AGN Feedback in an Isolated Elliptical Galaxy

—elaborating the AGN physics

Feng Yuan Shanghai Astronomical Observatory, CAS

Collaborated with:

D. Yoon, Y. Li, Z. Gan, F. Guo (SHAO) H. Mo (Tsinghua); L. Ho (KIAA-PKU) J. P. Ostriker (Columbia University) L. Ciotti (University of Bologna)

R. Narayan (CfA) A. Sadowski (MIT) D. Bu (SHAO) X. Bai (CfA/Tsinghua)

Outline

- Brief introduction to AGN feedback
- Accretion physics
 - Two accretion modes: cold & hot
 - Wind & radiation in the two modes
- Numerical study of AGN feedback
- Results: lightcurve; duty-cycle; star formation; BH growth

Observational evidence of AGN Feedback (I):

(Fabian 2012, ARAA; Kormendy & Ho 2013, ARAA) Coevolution of AGNs and Their Host Galaxies

Sani et al. 2011

Galaxy Luminosity Function

- Main problem: gas in simulated galaxies to transform into stars too efficiently.
- How to make the overall galaxy formation inefficient with self-consistent models?
- Solution: SN, AGN or other possibilities?

(Croton+2016)

Silk & Mamon 2012

What is AGN feedback?

Previous works & our motivations

- Often focus on very large (e.g., cosmological) scale (Di Matteo et al. 2005; Springel et al. 2005; Debuhr et al. 2010, 2011; Johansson et al. 2009; Li et al. 2015; Illustris...)
 - only resolve galactic length and timescale
 - Model for feedback physics:
 - Mdot estimated
 - Subgrid; parameterized; outputs not properly described
- Our goals:
 - Resolve the accretion (Bondi) and galaxy scales
 - Adopt the most updated sub-grid AGN physics
 - Calculate the interaction between wind & radiation with ISM

Two accretion modes: cold & hot

Pringle 1981, ARA&A; Yuan & Narayan 2014, ARA&A

Super-Eddington accretion (slim disk) (Abramowicz et al. 1989; Sadowski et al. 2014; Jiang et al. 2014) TDEs, ULXs, SS433

Standard thin accretion disk (Shakura-Sunyaev 1976; Pringle 1981, ARA&A) Typical QSOs, Seyferts; XRBs in thermal soft state

Hot Accretion: ADAF & RIAF (Narayan & Yi 94; Yuan 2001; Yuan & Narayan 2014, ARA&A) LLAGN, BL Lac objects, Sgr A*, M87 XRBs in hard & quiescent states

 $\log(\dot{M}/\dot{M}_{\rm Edd})$

Cold accretion mode (I)

Shakura & Sunyaev 1976, A&A; Pringle 1981, ARA&A

- Correspond to quasar *(cold)* feedback mode
- Cool: ~ 10^6 K, Geometrically thin & Optically thick
- Outputs: strong wind & radiation, but no jet (?)
- Radiative efficiency
 - standard thin disk: ~ 0.1
 - Super-Eddington: ~0.1 (?)

Cold accretion mode (II): wind

Shakura & Sunyaev 1976, A&A; Pringle 1981, ARA&A; Gofford et al. 2015

Many observations: BAL quasar, UFO, warm observer...

Wind production mechanisms:

- thermal+magnetic+radiation (line force)
- Wind properties: mass flux & velocity (from observations, e.g., Gofford et al. 2015)

$$\dot{M}_{\rm W,C} = 0.28 \left(\frac{L_{\rm BH}}{10^{45} \, {\rm erg \, s^{-1}}}\right)^{0.85} M_{\odot} \, {\rm yr^{-1}}$$
$$v_{\rm W,C} = 2.5 \times 10^4 \left(\frac{L_{\rm BH}}{10^{45} \, {\rm erg \, s^{-1}}}\right)^{0.4} \, {\rm km \, s^{-1}}$$

Hot accretion flow (I)

Yuan & Narayan 2014, ARA&A

Correspond to kinetic (radio/jet) *(hot)* feedback mode
 Hot, geometrically thick; Optically thin; Spectrum: complicated
 Outputs: radiation, wind & jet
 Radiative efficiency

 A function of Mdot →

Xie & Yuan 2012

Global simulation of hot accretion flow: Accretion rate decreases inward

Stone, Pringle & Begelman 1999; Stone & Pringle 2001; Hawley & Balbus 2002; Machida et al 2003; Pen et al. 2003; Igumenshchev, Narayan & Abramowicz 2003; Yuan & Bu 2010; Yuan, Wu & Bu 2012; Li, Ostriker & Sunyaev 2013

$$\dot{M}_{in}(r) = 2\pi r^{2} \int_{0}^{\pi} \rho \min(v_{r}, 0) \sin \theta d\theta,$$

$$\dot{M}_{out}(r) = 2\pi r^{2} \int_{0}^{\pi} \rho \max(v_{r}, 0) \sin \theta d\theta,$$

$$\dot{M}_{net}(r) = \dot{M}_{in}(r) - \dot{M}_{out}(r).$$

Stone, Pringle & Begelman 1999

Confirmed by Observations of Sgr A*

Aitken et al. 2001; Bower et al. 2003, 2005; Yuan, Quataert & Narayan 200

Chandra observations + Bondi theory give the Bondi rate: $10^{-5} M_{\bullet} yr^{-1}$

(consistent with numerical simulation of Cuadra et al. 2006)

High linear polarization at radio waveband requires innermost region accretion rate (rotation measure requirement):

 $(10^{-7} - 10^{-9})M_{\bullet}yr^{-1}$ So Mdot must decrease inward

Two models to explain the simulation

- Adiabatic Inflow-Outflow Solution (Blandford & Begelman 1999; 2004)
 - Assumption: Mass loss in outflow → Mdot decreases
- Convection-Dominated Accretion Flow (Narayan et al. 2000; Quataert & Gruzinov 2000)
 - basis: accretion flow is convectively unstable
 - Gas is locked in convective eddies →
 Mdot decreases
- Which one is correct? Debated for more than 10 years (Blandford, Stone, Narayan, Hawley...)

Blandford & Begelman 1999

Convection or wind? Yuan et al. (2012a; 2012b; 2015) ; Narayan et al. 2012

- Performed HD & MHD simulations
- Theoretical analysis:
 - If convective turbulence, we expect: inflow & outflow properties roughly same; → different!
 - Analyze the convective stability of *MHD* accretion flow
 stable!
 - Trajectory analysis
- Conclusion: strong outflow exists

Outflow confirmed by new observations

Wang et al. 2013, Science

- 3Ms observation to the quiescent state of Sgr A* by Chandra
- H-like Fe Kα line profile fitting
 - → flat density profile
 → outflow

Additional observation evidences for wind from hot accretion flows

- Low-luminosity AGN (Cheung et al. 2016, Nature)
 - They find evidence for wind in LLAGNs with, e.g., $L \sim 4 \times 10^{-4} L_{Edd}$
- Radio galaxy (Tombesi et al. 2010, 2014)
 - Blue-shifted iron absorption lines
 - Winds co-exist with jets
- Hard state of black hole X-ray binaries (Homan et al. 2016)
- But: still no good observational constraint on wind properties

Properties of wind from hot accretion flow

Yuan et al. 2015

Trajectory approach
 Different from stream line

Mass flux

$$\dot{M}_{wind} = \dot{M}_{BH}(r) \left(\frac{r}{20r_s}\right), \quad a = 0$$

Poloidal speed:

 $v_{term}(r) \sim 0.3 v_k(r)$ $\blacksquare \text{ Energy & momentum flux:}$ $\dot{E}_{wind} = \frac{\dot{1}}{1000} \dot{M}_{BH} c^2$

Trajectory of ``virtual test particles"

Yuan et al. 2015

Special wind — disk-jet — jet sheath??

Yuan et al. 2015; Yuan & Narayan 2014, ARA&A

- Angular distribution of wind
- Angular distribution of wind speed
- Disk-jet
 - Originate from disk (not BH); present even for a=0
 - Gas-rich (not Poynting flux)
 - v~0.2-0.4 c
 - Accelerated by gradient of toroidal magnetic field; *so not BZ nor BP*, but Lynden-Bell (1996) mechanism

Just outside of BZ jet --- sheath?

Hydrodynamical Equations

$$\frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{v} = \alpha \rho_* + \dot{\rho}_{II} - \dot{\rho}_*^+,$$

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \rho \mathbf{g} - \nabla p_{rad} - \dot{m}_*^+,$$

$$\rho \frac{D}{Dt} \left(\frac{e}{\rho}\right) = -p \nabla \cdot \mathbf{v} + H - C + \dot{E}_S + \dot{E}_I + \dot{E}_{II} - \dot{E}_*^+,$$

Physics included in the model:

Stellar mass loss from dying stars
Gas depletion of star formation
Feedback of Type II supernovae
Feedback of Type Ia supernovae
Thermalization due to stellar dispersive motion

Angular Momentum Transport

Yoon et al. 2018

- Magneto-rotational Instability (MRI; Stone+99,01)
- Gravitational Instability (Gammie 01)
- Anisotropic Gravitational Torque (Hopkins+10,11)
 - This is what we adopt
 - We use alpha description to mimic it

Galaxy Model

We focus on the **cosmological evolution** of an **isolated elliptical galaxy.**

Gas source

• only stellar mass loss during their cosmological evolution

Gravity

- Super massive black hole
- Stellar population
- Dark matter halo
- But no gravity from interstellar medium

Li&Bryan2012

Contribution of SN Ia to energy

Ciotti, Ostriker et al. 2009

Massive stars (SNe II) died before the simulation starts due to their short lifetime.

But **SNe Ia** can be triggered by **accretion or merger events of neutron stars/white dwarfs**,

$$R_{\rm SN}(t) \approx 0.32 \times 10^{-12} h^2 \frac{L_{\rm B}}{L_{\rm B,sun}} \left(\frac{t}{13.7 \,{\rm Gyr}}\right)^{-1.1} {\rm yr}^{-1.1}$$

Each SN Ia releases energy in an order of 10⁵¹ erg !

Star Formation

We estimate SFR using the standard Schmidt-Kennicut prescription:

$$\dot{\rho}_{\rm SF} = \frac{\eta_{\rm SF} \, \rho}{\tau_{\rm SF}} \quad \tau_{\rm SF} = \max(\tau_{\rm cool}, \tau_{\rm dyn})$$

We also consider **SNe II** among the **newly formed stars**.

$$N_{\rm II} = \int_{M_{\rm II}}^{\infty} \frac{dN}{dM} dM = \left(1 - \frac{1}{x}\right) \left(\frac{M_{\rm inf}}{M_{\rm II}}\right)^x \frac{M_{sun}}{M_{\rm inf}} \frac{\Delta M_*}{M_{sun}} \approx 7 \times 10^{-3} \frac{\Delta M_*}{M_{sun}}$$

Radiative Heating & Cooling

Sazonov et al. 2005

Net energy change rate per unit volume:

 $\dot{M} = n^2 \left(S^1 + S^2 + S^3 \right)$

Bremsstrahlung cooling $S_1 = -3.8 \times 10^{-27} \sqrt{T}$

Compton heating/cooling

 $S_2 = 4.1 \times 10^{-35} (T_x - T) \xi$

photoionization heating, **line and recombination** cooling

$$S_{3} = 10^{-23} \times \frac{a + b \left(\xi / \xi_{0}\right)^{c}}{1 + \left(\xi / \xi_{0}\right)^{c}}$$

Compton temperature T_c **Compton heating** \sim (Tc – TISM) Definition of Tc $T_C = \frac{1}{k} \cdot \frac{\int F_{\nu} \cdot h\nu d\nu}{\int F_{\nu} \cdot d\nu}$ ■ In cold (radiative/quasar) mode (Sazonov et al. 2004): $T_{c} \sim 10^{7} K$ In hot (kinetic/radio) mode (Xie, Yuan & Ho 2017): $T_{c} \sim 10^{8} \text{ K}$ (This is because the SED of LLAGN is different from luminous AGNs: more hard photons)

Setup of Numerical Simulation

Yuan et al. 2018; Yoon et al. 2018

ZEUS-MP code: 2D + hydro + radiation
From 2.5 pc (~0.1 Bondi radius) to 250 kpc
Evolve for cosmological time (~12 Gyr)
Mdot self-consistently determined
Two accretion/feedback modes discriminated
Inject wind & radiation from inner boundary & calculate their int. with ISM

Light curve of AGN (I)

Yuan et al. 2018

- Most of time, AGN stays in LLAGN phase
- Wind rather than radiation controls Mdot & BH growth
 - Why?

Lightcurve of AGN (II): effect of AGN physics

Difference between two models: Wind strength

Typical L differs by 2 orders of magnitude

Lifetime of AGN: 10⁵ yr (vs. 10⁷ yr), consistent with observations (e.g., Keel et al. 2012; Schawinski et al. 2015)

Growth of black hole mass

Yuan et al. 2018

AGN feedback (mainly by wind) regulates BH mass growth.

Star formation

suppressed or enhanced?

- Wind feedback is dominant
- Wind can reach & suppress SF up to 20 kpc , consistent with observation (e.g., Liu et al. 2013)

But beyond ~20 kpc, SF is enhanced

consistent with observation (e.g., Cresci et al. 2015)

Specific Star Formation Rate

Negative or **positive** effect on SFR? Difficult to answer, depending on location and time !

AGN duty-cycle

Percentage of the total simulation time spent above an Eddington ratio; consistent with observations Percentage of the total energy emitted above an Eddington ratio *NOT consistent with observations*: why?

X-ray Luminosity & Surface Brightness

- AGN feedback considered by 2D HD simulation; Bondi radius resolved
- Physical processes like SNe, SF, int. between radiation & wind with ISM considered
- Exact AGN physics adopted:
 - □ two accretion/feedback modes: cold & hot
 - □ Correct description of radiation & wind in each mode
- Light curve, BH growth, AGN Duty-cycle, star formation, surface brightness
- Comparison with other works indicates the importance of exact AGN physics

