	8.3	12. 7	515.9	49. 1	515.9	
2	0.2	测角	26. 7	31.0	13. 1	36. 5	484. 7	29914.0	2073. 9	29942. 0	
3	9.3	测角 + 测距	5.7	4.9	7.0	7.9	16.0	779.8	63.6	781.5	
	6.0	测角	29.0	21.9	43.7	56.8	590. 7	39159.0	2813.4	39200. 0	
4		测角 + 测距	4.0	2.7	0.9	4.9	15.0	273.0	19.4	273.6	

表6 仿真800km 目标单站单圈定轨结果

表7 仿真400km 目标单站单圈定轨结果

				定轨	精度/m		24 小时预报精度/m				
圈次	数据时长 (min)	定轨类型	R 方向	T方向	N方向	三维位置	R方向	T 方向	N方向	三维位置	
	5.0	测角	45.6	82. 8	41.0	101. 8	3742. 3	154640.0	9644. 2	154980.0	
	5.0	测角 + 测距	5. 1	1.6	7.3	9. 1	54. 1	3000. 6	178. 8	3006.0	
	5.0	测角	6.0	18.5	16. 4	25.4	394. 8	29214. 0	1783. 5	29270. 0	
2	5.0	测角 + 测距	4. 1	0.5	3.2	5.2	21. 2	174.0	18.9	174. 1	
2	5.0	测角	25.9	33. 7	20. 9	47.4	918.4	68145.0	4256. 6	68280. 0	
	5.0	测角 + 测距	5.0	1.2	5.9	7.8	35.8	1691. 1	98.9	1694.0	
	5.2	测角	25.8	38.0	21.8	50.9	1012. 2	59291.0	3623. 4	59410. 0	
4	5.3	测角 + 测距	0.9	0.4	3.2	3.4	6.3	435.6	25.7	436.4	

从表7仿真计算结果可以看出,对于轨道高 度为400km的目标,当只有测角数据进行单站单 圈定轨时,定轨精度从25.4m到101.8m不等, 24小时预报精度从29.2km到155.0km。测距数 据的加入,使得定轨精度提高到3.4m至9.1m, 24小时预报精度提高到174.1m至3006.0m。预 报误差主要集中在T方向上。需要指出的是,当 目标轨道越低真实的大气分布越复杂,大气模型 难以完全模制低轨大气环境,且仿真观测资料时 使用的大气模型和定轨时采用的相同,因此实际 的 24 小时预报精度会比仿真的结果差一些。

2.3 仿真数据单站多圈定轨

分别利用1500km、800km和400km的三圈仿 真资料进行单站多圈定轨,解算大气和光压参数,结果如表8至表10所示。

圈次	定轨类型		定轨	精度/m		24 小时预报精度/m							
		R 方向	T方向	N方向	三维位置	R方向	T方向	N方向	三维位置				
	测角	6.5	3.3	4.1	8.3	19. 9	72.3	10. 8	72.7				
1+2+3	测角 + 测距	2. 8	3.0	1.1	4. 0	5.3	21. 2	2.6	21. 2				
2 + 3 + 4	测角	5.5	4.0	3.4	6. 3	22. 1	98. 1	14. 2	98.4				
	测角 + 测距	4.3	4. 7	0.7	6.3	2.5	16. 7	1.7	16.7				

表8 仿真1500km 目标单站多圈定轨结果

表9 仿真 800km 目标单站多圈定轨结果

圈次	定轨类型		定轨	精度/m		24 小时预报精度/m			
		R方向	T方向	N方向	三维位置	R方向	T方向	N方向	三维位置
	测角	6. 1	2.3	4.7	8.0	5.2	23.7	7.1	23.9
1+2+3	测角 + 测距	1.6	0.9	0.9	1.9	1.1	8.7	1.2	8. 8
2 + 3 + 4	测角	11.3	6. 4	5.4	11.8	20. 9	59.5	7.5	59. 5
	测角 + 测距	2. 2	1.6	1.3	2. 6	3. 8	20. 4	2.2	20. 4

表10 仿真400km 目标单站多圈定轨结果

	定轨类型		定轨	精度/m		24 小时预报精度/m			
圈次		R 方向	T方向	N方向	三维位置	R方向	T方向	N方向	三维位置
	测角	5.2	2.6	11.9	13.0	12.0	41.9	32. 1	44. 2
1+2+3	测角 + 测距	1.1	0.6	0.3	1.1	3.6	14. 9	1.6	15.0
2 + 3 + 4	测角	5.3	3.2	1.3	6.0	16. 7	70.4	4.5	70.6
	测角 + 测距	2.1	1.0	1.5	2.3	3.9	15.4	3.7	15.4

从表8仿真计算结果可以看出,只采用测角 数据进行单站多圈定轨时,定轨精度从6.3m至 8.3m,24小时预报精度从72.7m至98.4m。测距 数据的加入,使得定轨精度提高到4.0m至 6.3m,24小时预报精度提高到16.7m至21.2m。 预报误差主要集中在T方向上。与表5相比较, 多圈定轨精度通常高于单圈,多圈定轨的24小时 预报精度更是优于单圈定轨的结果。

从表9仿真计算结果可以看出,只采用测角数据进行单站多圈定轨时,定轨精度从8.0m至11.8m,24小时预报精度从23.9m至59.5m。测距数据的加入,使得定轨精度提高到1.9m至

 2.6m,24小时预报精度提高到8.8m至20.4m。
预报误差主要集中在T方向上。与表6相比较, 多圈定轨精度高于单圈,多圈定轨的24小时预报
精度更是优于单圈定轨的结果。

从表 10 仿真计算结果可以看出,只采用测角 数据进行单站多圈定轨时,定轨精度从 6.0m 至 13.0m,24 小时预报精度从 44.2m 至 70.6m。测 距数据的加入,使得定轨精度提高到 1.1m 至 2.3m,24 小时预报精度提高到 15.0m 至 15.4m。 预报误差主要集中在 T 方向上。与表 7 相比较, 多圈定轨精度高于单圈,多圈定轨的 24 小时预报 精度更是优于单圈定轨的结果。基于 2.2 节同样 的原因,实际的预报精度会比仿真结果差一些。

3 结论

通过对卫星 Ajisai 实测数据的单站定轨研究 表明:①对于单站单圈定轨,加入不太短(如时 长大于 4min)的测距数据,使得定轨精度从几公 里提高到几十米,24小时预报精度从几十至上千 公里提高到几公里。②加入较短(如时长小于 1min)的测距数据,能使定轨精度提高到两百米 以内。③对于单站两圈定轨,测距数据的加入, 使得定轨精度从 50 米提高到 5 米,24 小时预报 精度从 350 米提高到 18 米。④单站多圈的定轨和 预报精度高于单站单圈。⑤预报误差主要集中在 T方向上。

通过对1500km、800km和400km的目标仿真 计算表明:①对于单站单圈定轨,测距数据的加 入,使得定轨精度从几十米至几百米,提高到12 米以内;24小时预报精度从几十至一百多公里, 提高到三公里以内。②对于单站多圈定轨,测距 数据的加入,使得定轨精度从十多米,提高到7 米以内;24小时预报精度从近百米,提高到22 米以内。③单站多圈的定轨和预报精度高于单站 单圈。④预报误差主要集中在T方向上。

参考文献

[1] 吴连大.人造卫星与空间碎片的轨道和探测 [M].北京:中国科学技术出版社,2011

[2] 叶叔华,黄珹. 天文地球动力学 [M].济 南:山东科技出版社,2000

[3] 李济生.人造卫星精密轨道确定 [M].北京: 解放军出版社,1995

[4] 赵铭. 天体测量学导论 [M]. 北京: 中国科学 技术出版社, 2006

[5] 陈国平,何冰,张志斌,等.CPF 星历精度分析 [J].中国科学院上海天文台年刊,2010 (31)

[6]于涌,毛银盾,李岩,等.上海天文台 30cm 旋转 CCD 漂移扫描望远镜的天体测量精度分析 [J].中国科学院上海天文台年刊,2010 (31)