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Abstract: Oceans cover over 70% of the Earth’s surface and provide numerous services to humans and
the environment. Therefore, it is crucial to monitor these valuable assets using advanced technologies.
In this regard, Remote Sensing (RS) provides a great opportunity to study different oceanographic
parameters using archived consistent multitemporal datasets in a cost-efficient approach. So far,
various types of RS techniques have been developed and utilized for different oceanographic appli-
cations. In this study, 15 applications of RS in the ocean using different RS techniques and systems
are comprehensively reviewed and discussed. This study is divided into two parts to supply more
detailed information about each application. The first part briefly discusses 12 different RS systems
that are often employed for ocean studies. Then, six applications of these systems in the ocean,
including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH),
Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD), are provided. For each application, the
applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML)
techniques, and several case studies are discussed. The other nine applications, including Iceberg,
Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean
Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery, are provided in Part II of
this study.

Keywords: remote sensing; ocean; ocean wind; ocean current; ocean wave; sea level; ocean tide;
ship detection
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1. Introduction

Oceans cover more than 70% of the Earth’s surface and provide countless benefits. For
example, the oceans produce over 50% of the world’s oxygen and store carbon dioxide.
Moreover, the oceans transport heat from the equator to the poles and regulate climate
patterns. Additionally, oceans play a key role in transportation, food provision, and
economic growth. Oceans are also important for recreational activities [1–3]. Considering
the importance of ocean environments, it is important to protect them using advanced
technologies. To this end, datasets collected by in situ, shipborne, airborne, and spaceborne
systems are being utilized.

Although in situ measurements provide the most accurate datasets for ocean studies,
they have several limitations. For example, they are point-based observations and cover
small areas. Moreover, deployment and maintenance of in situ platforms (e.g., buoys) are
expensive and labor-intensive [4]. Shipborne approaches also have their own disadvantages.
For instance, they can only measure Ocean Surface Wind (OSW, see Table A1 for the list of
acronyms) along specific tracks, and the vastness and remoteness of ocean environments
hinder surveillance of human activities because authorities cannot frequently provide
effective vessel control [5]. On the other hand, ocean mapping and monitoring using
airborne and spaceborne Remote Sensing (RS) systems are of significant interest due
to the large coverage, a wide range of temporal and spatial resolutions, as well as low
cost of the corresponding datasets [6–8]. Our understanding of ocean environments,
including marine animals, oceanic biogeochemical processes, and the relationship between
oceans and climate changes, has considerably improved due to the availability of global,
repetitive, and consistent archived satellite observations. It should be noted that although
RS provides a great opportunity for ocean studies, it does not obviate the necessity of
in situ measurements, and they usually play a supporting role to each other in different
oceanographic applications.

Different methods have been so far developed to derive oceanographic parameters
from RS datasets. These methods can be generally divided into three groups of statistical,
physical, and Machine Learning (ML) models. Statistical algorithms are mainly based on
the correlation relationships between in situ measurements of oceanographic parameters
and the information collected by RS systems. These models are usually easy to develop
and provide fairly reasonable accuracies. However, they require in situ data, which are
sometimes not available over remote ocean areas. These models also need to be optimized
for different study areas. Physical models (e.g., Radiative Transfer (RT)) are based on the
physical laws of the RS systems. Although these models usually provide better results
than statistical models, they require many inputs that are usually not available. Recently,
ML algorithms, either traditional (e.g., Random Forest (RF) and Support Vector Machine
(SVM)) or more advanced models (e.g., Convolutional Neural Network (CNN)), have been
frequently utilized for various oceanographic applications. Generally, like many other
applications of RS, Deep Learning (DL) methods provide higher accuracies compared to
statistical, physical, and traditional ML algorithms [9–11]. However, it should be noted
that DL methods require a very large number of training data and are computationally
expensive [12]. Consequently, it is sometimes more reasonable to utilize other, less-costly
ML algorithms [13,14].

As discussed, RS systems provide numerous opportunities for studying different
oceanographic applications. However, there is not currently a literature review paper
that comprehensively investigates and discusses these applications. Therefore, in this
study, detailed discussions are provided about different applications of RS in the oceans.
This literature review paper is divided into two parts, considering the wide range of RS
applications in ocean environments. In Part 1, brief descriptions of different RS systems
are first provided (Section 3), where 12 widely used RS systems for ocean studies are
discussed. Since this study’s main goal is to discuss the applications of RS in oceans, the
systems are not described in more detail. However, several references are provided for each
system, and readers can refer to them for more information. Moreover, the main objective
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of this study is to investigate the oceanographic applications of spaceborne RS systems.
However, some of the airborne (e.g., Light Detection and Ranging (LiDAR)), shipborne
(Sound Navigation Ranging (SONAR)), and land-based systems (e.g., High Frequency
(HF) radar) are also discussed. In Section 4, six applications of RS for ocean studies are
comprehensively discussed through six subsections. In each subsection, an introduction of
the application is initially provided. Then, the methods, advantages, and disadvantages of
various RS systems for that particular application are discussed.

2. RS Systems

RS systems can be generally divided into two groups of passive and active. Passive
RS systems record reflected electromagnetic energy in the visible, Near-Infrared (NIR),
and Shortwave Infrared (SWIR) bands, as well as emitted electromagnetic energy in the
Thermal Infrared (TIR) bands. On the other hand, most active RS systems (e.g., microwave
systems) measure the backscattering radiation from different objects on the Earth at higher
wavelengths compared to passive systems. In the following subsection, a brief description
of different RS systems that are mainly used for oceanographic applications is provided.

2.1. Pasive
2.1.1. Optical

Optical RS systems mainly record the solar radiance reflected from the Earth’s surface
at visible (400–700 nm), NIR (720–1300 nm), and SWIR (1300–3000 nm) parts of the elec-
tromagnetic spectrum. Optical RS primarily works based on the fact that different objects
reflect and absorb the incoming solar light differently at various spectral bands. Therefore,
each object has a unique spectral behavior, called spectral reflectance signature, by ana-
lyzing of which, different objects can be discriminated [15]. Optical satellites have been
employed for various oceanographic applications, such as biogeo-optics, Ocean Color (OC),
coastal waters, bathymetry, and sea surface topography [16,17]. Since the existence of solid
microparticles alters the spectral behavior of seawater, scientists can globally monitor these
substances, such as phytoplankton, algal bloom, nonalgal particles, and colored dissolved
organic matter, using OC measurements [16,18,19]. The optical images also reveal oceanic
waves, including internal and shallow-water waves [20]. Additionally, optical sensors
provide useful images for mapping, monitoring, and managing aquatic vegetation and
coral reef ecosystems [21]. Marine pollution, especially Ocean Oil Spill (OOS), can also
be detected by optical images [22–24]. Despite the successful employment of optical RS
systems, consideration should be taken into account, as all of the optical RS applications
can be hampered by several environmental factors, such as sun glint, cloud cover, and
inclement weather conditions [16].

2.1.2. TIR Radiometers

TIR radiometers measure the radiations emitted from the Earth’s surface in the TIR
bands. TIR sensors usually operate at 3–5 µm and 8–14 µm regions of the electromagnetic
spectrum. In these regions, the atmosphere is transparent, and the amount of solar-reflected
radiation is less than that emitted from the Earth. Thus, these sensors primarily detect the
thermal properties of objects on Earth [25]. There is a general consensus that any object
with a temperature above absolute zero emits radiation. The amount of radiation that each
object emits toward the TIR sensors depends on its temperature and a physical characteristic
known as emissivity. Thermal images can be captured during both daytime and nighttime
because TIR sensors do not require sunlight. However, for many applications, nighttime or
predawn images are preferable because the impact of solar heating is at its minimum rate [15].
TIR systems have been widely used to estimate sea surface and cloud-top temperatures [26].
The measurement of Sea Surface Temperature (SST) is indispensable for various purposes,
including investigating western boundary currents, studying global change, and estimating
the source of heat at sea [27]. Additionally, thermal images facilitate the mapping of the
current’s flow pattern and Gulf Stream eddies. More importantly, they allow us to detect
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OOS because there is a temperature difference between OOS and sea surface [28]. Although
thermal images have various applications, they suffer from clouds in the atmosphere, which
hinder frequent Ocean Surface Current (OSC) and temperature observations [26].

2.1.3. Microwave Radiometers

Microwave radiometers can be divided into real and synthetic aperture systems.
Microwave radiometers can also be divided into two groups of polarimetric and nonpo-
larimetric. Currently, there is only one polarimetric microwave radiometer (i.e., Windsat),
which can measure both OSW speed and direction. The other microwave radiometers are
nonpolarimetric and can only measure OSW speed [29]. The measurements of microwave
radiometers are target radiances, which are usually referred to as Brightness Temperature
(BT). The propagation of electromagnetic radiation at microwave frequency through a
material is determined by its electric conductivity, magnetic permeability, and electric
permittivity [29,30]. Some of the applications of microwave radiometers include the mea-
surements of OSW, SST, Ocean Salinity (OS), Sea Ice (SI), soil moisture, snow cover extent,
ice-sheet melt, and atmospheric water vapor [31,32]. Due to the low amount of passive
radiated energy from Earth sensed by the spaceborne microwave radiometers, the spatial
resolution of these satellites is usually low (e.g., 20–50 km).

2.1.4. Global Navigation Satellite Systems Reflectometry (GNSS) Reflectometry (GNSS-R)

GNSS-R is one of the recent RS techniques which utilizes GNSS (e.g., United States Global
Positioning System (GPS), Russian Global Navigation Satellite System (GLONASS), European
Galileo, Chinese BeiDou, Indian Regional Navigation Satellite System (IRNSS), Japanese
Quasi-Zenith Satellite System (QZSS)) Earth-reflected signals to study various geophysical
parameters over ocean, land, and atmosphere [33]. In this technique, ground-based, airborne,
or spaceborne receivers receive the GNSS signals from the ocean/land surface. GNSS ob-
servations rely on the cross-correlation of the reflected signal with the signal received from
GNSS satellites [34]. Since the signal is affected by the environment, its shape is different
from the main signal, and this variation is studied to derive information about the surface
or atmosphere. Ocean surface topography, OSW speed [35–37], Ocean Wave Height (OWH),
soil moisture, SI extent [38], snow depth, ocean precipitation, and atmosphere compositions
are some of the applications which are being studied using GNSS observations. Currently,
there are multiple satellite missions, airborne campaigns, and ground-based stations that are
dedicated to collecting and studying GNSS signals. Some of the well-known satellite mis-
sions are United Kingdom Disaster Monitoring Constellation (UK-DMC) [37], TechDemoSat-1
(TDS-1) [39], and National Aeronautics and Space Administration (NASA)’s Cyclone Global
Navigation System Satellite (CYGNSS) constellation [40].

2.2. Active
2.2.1. SAR

Synthetic Aperture Radar (SAR) systems are side-looking radar instruments that acquire
surface information in two-dimensional directions (i.e., azimuth and range). SAR sensors
successively transmit pulses toward different targets on Earth; afterwards, they record the
scattering echoes [41]. Generally, SAR systems have a day-and-night imaging capability and
can work in all weather conditions. The platform movement and signal processing techniques
allow the generation of high-resolution SAR data [41]. Despite the high-resolution data, the
narrow swath and incidence angle dependencies are the main limitations of SAR sensors. SAR
data are usually processed and provided in two common formats of Single Look Complex
(SLC) and Ground Range Detected (GRD) for further interpretation.

2.2.2. Scatterometer

Scatterometers are active microwave sensors and measure the backscattering coef-
ficient (σ

◦
). σ

◦
depends on the dielectric and geometric characteristics of the incidence

surface [42]. Generally, two architectures, namely, fan-beam and pencil-beam, have been
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considered to develop spaceborne scatterometers [43]. Fan-beam provides a fixed number
of azimuths which look over a range of incidence angles (i.e., 20◦ to 60◦) by employing
multiple antennas. Pencil-beam collects σ

◦
values at two different incidence angles and

wide azimuthal angles by a single rotating antenna. In terms of antenna configuration,
spaceborne scatterometers are generally categorized into three groups: (1) the multiple
fixed fan-beam scatterometers with constant azimuth angles [44]; (2) the rotating pencil-
beam scatterometers with inflexible incidence angle [45]; and (3) the rotating fan-beam
scatterometers, which offer a large swath coverage, increase the variety of observation
geometry, and boost scanning speed [46].

2.2.3. Altimeter

Altimeters are active sensors that usually collect surface information in microwave
domains (e.g., Ku and C bands). These radar-based systems transmit microwave pulses
and record σ

◦
values in waveform echo, which then can be applied to identify features of

interests and their topography [47]. The first generation of altimeters measured the nadir
angle along the ground track with low spatial resolutions. They also had limitations near
the coastlines [48]. SAR and Interferometric SAR (InSAR) altimeters were developed to
overcome these limitations [49,50]. SAR altimeters work at the nadir angle with a higher
azimuthal resolution. InSAR altimeters record the Earth’s surface information with high-
resolution imaging capability in both range and azimuth directions. In recent years, owing
to significant progress in radar systems and novel data processing techniques, the second
generation of dual-frequency radar altimeters with a smaller footprint and better spatial
resolutions has been launched.

2.2.4. LiDAR

A typical LiDAR system integrates several different units (e.g., optical, timing, and
geo-referencing) to acquire three-dimensional point cloud measurements from the scanned
area. LiDAR measures the time it takes for the emitted light to travel to the ground and
be received back at the sensor. Each point in LiDAR data presents specific properties of
the scanned area (e.g., coordinates and intensity). LiDAR measurements have been used
for a variety of ocean and coastal applications, including but not limited to safe marine
navigation, inundation and storm surge modelling, hydrodynamic modelling, and coastal
vulnerability analysis [51]. In addition to the ocean surface mapping applications, LiDAR
enables recovering of the ocean bottom depending on the laser wavelength and quality of
ocean water. Thus, underwater target detection and coastal bathymetry have also been
investigated using LiDAR data [52–54].

2.2.5. Gravimeter

The mass distribution in the Earth, including the Terra-firma and fluid Earth (e.g.,
ocean), determines the Earth’s gravity field [55]. Changes in the Earth’s gravity field
are mostly caused by air and water redistributions. The most important RS system for
gravimetric studies was the Gravity Recovery and Climate Experiment (GRACE) satellite
mission, launched in March 2002. GRACE mission included twin satellites flying 220 km
apart and mapped the gravity field of the Earth by accurate measurements of the distance
changes between two satellites [56]. Various oceanographic applications, including sea-
level rise [57], ocean circulations [58], estimating ocean bottom pressure [59], ice sheet loss
monitoring [60], and glacier mass balance [61], have been investigated using the GRACE
satellites. Despite the remarkable advantages of GRACE satellites, several limitations
restrict their applications. For instance, raw data from the GRACE mission is just the
distance between two satellites, and scientists have to determine the cause of the distance
change in any changes in the mass below them, from OSC to atmospheric circulations [62].
Moreover, the smallest area that can be studied with GRACE data is 200,000 km2, which
limits many smaller-scale applications [56]. Above all, the gravity field solutions from
GRACE are mostly in monthly intervals, restricting short-term change detections [62]. The
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GRACE mission was operational until 2017, and the GRACE-FO, a follow-up mission with
multiple enhancements from GRACE, was launched in 2018 to provide continuous satellite
gravimetry data.

2.2.6. SONAR

SONAR systems use sound propagation to explore the underwater environment. Two
major types of SONAR systems are passive and active SONAR systems. The former listens
to the sound made by objects (e.g., vessels and whales), while the latter emits specific pulses
of sound energy and then listens to the returned echoes [63]. Initially, an echo sounding
method was investigated using sound waves bounced off the ocean bottom, which was the
basis of seafloor mapping. SONAR systems can also be used to map various geological
features or small cultural heritage areas [51]. Additionally, by increasing the utility of
sophisticated SONAR systems, these systems have been employed to map pelagic fish
schools and hydrography applications, such as marine organisms and gas plumes [64,65].

2.2.7. HF RADAR

HF radar systems are mainly land-based RS instruments that utilize high-frequency
radio waves. These systems carry out Near Real-Time (NRT) measurements of the ocean
surface parameters in coastal regions over relatively large areas from a few kilometers up
to about 200 km from coastlines, regardless of the weather condition. Typically, HF radar
operates in electromagnetic bands between 8 and 37 MHz, corresponding to wavelengths
of 8–37 m. These systems transmit moderated radio waves and receive the backscattered
signal, which is mainly from ocean waves spreading along the radar look direction [66].
HF radar measurements primarily rely on the Bragg scattering mechanism [67]. A growing
number of HF radar systems are being installed and utilized worldwide for deriving many
different oceanographic parameters, including OSC [67], OSW [68], OWH [69], tidal pro-
cesses [67], ships [70], and tsunami [71]. Despite the remarkable advantages of HF radars,
including high temporal and spatial resolution in multiple applications, several restrictions
should be considered while using HF radar data. One of the limitations is the smaller
coverage than satellite observations, which can be resolved through installing a network
of HF radar antennas covering larger study areas [67]. Furthermore, HF radars provide
only information from the surface of the ocean with at least a few centimeters to 1–2 m
depth [66]. Another consideration is the relatively high uncertainty of the data associated
with various hardware operational issues and uncertainty in the radial velocities [66].

2.2.8. Marine Radar

Marine radars mainly include X-band and S-band radar systems. These systems record
the radar backscattering intensity from the ocean surface as a grayscale image [72,73].
X-/S-band radars are usually installed on offshore platforms, marine vessels, and harbors
(nearshore buildings and structures) [74]. Regarding the wavelength, X-band marine radars
have smaller antennas, are assembled on boats, and provide better target resolution. In
addition to analyzing wave characteristics (e.g., height, length, and period), X-band radar
can scan real-time ocean surface at high temporal and spatial resolutions. On the other
hand, S-band radar is more useful in harsh weather conditions. S-band radar also provides
acceptable accuracy for tracking and identification [75]. Recently, marine radars have also
been developed to monitor OOS, support offshore platforms, and study air–sea interaction.

3. RS Applications in Ocean

As discussed in the Introduction, six oceanographic applications of RS are explained
in Part 1 of this review paper. These applications, along with the RS systems which can be
used to study them, are illustrated in Figure 1. More detailed discussions are also provided
in the following six subsections.
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3.1. Ocean Surface Wind (OSW)

OSW is an essential parameter for various applications, such as marine disaster
monitoring, climate change modeling, water mass formations, and Numerical Weather
Prediction (NWP) [76–79]. Considering the limitations of the traditional methods for
OSW estimation (e.g., anemometers and buoys) [76,80], RS observations have emerged
as cost-effective techniques [81]. Remotely sensed OSW information mainly relies on the
relationship between the OSW and the sea surface roughness, which represents emissive
and reflective properties of the ocean surface [79]. Five RS systems have been frequently
applied to measure OSW: microwave radiometer, GNSS-R, SAR, scatterometer, and HF
radar. The advantages and disadvantages of each system, summarized in Table 1, are
discussed in more detail in the following subsections.
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Table 1. Different RS systems for OSW estimation along with their advantages and disadvantages.

RS System (Passive/Active) RS System (Type) Advantage Disadvantage

Passive
Microwave radiometer Appropriate efficiency in high wind

speeds, large-scale coverage

Low accuracy for OSW direction
estimation in low wind speeds,

coarse spatial resolution

GNSS-R

Higher spatial and temporal
resolution, less sensitivity

atmospheric attenuation, low-cost,
low weight, low power needs for

receivers, unique sensing geometry

Inadequate number of satellites,
need more investigation

and validation

Active
SAR High spatial resolution, applicable

at both low and high wind speeds
Speckle noise issue, challenging

preprocessing steps

Scatterometer Good efficiency in low wind speeds,
global coverage

Coarse spatial resolution,
saturated signal in high wind

speeds, rain contamination

HF radar Reasonable accuracy at different
wind speeds, large-scale coverage

Availability of OSW data only at
specific coastal locations where
the HF radar has been installed

3.1.1. Microwave Radiometer

Microwave radiometers can estimate OSW based on the spectrum of the microwave
radiation emitted by the ocean surface [79,82]. OSW measurements from microwave ra-
diometers mainly rely on the physical RT models, which estimate the microwave emission
from the ocean surface and the emission and absorption by the Earth’s atmosphere [83].
As discussed, the nonpolarimetric microwave radiometers (e.g., Advanced Microwave
Scanning Radiometers (AMSR)) can only estimate OSW speed. However, the WindSat
polarimetric microwave radiometer can provide both OSW speed and direction [79]. Polari-
metric microwave radiometers contain ±45◦ polarized and right/left circularly polarized
channels along with vertical and horizontal polarizations. Polarimetric microwave radiome-
ters retrieve OSW speed and direction by measuring the complex correlation between hori-
zontally and vertically polarized microwave radiations [32]. In fact, the difference between
horizontal and vertical polarizations is related to OSW speed, and the complete state of po-
larization is related to OSW direction [82]. The OSW direction from polarimetric microwave
radiometer systems becomes less precise when wind speed is less than 8 m/s [81,84]. This
is because the passive OSW direction signal is small in all polarizations at low wind speeds,
causing noisy and inaccurate measurement of the OSW direction [79,85].

Generally, microwave radiometers provide better results in high wind speeds than
other low-resolution RS systems, such as scatterometers. For example, it has been reported
that in spaceborne L-band radiometers, received signals remained sensitive to increasing
wind speeds up to 70 m/s [86,87]. Accordingly, some of the L-band radiometers (e.g., Soil
Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP)) can provide
a reasonable estimation of extreme OSW speeds at a coarse spatial resolution [87]. The
quality of the OSW measurements from microwave radiometers is negatively affected by
rain [83]. However, L-band radiometers (e.g., SMOS) are almost insensitive to the presence
of rain or frozen precipitation [88]. Various OSW products have been so far generated
using the data collected by different microwave radiometers. For example, Yin et al. [89]
implemented a novel method to estimate OSW vector in severe weather conditions (i.e.,
the high precipitation environment of tropical cyclones) using WindSat data. This study
used HWind data [90] as the reference dataset and evaluated the proposed methodology in
17 tropical cyclones from 2003 to 2009. The results showed that the mean difference between
the retrieved OSW speed and HWind data for 17 tropical cyclones was 0.2 m/s. The Root
Mean Square Error (RMSE) was also 24.2◦. The authors reported that the observed RMSE
value was mainly related to a time or location mismatch between the HWind analysis and
the WindSat data.
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3.1.2. GNSS-R

As discussed, GNSS-R is a passive RS satellite utilizing the GNSS signals to esti-
mate the OSW speed using the L-band (frequency and wavelength around 1.5 GHz and
20 cm) [34]. GNNS-R measures multiple points over the ocean to estimate the OSW speed,
and its geometry is not like a swath, individual point, or limited to the nadir direction [91].
In contrast to traditional OSW speed retrieval methods, GNSS-R has better spatiotemporal
sampling due to the global accessibility of the GNNS signal, which offers greater cover-
age over the ocean [35]. Another advantage of GNSS-R is its lower sensitivity to small
atmospheric particles and small-scale capillary waves since it utilizes a longer wavelength
compared to scatterometers (i.e., wavelengths = 2–5 cm) [35]. Additionally, lower cost and
lower power needed for the GNSS-R receiver are the other benefits of these systems for
OSW estimation [92].

The first GNNS-R data were collected by the UK-DMC satellite between 2004 and
2005 [37]. Later, in July 2014, the second spaceborne polar-orbiting satellite (TDS-1) was
equipped with the Space GNSS Receiver Remote Sensing Instrument (SGR-ReSI) to collect
the reflected GNNS signals [92]. The first OSW speed estimation from the TDS-1 mission
was discussed in [92]. This study suggested an OSW speed retrieval method based on the
Signal-to-Noise Ratio (SNR) and GNSS-R Biostatic Radar Equation. The Meteorological
Operational (MetOp) Advanced SCATterometer (ASCAT) satellite measurements were
used to validate the results. It was observed that when SNR was greater than 3 dB, OSW
speed could be estimated with an accuracy of approximately 2.2 m/s for wind speed values
between 3 and 18 m/s [92]. In late 2016, an advanced GNSS-R receiver was installed on the
CYGNSS to provide higher-quality OSW speed products [93].

Fusing measurements from multiple GNSS-R systems can improve the spatiotemporal
resolution of the estimated OSW speed [94]. Retrieval of OSW speed from GNNS-R data
is usually based on quantities known as observables, which are extracted from the GNSS
delay-Doppler maps peak [7,13]. A series of algorithms, including the delay-Doppler
map variance, delay-Doppler map average, trailing edge slope, leading edge slope, and
Allan delay-Doppler map variance, have been so far introduced in [8] for OSW speed
estimation from GNSS-R data. The authors also suggested a new OSW speed estimation
algorithm, known as minimum variance, based on the integration of OSW data from each
single observation [35]. Moreover, a new parametric Geophysical Model Function (GMF),
extracted from the CYGNSS measurements, was proposed by [95] to relate the OSW speed
to the two observables of the slope of the leading edge of the radar return pulse scattered
by the ocean surface and the normalized bistatic radar cross-section of the ocean surface. In
this study, an overall RMSE of 1.4 m/s was obtained when the results were compared with
in situ data [95].

3.1.3. SAR

SAR sensors measure the Normalized Radar Cross Section (NRCS) variation from the
wind-roughened ocean surface as a function of both OSW speed and direction. Accord-
ingly, GMFs are developed to establish the relationship between OSW vector information,
calibrated NRCS, and sensor viewing angles for different SAR bands and polarizations [96].
However, since SAR sensors operate with a single azimuth view, it is required to infer
whether backscatter variations are related to OSW speed (along-view OSW vector com-
ponent) or OSW direction (across-view OSW vector component) [81]. To resolve this
issue, several different methods have been implemented, a comprehensive list of which
are discussed in [97]. It is also worth noting that rain can negatively affect the OSW es-
timation accuracy from SAR data, and rain contamination is more noticeable at shorter
wavelengths [81].

SAR systems are the only satellite-based system that can provide OSW information
with a subkilometer spatial resolution (between a few meters and 100 m) [96]. However,
OSW retrieval using SAR data is generally implemented at spatial resolutions of 0.5–1 km
for removing speckle noise as well as filtering ocean waves and other non-wind-induced
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features [81]. SAR systems are efficient at both low and high winds with subkilometer
spatial resolutions [98]. The cross-polarized SAR data provide a very weak incidence
and azimuth angle dependency, with no indication of saturation for the strongest wind
speeds (up to 75 m/s). Accordingly, these capacities have opened new perspectives for
OSW speed estimation in different settings, even in tropical cyclones [98–100]. In this
regard, Li et al. [100] analyzed 83 SAR images, captured by Radarsat-1 and Envisat from
2001 to 2010, to investigate the morphology of the tropical cyclone eye in terms of shape
and size distribution. The detailed atmospheric phenomena generated within tropical
cyclones (e.g., rainbands, boundary layer rolls, and arc clouds) were also explored. This
study demonstrated the application of SAR data for investigating the characteristics of
windstorms with relatively higher resolution. In fact, by analyzing 30 typhoons and
43 hurricanes, the authors reported that the response of ocean surface to the storm-forced
winds could be effectively explored by SAR data.

3.1.4. Scatterometer

Scatterometers have proven to be efficient tools for both OSW speed and direction
measurements [101,102]. A scatterometer transmits a radar pulse and then measures the
returned pulse ratio from the ocean surface [103]. The differential response and the intensity
of the reflected pulses determine the OSW direction and speed, respectively [82]. The
main operating radar frequencies in scatterometers are Ku-band (frequency = 13.4 GHz
and wavelength = 5 cm) and C-band (frequency = 5.2 GHz and wavelength = 2 cm).
Scatterometers provide global OSW vector information with spatial resolutions between
25 and 50 km, which is almost similar to that of microwave radiometers [79]. Unlike
SAR systems, the low spatial resolution of these two instruments cannot effectively satisfy
several local applications, such as tropical cyclone analysis and coastal OSW mapping. For
low OSW speeds, scatterometers provide more reliable information compared to microwave
radiometers. However, scatterometers lose sensitivity, and the signal begins to saturate,
at high wind speeds (above 35 m/s) [104]. Like SAR systems, the rain contamination in
scatterometers’ OSW measurements is more serious in the higher frequencies.

Many studies have so far investigated the potential of different scatterometers for OSW
estimation. For example, Guo et al. [103] examined the spatial variability of global OSW
resources at heights of 10 m and 100 m above Sea Level (SL) using multiple scatterometers,
including Quick SCATterometer (QuikSCAT), ASCAT, and WindSat (see Figure 2). The au-
thors also compared the results with mean OSW speeds and wind power densities collected
by buoys during 1995–2015. Based on the results, although OSW information retrieved
from each of these three scatterometers was fairly comparable, a combination of these in-
struments provided better results. Furthermore, other types of sensors, including terrestrial
laser scanners, SONAR, and Autonomous Underwater Vehicles (AUV), have been utilized
to collect data about the position, geometry, and morphology of icebergs [26,27]. Although
the abovementioned approaches provide accurate information, they are resource-intensive
and logistically arduous in oceans, especially in remote locations of polar regions [28]. Con-
sequently, it is efficient to employ other RS systems, such as satellites, which can provide
broad observations about the icebergs through space and time. Various RS systems have
been so far applied to identify and track icebergs [10,29,31]. Optical, SAR, scatterometer,
altimeter, and HF radar systems have been widely used for iceberg studies.
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3.1.5. HF Radar

As discussed, HF radars measure ocean surface parameters, such as OSW speed, in
a timely fashion over relatively larger areas and at a reasonable cost compared to in situ
measurements. OSW speed can be extracted from either the first-order radar backscatter
or the second-order sea echo. Stewart and Barnum [105] revealed that the 10-dB width
of the first-order resonant scattering could be used for the estimation of the local OSW
speed. However, this method was not a robust solution since it depended on different
ocean parameters, such as OSC [106]. The second-order scattering is also employed to
calculate the OSW speed because the amplitude of the second-order radar backscatter and
its location in Range-Doppler is greatly dependent on the local OSW speed [107]. In other
words, by increasing the wind speed, the second-order peaks increase and move to the
first-order peaks. Moreover, Barrick et al. [108] postulated that the ratio of the second-
order peak amplitudes to the first-order ones could be used for measuring the local OSW.
Ahearn et al. [109] also suggested that the ratio of the second-order continuum closer to
zero Doppler to the amplitude of the first-order resonant peak can be employed for OSW
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speed measurement because short waves represented in this region reflect the OSW speed.
Additionally, Dexter and Theodoridis [110] proposed a method to calculate OSW speed
from the significant OWH and period. Subsequently, Huang et al. [111] applied this method
to an HF radar installed in the Eastern China Sea.

3.1.6. Summary and Future Direction

OSW is among the key components of ocean/atmosphere circulation. Accordingly,
accurate knowledge of OSW is of substantial importance to understand and quantify
different ocean-related characteristics. Despite the tremendous progress in the utilization of
RS technology for quantitative and qualitative assessment of OSW, there are still different
issues and challenges that need to be addressed in future research. These include but are
not limited to improving the measurement accuracy and consistency of OSW products
by integrating different data sources (e.g., buoys, satellite, and NWP), proposing novel
automatic and/or semiautomatic methods for concurrently retrieving OSW and other
related parameters (e.g., ocean currents and precipitation), developing new RS sensors to
enhance the temporal resolution and spatial extent of global OSW products, integrating
active and passive sensors to provide OSW products in all-weather conditions with the
highest accuracy, and employing downscaling methodologies to enhance the temporal and
spatial resolutions of OSW products.

3.2. Ocean Surface Current (OSC)

OSC is the continuous and directional movements of the mass of the seawater, transfer-
ring nutrients, energy, heat, pollutants, and chemical substances around the world [112,113].
Ocean currents affect the global climate, the ocean’s ecosystems, and fishing productivity.
More importantly, they play a key role in reducing shipping costs, fuel consumption, as
well as developing policies for preventing natural disasters [112,114]. OSC can originate
from a wide range of factors, such as wind, Coriolis effect, water density variation, Ocean
Tide (OT), as well as SST and OS differences [112,113,115,116]. The seafloor and shoreline
topography can also affect OSC and hinder or boost the mixing and passageway of water
from different areas [117]. Ocean currents can be generally divided into five categories: (1)
geostrophic ocean current, which is balanced under pressure gradient force by the Coriolis
effect; (2) tidal ocean current, which is created by the gravitational force of the moon, sun,
and Earth; (3) wind-driven Ekman ocean current, which is created by the steady ocean
wind; (4) wave-induced Stokes drift, which is characterized by the difference between the
average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of
the fluid at a fixed position; and (5) small-scale ocean current, which is created by the small
features such as eddies, fronts, and filaments [118]. Ocean currents are also separated into
two groups based on their temperature: warm and cold ocean currents (see Figure 3) [3].
For instance, the Gulf stream, Kuroshio, and the Agulhas are warm currents that transport
heat from the tropics poleward and significantly affect the global climate [112,119,120].
The Humboldt, Benguela, and California are cold currents that preserve highly upwelling
waters and carry cold water toward the equator [112,120]. For example, the Labrador
Current has a cooling effect with a low OS and is known for transporting icebergs from
Greenland’s glaciers into shipping lanes in the North Atlantic [120,121].
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oceanicas.png (accessed on 8 October 2022).

Ocean currents can also be categorized into two groups according to their depth:
surface and deep (subsurface) [112,118,122]. The surface currents are horizontal water
streams that occur on local to global scales, and their effects are primarily restricted to
the top 400 m of ocean water [112,123]. Along the coasts and offshore regions, there are
local surface currents, which are typically small and short-lived (e.g., hourly/seasonal),
generated by OT, waves, buoyant river plumes, and local-scale winds [112,123]. These
currents control the local flooding, algal bloom, marine pollution, sediment transport, and
ship navigation [112,123]. The global surface currents (e.g., the Gulf Stream) are typically
controlled by dominant global winds (e.g., trade winds and the westerlies) together with
Coriolis force and the restriction of flow by continental deflections [112,114,123]. These
currents travel over long distances in the same direction as the wind and at a speed of
approximately 3 to 4% of winds’ speed [112,123]. However, the Coriolis force deflects these
currents from the equator to the right direction in the Northern Hemisphere and the left
in the Southern Hemisphere, which creates the clockwise and counterclockwise circular
patterns or gyres, respectively [112,114,115,123,124]. In contrast, the deep ocean currents
are vertical streams under the influence of the thermohaline circulation generated by water
density differences and depend on temperature and OS [112,125]. Deep ocean currents are
formed with upwelling and downwelling directions below 400 m of the surface water [126].

Depending on the scale of the ocean currents, they are measured by different methods.
Figure 4 illustrates various in situ and RS methods for ocean current estimation. It should
be noted that the focus of this section is on the OSC using offshore, shipborne, and space-
borne platforms. Table 2 also summarizes these systems along with their advantages and
limitations for OSC studies. More details about the applications of each system are also
provided in the following subsections.

https://commons.wikimedia.org/wiki/File:Corrientes-oceanicas.png
https://commons.wikimedia.org/wiki/File:Corrientes-oceanicas.png
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Table 2. Different RS systems for OSC estimation along with their advantages and limitations.

RS System
(Passive/Active) RS System (Type) Advantage Disadvantage

Passive
Optical

Provides high spatial resolution images
for retrieving and characterizing

spatiotemporal OSC

Calibrating issues due to defining
several input parameters, limited by

cloud cover, requires a reliable
operational procedure for feature

tracking, not suitable for nighttime

TIR
radiometers

Mesoscale OSC fields retrieval based on
the feature tracking at high

temporal rates

Limited by cloud cover, edge-of-scan
distortions, hard for features to

evolve due to degradation of their
surface signature

Microwave
radiometers

Can measure under clouds and in all
weather conditions except for rain, OSC

estimation at a global scale

Coarse resolution, limited to regions
with sun-glitter, rain, or proximity

to land

Active

SAR

Not limited by cloud cover or daytime,
contains physical properties, high
spatial resolution, different data

acquisition modes are available, ability
to detect small leads, penetration

capability

Difficult data interpretation, speckle
noise, different ice types might have
similar scattering behavior, similarity

of wind roughened water and ice

Altimeter

Almost daily global coverage, accurate
topography for SI thickness
measurement, ability to map

small leads

Error due to the roughened sea
surface, no physical characteristics

HF radar Suitable for global-scale studies Limited data availability, not
frequent observations

Marine radar Not limited by cloud cover and
daytime, long-time data archive

Unable to provide images, signal loss
in propagation into dense ice, unable

to detect SI presence constantly
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3.2.1. Optical

Optical satellites provide high/medium spatial resolution and multitemporal and
multispectral images for oceanographic studies over large areas [112,127]. These images
are typically captured in the visible (Red/Green/Blue) (0.4–0.7 µm) and Near-, Mid-,
and Far-Infrared (0.7–3.5 µm) spectral ranges, and can be directly/indirectly used to
investigate the spatiotemporal characteristics of OSC [112,127]. For example, OC products
of optical satellites can be indirectly applied to estimate the OSC [112,116]. For instance,
Sun et al. [128] employed two matching algorithms, including area-based cross-correlation
and feature-based optical flow approaches, to estimate OSC from OC image pairs. The
results demonstrated a high similarity between the derived OSC and the Ocean Surface
Current Analysis Real-time (OSCAR) products. It was also observed that the robust
optical flow method outperformed the Maximum Cross-Correlation (MCC) algorithm in
terms of accuracy. Furthermore, optical RS images can be directly used to retrieve surface
wave directional properties and OSC characteristics. For instance, Yurovskaya et al. [127]
developed a new technique based on cross-spectral phase estimation to directly retrieve
OSC and the characteristics of propagating ocean surface waves from Sentinel-2 images.
The results showed that the retrieved OSC was well-matched with medium-resolution OSC
models as well as the derived velocities from altimeter observations in deep ocean regions.
The results over shallow water areas demonstrated that the retrieved wave propagation
characteristics corresponded well with the sea-depth variations. These results confirmed
the high potential of optical images in direct estimation of OSC velocity.

Although the optical satellite images are rich in content and are easy to use for OSC
mapping, they are sensitive to cloud cover and are not suitable for nighttime. Moreover,
the long revisit time and inappropriate latency of some optical datasets have made some of
them unsuitable for real-time OSC measurements.

3.2.2. TIR Radiometer

In order to retrieve SST, Low Earth Orbit (LEO) and geostationary satellites acquire
TIR data in the 7–14 µm region of the spectrum [129]. The derivations of SST from TIR
satellites are typically utilized to estimate the OSC velocity by tracking the motion of natural
surface features (e.g., oil and algae) in cloud-free images [112,129]. This tracking scheme
is mainly carried out by analyzing the sequential TIR images in both human interactive
and automatic methods [129]. In this regard, automated feature-tracking methods are more
interested in retrieving OSC velocity due to the costly and time-consuming procedure of
the human interactive approaches [130]. To this end, the feature tracking methods based on
the MCC matching algorithm have provided promising results for NRT estimation of OSC
velocity fields from consecutive TIR images [112,129–131]. For example, Heuzé et al. [130]
used the MCC method to track features from 224 pairs of sequential TIR images acquired
by Advanced Very High-Resolution Radiometer (AVHRR) between January and December
2015 in the western Mediterranean Sea. The results indicated that the satellite-based OSC
resulted from tracking a small pattern with low speed and concurred well with in situ
measurements, especially in summer times. Like optical satellite images, TIR radiometers
are restricted by the cloud cover and undesirable viewing conditions, which reduce the
spatial and temporal coverage of the resulting OSC velocity products [130].

3.2.3. Microwave Radiometer

SST and OSW measurements derived from microwave radiometers can be used to
study OSC [112,132]. Compared to TIR radiometers, the coarse spatial resolution of mi-
crowave radiometers reduces the performance of sequence image analysis and MCC
techniques for OSC estimation [133]. To resolve this issue, the Surface Quasi-Geostrophic
(SQG) theory and multifractal analysis have been employed to retrieve OSC from a single
SST microwave image [133,134]. To this end, the OSC can be reconstructed by converting
the SST map to OWH using a transfer function obtained by the multifractal analysis or
SQG approach [135]. In the multifractal analysis, the fact that SST multifractal structures
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are closely related to OSC is considered, and reasonable stream function approximation is
allowed [133,134]. However, this technique cannot provide information on OSC orientation.
In contrast, the SQG approach can reconstruct the 3D OSC field and is more commonly
used by researchers [134]. For example, González-Haro and Isern-Fontanet [132] assessed
the OSC, reconstructed from SST, using the SQG method at the global scale. The results
indicated that the retrieved OSC could be improved by providing information on the energy
spectrum of altimetry data.

3.2.4. SAR

SAR images are being widely used to map OSC dynamics and their variability in any
weather conditions and at any time of day/night [116,122,136]. SAR-based OSC estimations
are mainly obtained using two approaches: (1) feature tracking and (2) Doppler-based tech-
niques [136]. The feature tracking methods compare sequential SAR images by measuring a
similarity measure (e.g., correlation) between those images [137]. In the best case, the outputs
of these methods have the same spatial resolution as the SAR images. On the other hand,
the Doppler-based techniques can be divided into two groups based on their design, imple-
mentation, and performance: (1) the Doppler Centroid Anomaly (DCA) and (2) along-track
InSAR [136]. The DCA methods model OSC at a coarse resolution (e.g., 1–2 km) with only one
SAR image and are based on the Doppler shift concept [136,138]. These methods estimate OSC
by determining the line-of-sight rate of the scatterers based on the Doppler shift [112,139]. On
the other hand, along-track InSAR techniques are widely utilized to generate high-resolution
OSC maps with two SAR images [136]. The spatiotemporal decorrelation and atmospheric
delays strongly reduce the performance of these methods. Therefore, it is necessary to select
multitemporal SAR images with appropriate temporal and spatial baselines to achieve better
results from these methods. Multiple studies have investigated the potential of SAR-based
methods for OSC retrieval. For instance, Fu et al. [140] proposed a new technique to provide
maps of shallow water topography and OSC using SAR images. In this method, OSW and
OSC were estimated by fitting the observed SAR signals to a simulated shallow water to-
pography radar signal in an iterative procedure. The results showed the high efficacy of the
proposed methods. Moreover, Elyouncha et al. [141] investigated the potential of Sentinel-1
SAR data for OSC mapping in the Skagerrak Sea with a focus on the Norwegian Coastal
Current. They implemented several postprocessing algorithms for scalloping removal and
the absolute and interbeam bias correction in the Sentinel-1 data. The results showed that
the retrieved OSC velocity corresponded well with a regional ocean circulation model with
values of ≈0.8 m/s.

3.2.5. Altimeter

Altimeters with Ku-band (13.8 GHz) also provide information about the large-scale
dynamic topography of the ocean, particularly OWH and OSW speed, which can be di-
rectly used to estimate the global OSC and its variability at coarse spatial resolutions (e.g.,
10 km) [112,135,142]. Moreover, integrating altimetry data with tide-gauge data and hydro-
dynamic models increases the knowledge about global OT and OSC variability [136,142].
However, altimeters cannot measure the non-geostrophic components of the OSC due to
non-geostrophic and local winds [136]. Several efforts have been made so far to derive OSC
from altimetry data. For example, the NRT Archiving, Validation, and Interpretation of
Satellite Oceanographic (AVISO) products, as geostrophic OSCs, have been generated by
integrating the satellite altimetry and precise satellite position data and are available at a
global scale (see Hwang and Fan [90] for more information). Moreover, the OSCAR project,
developed by the National Oceanic and Atmospheric Administration (NOAA) [112–114],
and the GlobCurrent project, developed by European Space Agency (ESA) [90], provide
the complementary information for AVISO products in reliable estimating of the Ekman
component of the OSCs [118].
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3.2.6. HF Radar

Over the last few decades, HF radar systems have been successfully employed to remotely
measure coastal and offshore currents using the concept of Bragg-scattering [112,122,143]. The
local currents can be typically measured by a land-based radar antenna pair over a wide
area, up to 200 km or more, and with coarse spatial resolutions (e.g., 0.5–6 km), according
to the selected HF radio band, which could be in the range of 3 to 45 MHz [122,136,143].
Consequently, HF radar systems, as a cost-efficient tool, cover a wider range than marine
radars (i.e., X-/S-band radars) [112]. Moreover, HF radar systems are typically preferred
over marine radars to support the worldwide monitoring of marine and coastal ecosystems,
although they cannot produce high-quality data such as X-band image sequences [79]. For
example, there is a global HF radar network operating throughout the world to produce
continuous maps of local OSCs (see Figure 5) [90]. This network provides NRT measure-
ments of OSC fields which are applicable for operational marine services, coastal marine
studies, OOS detection, water quality assessment, pollution tracking, search and rescue,
and numerical ocean forecasting models, especially near the coast [79,144]. Various studies
have so far investigated HF radar data for OSC estimation. For example, Ji et al. [145]
investigated the capability of the HF Hybrid Sky–Surface Wave Radar (HFHSSWR) for
OSC estimation. The results were compared with in situ measurements from a current
meter, and it was observed that there was a good agreement between HFHSSWR results
and in situ data, with a correlation coefficient of 0.81 and an RMSE of 0.138 m/s.
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The high sensitivity of HF radar signals to sea surface topography and electromagnetic
interference from different sources, as well as data acquisition failures, causes frequent gaps
in HF radar data, which is the main limitation in utilizing these datasets for continuous
OSC retrieval [146]. To resolve this, Kolukula et al. [146] presented a gap-filling algorithm
for HF radar data using the complex empirical orthogonal functions and validated it using
two datasets with different gap rates. The results showed that the method had high efficacy
in reconstructing data. The direction pattern and magnitude of the reconstructed data were
well-matched with the existing data.

3.2.7. Marine Radar

Over the last four decades, marine radars, deployed on ships or land, have been
widely employed for OSC [112,147]. In most studies, the X-band radars were preferred to
S-band systems due to their clear sea-clutter images [148]. However, X-band radar data are
more sensitive to interference from raindrops; thus, this radar frequency is mostly used
by weather surveillance radar for rainfall monitoring [148,149]. Marine radars scan the
sea surface at close ranges (i.e., limited by line-of-sight propagation to the horizon) with
relatively high spatial (~9 m) and temporal resolutions [73,147,148] to derive OSC. The Wave
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and Current Analysis and Wave Spectra (WaMoS) II, developed by the OceanWaveS GmbH
company, is an example of an operational system that works based on X-band [73,150].
The WaMoS II system measures and displays wave (e.g., peak wavelength and direction)
and OSC parameters (e.g., OSC speed and direction) [73]. These measurements are mainly
obtained by taking a sequence of X-band radar images and analyzing the subsequent
waves [73,150]. Figure 6 demonstrates a scheme of a WaMoS II X-band radar installation
and its images, along with bathymetry and OSC field.
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white arrows in (b) and black arrows in (c) show the peak wave direction of the incoming waves and
the current vectors, respectively. The figure is directly adopted from References [73,121].

Hessner et al. [73] investigated ocean wave variations and OSC characteristics by the
WaMoS II High Resolution Current (HRC) at Tongue Point, New Zealand, during August
2011, using three scenarios based on high, low, and slack tides. The results showed that the
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WaMoS II HRC data had high efficiency in detecting small-scale OSC features and could
demonstrate the influences of the OT and local bathymetry interaction on the diversity of
current patterns. Furthermore, Chen et al. [72] improved the cross-spectral approach to
estimate the velocity of OSC from the X-band image sequences. The results indicated that
the estimated current velocity had a more acceptable accuracy compared to the current
velocities measured by a current meter, with a correlation coefficient of 0.88 and a relative
error of 7.79%. However, conditions such as the sampling period of one to three seconds,
and radar image acquisition within 10 to 40 s, were necessary to obtain reasonable results.

3.2.8. Summary and Future Direction

In summary, HF radar has widely been applied to estimate coastal and offshore
OSC, while altimeters have mostly been used to measure global OSC. However, the range
of the HF radars was limited to between 200 km to 600 km, which should be further
improved to obtain more accurate information from coastal OSC. Moreover, HF radar
and altimeters observations have data gaps (no data) due to the presence of obstacles,
such as artificial features (especially for HF radar) and atmospheric conditions and clouds
(especially for radiometers). Integrating these datasets with in situ data and OSC derived
from TIR/Microwave radiometers and SAR systems could help reduce the gaps and
improve the accuracy of the OSC map.

Although the airborne RS systems provide high spatial resolution data for ocean ap-
plications compared to spaceborne systems, they have been rarely used for OSC estimation
due to their high cost and lower coverage over ocean. The gap between spaceborne and
airborne RS data has been recently filled by data derived from Unmanned Aerial Vehicles
(UAVs). UAVs can provide affordable observations with very high spatial and temporal res-
olutions for OSC estimation and monitoring. Moreover, various sensors (e.g., optical, SAR,
and LiDAR) can be mounted on a UAV to collect data over the ocean. Such multisource
observations can drive new developments in the OSC estimation. RS CubeSats (i.e., mini
satellite systems from 1 to 100 kg) have also created a paradigm shift in ocean applications
by providing data with high temporal and spatial resolutions. These observations can
efficiently be utilized to monitor a wide variety of ocean parameters describing the OSC.

3.3. Ocean Wave Height (OWH)

Wind blowing over the ocean surface creates ocean waves with a different range of
heights depending on the wind speed, wind duration, and distance. The resulting waves
can travel for hundreds or even thousands of kilometers and form swell waves of various
heights. Although waves are generally caused by wind, catastrophic waves (e.g., landslide
surges, tsunamis, and storm surges) [151] and internal waves (e.g., subsurface waves at
the boundary between two water layers) [152] can also generate ocean waves. OWH
information is a critical parameter for coastal construction, ship navigation, and human
activities in the oceans [153].

The datasets collected by different RS systems, such as GNSS-R, SAR, altimeter, and
marine radar, have been utilized for OWH estimation. In this regard, various models have
been applied to retrieve OWH from these datasets [154]. For example, due to the complexity
of physical models (e.g., RT models), empirical and semiempirical models have also been
developed to estimate OWH [155]. The simplicity of empirical and semiempirical models
has also led to the development of ML algorithms [156]. In this regard, DL algorithms,
as the most advanced ML models, have received more attention due to their promising
performance. For example, Shao et al. [157] proposed a hybrid statistical and a DL model in
South China to predict several ocean surface variables, including OWH. In Liu et al. [158],
a short-term memory deep network was also proposed to consider the time domain data in
OWH estimation. Table 3 summarizes the advantages and disadvantages of each of these
RS systems. In the following subsections, the studies that have been conducted to measure
OWH based on various RS systems are discussed in more detail.
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Table 3. Different RS systems for OWH estimation along with their advantages and disadvantages.

RS System
(Passive/Active) RS System (Type) Advantage Disadvantage

Passive GNSS-R High temporal and spatial resolution,
all-weather capability, low cost

High dependency on the angle of
incidence, relatively low accuracy

Active

SAR

High spatial resolution, image-based
measurement, significantly less affected

by the atmosphere, all-day and
weather capability

Small swath width

Altimeter

Large swath width and global coverage,
data availability of four decades,

nadir-looking geometry, range-based
estimation, relatively insensitive to cloud

droplet size and rainfall rate, better
spatial resolution in the

along-flight direction

Low spatial and temporal resolutions,
spot-based measurements, more affected

by the atmosphere, more sensitive to
wind and wave direction

HF radar Reasonable accuracy at different wind
speeds, large scale coverage

Availability of OSW data only at specific
coastal locations where the HF radar has

been installed

Marine radar
High spatial and temporal resolutions,

cost-effective, better SNR ratio, not
affected by atmospheric conditions

Only for local scales, operates at grazing
incidence, better to be integrated with
buoys and shipborne measurements

3.3.1. GNSS-R

Various GNSS-R techniques using either single or double antennas, as well as direct
or reflected signals, have been proposed for OWH estimation. The signal arrival time
was also used for OWH estimation in Rius et al. [159]. The recorded SNR ratio was first
used for OWH measurement by Chen et al. [160] in 1995. Later, Larson et al. [161] and
Santamaría-Gómez et al. [162] successfully showed the robustness of the proposed method
in [160] for OWH estimation. Moreover, Penna et al. [163] used a GNSS Wave Glider
(GNSS WG) through a 13-day experiment to measure OWH in the North Sea. Their results
showed that GNSS WG could address the challenges of coastline-based tide gauges for
OWH measurement, and the temporal and spatial resolution limitations of radar data.

3.3.2. SAR

SAR is a unique system for OWH observation from space because it has a high spatial
resolution (e.g., 1–10 m), broad coverage, and it is independent of cloud cover and light
conditions [164]. SAR uses the omitted backscattering signal from the ocean surface to
measure OWH [165]. Theoretical and empirical algorithms are two main techniques that
have been employed for OWH estimation using SAR images [166]. Theoretical algorithms,
standing on the SAR wave mapping mechanism (i.e., nonlinear velocity bunching, tilt
modulation, and hydrodynamic modulation), invert the SAR intensity spectrum into
a wave spectrum [167]. The semiparametric retrieval [168], parameterized first-guess
spectrum [169], and partition rescaling and shift [170] are three well-known theoretical-
based algorithms for OWH estimation using SAR data. On the other hand, empirical
algorithms, which do not need prior information of wind and wave, can directly estimate
OWH from inputs generated from SAR images [171]. C-band WAVE models for European
Remote Sensing (ERS)-2 [172], Envisat [173], and Sentinel-1 [174], as well as the X-band
WAVE model [175] for TerraSAR-X, are some examples of the empirical algorithms.

Among SAR systems, Sentinel-1, which provides open-access imagery with dual-
polarization, has been widely used for OWH estimation. For instance, Shao et al. [176]
used a semiempirical algorithm along with Sentinel-1 imagery (C-band VV-polarization)
for OWH retrieval. The results illustrated that the algorithm could successfully estimate
OWH with an RMSE of 18.6.
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3.3.3. Altimeter

Generally, altimeters measure the traveling time (T) of the transmitted radar pulses at
regular intervals defined by the Pulse Repetition Frequency (PRF) from a nadir-pointed
antenna to the ocean surface and back to the receiver onboard the satellite, according to the
following equation:

T =
2R
c

(1)

where c is the speed of light and R is defined as the range from the sensor to the ocean
surface. R can be calculated using Equation (2).

R =
1
2

cT (2)

R is an uncorrelated range and should be modified based on Equation (3) to take into
account various ranges of atmospheric and geophysical corrections, including wet and dry
tropospheric correction, ionospheric correction, and solid and pole earth tide correction [177].

Rcor =
1
2

cT − ∑
i

∆Ri (3)

where ∆Ri is related to the aforementioned range corrections. The data collected by Jason-3,
Chinese HY-2A/B, Satellite with ARgos and ALtiKa (SARAL), and Sentinel-3 altimeters
have been widely used in OWH estimation. These satellites offer global observations
under all weather conditions [178]. For example, Wang et al. [178] estimated OWH based
on observations from HY2B. They used the data collected by the National Data Buoy
Center (NDBC) from April 2019 to April 2020 for validation purposes. In this study,
numerous DL algorithms were utilized to approximate the waveform of HY2B with high
accuracy. Moreover, Peng and Deng [179] enhanced the Brown model to estimate OWH
based on three years of observations from the Jason-1 data. The results were validated
against observations from eight buoys and compared with the retrieved OWH by the four-
parameter Maximum Likelihood Estimator (MLE) retracing method. Moreover, SARAL
(i.e., the first Ka-band altimeter) observations were used to retrieve the OWH in the coastal
ocean and inland water bodies. Validation of the results with the in situ measurements
demonstrated a significant correlation (0.98) between field measurements and satellite
measurements in the coastal ocean; the performance was remarkably stable across various
coastal zones.

3.3.4. HF Radar

HF radar is another RS system to measure OWH. This parameter can be calculated
based on the first- and second-order sea surface scattering mechanism. Generally, OWH de-
pends on the integral of the second-order part of the radar-measured Doppler spectra [180].
Beamforming is required to obtain the OWH over various ranges and azimuths. Thus, a
narrow-beam system along with a large aperture is essential for retrieving a wave map
using HF radars [181]. In this regard, Tian et al. [182] proposed a method to calculate OWH
based on the second-order harmonic peaks of radar Doppler spectra and its ratio to the
Bragg peak power. The comparison of the results with buoy data over a 30-day experiment
depicted that the RMSE was between 0.33 and 0.77 m. It is worth mentioning that the
second-order scattering is vulnerable to the external clutters and noise which may reduce
the robustness of the OWH measurement [183–185]. On the other hand, the first-order
radar backscatter has stronger power compared to the second-order harmonic peaks. In
this regard, Zhou and Wen [186] proposed an empirical method to calculate OWH from the
power of the first-order peaks. Subsequently, Tian et al. [187] proposed a technique using
the power ratio of the first-order peaks acquired at two radar frequencies to estimate OWH.
By utilizing the first-order peaks instead of the second-order peaks to calculate the OWH,
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the detection range improves because of the high SNR value. Nevertheless, this method
can be affected by low sea state conditions due to the saturation of the Bragg waves [182].

3.3.5. Marine Radar

Since the 1980s, marine radars have been mainly developed to measure ocean surface
parameters such as OWH. This is because of their high temporal and spatial resolutions as
well as the distinguishability of ocean waves in the corresponding images [188]. Several
texture-analysis-based, spectral-analysis-based, and coherent radar algorithms have been
so far developed for OWH estimation using marine radar data.

Spectral-analysis-based algorithms acquire wave spectra information from a series of
radar images to generate OWH information. These methods can be generally divided into
three groups, namely, the 3D discrete Fourier transform-based algorithms [189,190], 2D
continuous wavelet transform-based algorithms [191], and the array beamforming algo-
rithms [192]. Regarding texture-analysis-based algorithms, wave parameters are directly
generated from image texture information based on seven different methods, including the
probability of illumination [193], statistical analysis [194], tilt-based [195,196], shadowing-
based [197], support vector regression [198], empirical orthogonal function [199], and
ensemble empirical mode decomposition [200]. Finally, coherent radar algorithms have
been developed based on the X-based coherent marine radars [201]. The image intensity
and the radial velocity of the ocean surface scatters are two main advantages of coherent
marine radars. These systems enable coherent radar-based algorithms to directly estimate
OWH information from the radar data without calibration [188]. Based on this feature,
several empirical [202], semiempirical [203], and nonempirical [204] methods have been
developed for OWH estimation.

3.3.6. Summary and Future Direction

Most of the OWH studies using RS datasets have focused on data or algorithm-
driven solutions, but the quality assessment of airborne/spaceborne-derived OWH under
a variety of conditions has been investigated less. Moreover, application of advanced ML
algorithms in analyzing, interpreting, and modeling RS data has received less attention from
researchers, even though they can offer a great potential for accurate OWH mapping and
monitoring tasks. For example, DL algorithms have rarely been used to model and estimate
OWH from RS data, while they have significantly outperformed traditional methods by
relying on their ability to train models with massive datasets. Indeed, DL methods can
significantly facilitate understanding the complex structure of large RS data for OWH
estimation/prediction.

3.4. Sea Level (SL)

SL is an important oceanographic variable that should be measured precisely for
long-term trend assessments and climate studies [205]. SL has a pivotal role in studies
related to OSC, mesoscale eddies, and marine gravity fields [206–208]. In recent decades,
anthropogenic activities and global warming have mainly resulted in SL change. For
instance, the Intergovernmental Panel for Climate Change (IPCC) reported a Global Mean
SL (GMSL) rise of 3.6 mm/yr between 2006 and 2015 [209,210]. However, the relative rate
of SL change is not globally identical because it depends on different spatial and temporal
parameters (see Figure 7).
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Figure 7. (a) Global SL change between 1993 and 2022. Regional mean SL changes and trends of (b) the
Atlantic Ocean and (c) the Pacific Ocean calculated from a combination of TOPEX/Poseidon, Jason-1,
Jason-2, and Jason-3 satellite altimetry datasets. Satellite altimetry data were downloaded from [211].

Conventionally, SL estimation was based on coastal monitoring stations, tide gauges,
buoys, and ship surveys [212]. However, the high cost and sparse observations of these
approaches make them inappropriate for SL measurements in most cases. Moreover, in
situ measurements contain significant interannual and decadal effects and do not perfectly
manifest the SL change [213]. However, with the advancement of RS technology, satellites
provide valuable datasets to study SL at different local to global scales. In addition to
studies that only focused on SL measurements using RS systems, many studies related SL
observations to different environmental variables. Through these analyses, it was widely
argued that the main contributors to SL rise are thermal expansion of seawater [214],
Antarctic and Greenland ice sheet melting [215], and land-water storage change due to the
groundwater depletion [216]. Consequently, SL rise has many environmental and economic
impacts, including reef island destabilization [217], wave resource alteration [218], coastal
erosion [219], saltwater intrusion into aquifers [220], sea turtle nesting threatening [221],
lowland and delta vulnerability [222], coastal flooding [223], seaport infrastructure sus-
ceptibility [224], wetland inundation and displacement [225], island and offshore baseline
loss [226], tidal dynamics [227], and length-of-day changes [228].

Among different RS systems, GNSS-R, altimeters, and gravimeters have been widely
employed for SL studies [229–233]. The advantages and disadvantages of these systems
applied for SL mapping are provided in Table 4. The following subsections discuss the
applications of each system.
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Table 4. Different RS systems for SL Mapping along with their advantages and disadvantages.

RS System
(Passive/Active) RS System (Type) Advantage Disadvantage

Passive GNSS-R Provides frequent all-weather data for
regional to global studies

Requires data collected over a long
period to enhance the accuracy of the

SL estimation

Active
Altimeter All-weather data acquisition with

global coverage
Relatively coarse spatial resolution and

low temporal resolution

Gravimeter
All-weather data acquisition, global

coverage, and unique ocean
mass measurements

Very coarse spatial resolution and
unsuitable for regional studies

3.4.1. GNSS-R

GNSS-R systems use direct or reflected GNSS signals to measure the SL. To this end,
different techniques, including floating carpet boats [234], unmanned surface vehicles [234],
and spaceborne/airborne GNSS-R [235], can be employed. The first two approaches carry
the GPS antenna to directly compute the elevation value of the corresponding instrument,
which is then converted to SL. These approaches are only suitable for relatively small
regions. On the other hand, GNSS-R employs reflections of signals transmitted from navi-
gation satellites to infer several geophysical parameters [236,237]. GNSS-R can provide SL
data at a global coverage with high spatiotemporal resolutions [212,229]. The concept of
GNSS-R relies on measuring the delay between direct and reflected signals reaching the re-
ceiver (e.g., aircraft, satellite) above the ocean. In particular, the computed delay waveforms
(from delay Doppler maps) enable the estimation of the SL through geometric models [238].
It was reported that the nominal precision of SL measurement from an individual 1-s
GNSS-R was 5 m [239]. Further enhancements, such as employing more observations from
multiple GNSS-R data over more time ranges, could improve the precision to about tens
of centimeters [240]. For example, Qiu and Jin [212] employed the data acquired by the
eight satellites of the CYGNSS mission to estimate the GMSL. The calculated GMSL was
validated by satellite altimetry and the DTU-10 sea surface model. The results showed a
significant correlation of 0.97 with both datasets, demonstrating the high potential of the
CYGNSS for global SL measurements. Likewise, Wang et al. [241] implemented different
ML algorithms to retrieve SL from GNSS-R data. They reported that the ensemble of ML
algorithms, along with three input features (i.e., the 70% peak correlation power, peak first
derivative, and leading-edge slope) from airborne delay waveform dataset, led to the best
results, with an RMSE of 0.23 m concerning the DTU15 model.

3.4.2. Altimeter

The first generation of altimeters measured SL at the nadir angle along the ground
track with low spatial resolution. Consequently, it was required to merge obtained data of
multiple acquisitions to provide full coverage over relatively large study areas. Therefore,
they had limitations in estimating SL at the mesoscale and short time intervals [229,237].
Moreover, the low spatial resolution of traditional altimeters and the waveform tracking ef-
fect at the sea–land boundary made these systems less applicable to near-shore regions [48].
To overcome these shortcomings, new principles were introduced to obtain high-resolution
and wide-swath altimetry data. These new principles resulted in the invention of SAR and
InSAR altimeters [49,50].

Generally, preprocessing (e.g., orbital correction and outlier observation removal)
and geophysical correction (e.g., dry/wet tropospheric correction, sea state bias correc-
tion, dynamic atmospheric correction, ionospheric correction, and tidal effect correc-
tion [242–246]) steps are required to prepare altimetry data for further SL studies. For
example, Ren et al. [247] employed the Chinese Tiangong-2 Interferometric Imaging Radar
Altimeter (InIRA) data to measure SL. The results were compared with one-dimensional SL
data from previous altimeters of Jason-2, SARAL, and Jason-3. Then, the observed system-
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atic and parametric biases were analyzed and removed to obtain a standard deviation of
8.1 cm in OWH estimation, indicating the promising results of the InIRA SL measurements.
Additionally, Dinardo et al. [248] investigated the potential of the CrySat-2 SAR altimetry
for SL retrieval along the coasts of the German Bight and West Baltic Sea. The computed
SL values were compared with in situ and regional models between 2010 and 2016. Their
results showed an acceptable consistency with the regional ocean model, with a standard
deviation of the differences of 24 cm. Finally, Mullick et al. [249] investigated the coastal
vulnerability of Bangladesh using the Composite Vulnerability Index (CVI). To this end,
satellite altimetry data from TOPEX/Poseidon (1992–2006) and Jason 1–3 (2006–2017) were
combined with other parameters (e.g., land use, mean tidal range) to map the CVI along
Bangladesh’s coast. It was observed that 16% of the total coastline (87 km) was highly
vulnerable. Finally, Yang, et al. [250] developed a fusion approach based on deep belief
network to integrate satellite altimetry and tide gauge data. The results revealed that
the proposed method performed well when limited along-track altimetry and gauge data
are available. Furthermore, it was observed that the distribution of altimetry and gauge
datasets had a lower impact when the deep belief network was implemented.

3.4.3. Gravimeter

Ocean mass and steric changes cause variation in SL [251]. The ocean mass is associated
with exchanges of ice and water mass with oceans, affecting the regional and global gravity.
Therefore, it is possible to measure SL changes through gravimeters [252]. For example, the
GRACE mission observes the Earth’s gravity, enabling the measurement of GMSL change
associated with ocean mass alterations [253]. Although GRACE provides global coverage
of the Earth’s gravity, it is difficult to employ it for regional studies due to the existing
uncertainties in low spatial resolution gravity data [230]. For instance, Jeon et al. [230]
applied RL05 GRACE monthly data provided by the Center of Space Research (CSR) and the
GeoForschungsZentrum (GFZ) in Potsdam to quantify the global SL change. The atmospheric
and ocean de-aliasing model was also used to remove the contributions of atmospheric
surface and ocean bottom pressures. Finally, the gravity observations revealed a GMSL rise of
about 2.14 ± 0.12 mm/yr. Additionally, Elsaka et al. [254] employed satellite gravimetry and
altimetry data to evaluate the Nile Delta–Mediterranean Sea interactions. Gravity observations,
acquired from GRACE, revealed an erosion rate over the eastern and western parts.

3.4.4. Summary and Future Direction

Despite the advantages of RS techniques over traditional SL mapping approaches, RS
systems generally suffer from coarse spatial resolution over ocean environments. Data acquisi-
tion over an extended period is essential to obtain reliable results and to obtain comprehensive
findings of SL changes. In this regard, improving the knowledge of SL either by developing
more advanced RS systems with better spatial and temporal resolutions or by synergy of
observations (i.e., different RS systems), consistent data acquisition, and developing advanced
methodologies based on ML algorithms can assist in resolving some of the limitations of RS
systems for SL studies [232,233]. In particular, employing ML and DL algorithms for accurate
SL estimation should be considered in future studies due to their high potential for providing
accurate SL data [158]. Furthermore, integrating SL observations acquired by different sources
is highly required in order to improve our understanding of the global-to-local SL dynamics
and resolve the limitations of single-source observations. Finally, the continuation of using
RS observations to measure SL by developing and constructing new sensors with improved
capabilities is an essential prospect [229–231].

3.5. Ocean Tide (OT)

OT refers to the regular rise and fall of the ocean water caused by the gravitational pull of
the moon and sun in relationship with the geometric location of the Earth’s surface [255]. The
cyclical effects of the Earth’s and the moon’s rotations are, respectively, the primary factors
of the periodic rhythm and height of OT [256], and 24 h and 50 min is the tidal period [256].



Water 2022, 14, 3400 26 of 51

When the water wave slowly rises to its crest (highest level), covering much of the shore, high
tide occurs. Once the water wave falls to its trough (the lowest part of the wave), it is known
as low tide [255,256]. Thus, the tidal range is the vertical difference between the high and low
OT [256]. Ebb tide is called the flow of water from high tide to low tide [255]. During the
moon’s revolution around the Earth, the direction of its gravitational attraction is aligned with
that of the Sun. High spring OTs are created when the moon, Earth, and sun are in alignment.
This alignment occurs every 14–15 days during full and new moons [256]. On the other hand,
during the first and last quarters of the moon, neap OTs happen when the moon appears
half-full [255,256]. Intertidal zones are the lands in the tidal range categorized in the splash,
high-tide, mid-tide, and low-tide zones [257,258].

While traditionally, in situ measurements and numerical models have been used for
OT studies, RS has been proposed to fill OT measurement gaps over the past four decades.
RS technology has expanded our understanding of global OT [259–261] and facilitated
continuous OT monitoring and predictions over wide-spread scales. RS systems can be
used to study several aspects of OT, including tidal flats, tidal channels, tidal currents,
Ocean Tidal Load (OTL), and tidal wetlands. In the following, a brief description of each
type of OT is provided.

The area inundated between low- and high-tide waterlines is defined as tidal flats and
is a mixture of seawater and freshwater environments [262]. Tidal flats provide essential
services, such as coastal storm protection, food production, and shoreline stabilization [262].
A recent study has discovered that tidal flats occupy approximately 130,000 km2 of the
planet (Figure 8) [263]. Murray et al. [263] also reported that about 70% of the global
tidal flats occurred in three continents, namely, Asia (44% of total), North America (15.5%
of total), and South America (11% of total), 49.2% of which were concentrated in eight
countries, namely, Indonesia, China, Australia, the United States, Canada, India, Brazil,
and Myanmar. Monitoring tidal flats using field observations is limited to estimating
the ebb/flood characteristics, adequate surveys for large tidal flats, and the field access.
However, RS in combination with in situ measurements facilitates monitoring tidal flats in
a more cost- and time-efficient approach. In fact, RS data with a high temporal resolution
are necessary for tidal flats studies because there are coastal areas that fall dry during each
tidal cycle [264], and tidal flats are only exposed fully for a short period at low tides.

A tidal channel is a type of stream or a waterway that occurs during the ebb tide
and flood tide in the tidal flats [265]. Tidal channel networks are crucial aspects of the
neighboring ocean and estuaries. In addition to the control of the tidal basin hydrodynamics,
tidal channels connect intertidal flats to the salt marshes, which play an important role in
tidal propagation [266]. Due to various morphological characteristics from terrestrial river
networks, conventional river system algorithms cannot be implemented on tidal channels.
Thus, RS techniques have been effectively utilized to obtain the spatial distribution of tidal
channels [266].

The periodic movement of water created by the out-of-phase OT, the local weather
patterns (radiational tides), and ocean characteristics (internal tides) is defined as tidal
currents [267]. Periodic tidal currents play an important role in the strait (a narrow wa-
terway joining two larger water bodies) [267]. Tidal currents’ power intensifies when
flowing through the narrow and shallow channels in the islands or over the shallow ridges,
although they are weak in most parts of the strait [268]. Furthermore, tidal current power
is renewable and predictable energy [269], mostly occurring at narrow tidal channels. Tidal
current generators not only cause fewer environmental concerns than barrages, but can
also be installed incrementally to meet the increase in demand over time [270]. Therefore,
mapping the tidal energy density is crucial to consider the economic possibility, while tidal
currents vary regionally. In this regard, a higher level of measurements, including spring
and neap tidal cycles and higher temporal and spatial measurements, are required [269].
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OTL displacements are the elastic response of the Earth to the redistribution of water
mass from OT, which can cause deformation gradients of several millimeters to centimeters
near coastal regions [271]. One of the most productive inland and coastal ecosystems is tidal
wetlands. Tidal wetlands are important for trapping sediment and pollution, recreational
purposes, and flood control. They are also natural barriers against saltwater intrusion into
freshwater aquifers [272,273]. The tidal regime, relative SL rise, land cover change, and
sedimentation are driving factors influencing tidal wetlands [274]. Tides increase rates of
relative SL rise, resulting in brackish water and a shift to becoming nontidal wetlands in
freshwater tidal areas. So far, different RS systems have been successfully employed for OT
studies. Table 5 summarizes the advantages and limitations of the RS systems that have
been frequently used for OT measurement.
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Table 5. Different RS systems for OT studies along with their advantages and disadvantages.

RS System
(Passive/Active) RS System (Type) Advantage Disadvantage

Passive
Optical

Availability of open-access data, useful
for all tidal applications, a wide range of

spectral and spatial resolutions

Time and weather dependency, low
accuracy in estimating water

height changes

GNSS-R NRT data, continuous data, independent
from weather, cost-efficient

Sensitive to sea surface reflections,
dependency on complementary data,

applicable only to tidal channels and OTL

Active
SAR

Accurate estimation of ocean surface
topographic changes, independent from
weather conditions and time, useful for

all tidal applications

Complex processing steps

Altimeter Multilook processing, accurate
topographic measurements

Only global surface geostrophic, low
track density, limited applications,

applicable only to tidal channels and
tidal flats

LiDAR
Relatively higher spatial resolution,
accurate estimation of ocean surface

topographic changes

Comparatively costly, useful for the data
acquisition at optimal tidal and weather

conditions, insufficient coverage,
applicable only to tidal channels, tidal

flats, and tidal wetlands

3.5.1. Optical

Optical satellite images have been extensively exploited to study different aspects of
OT mainly due to the availability of open-access imagery and proper temporal and spa-
tial resolutions. For example, the Normalized Difference Water Index (NDWI), Modified
Normalized Difference Water Index (MNDWI), Normalized Difference Vegetation Index
(NDVI), Land Surface Water Index (LSWI), Automated Water Extraction Index (AWEI),
Modified Soil-Adjusted Vegetation Index (MSAVI), and Enhanced Vegetation Index (EVI)
generated from optical satellite images have been applied to delineate tidal flats by sub-
tracting the classified images of the high and low tides [263,275,276]. Waterlines, which are
important for studying changes in tidal flats and coastlines [277], can also be efficiently
extracted using high spatial resolution optical satellite imagery. Appropriate spectral bands
for waterline extraction must be selected based on various conditions. For instance, the
NIR, SWIR, and TIR bands are efficient for flood tide [278,279].

Spatial analysis and edge detection methods in optical satellite images have also been
applied to locate and map tidal channels. For instance, box-counting, a widely used fractal
method, is a spatial analysis method used to identify linear features such as streams and
coastlines. Moreover, a multilevel knowledge-based approach can extract channel edges
using multiscale edge detection algorithms in optical images [266]. The low-level processing
uses edge detection algorithms (e.g., the Sobel and Prewitt operators) to discover channel
edges and then associates neighboring nonparallel edges together to form channels [266]. For
example, Angeles et al. [280] proposed a fractal analysis of tidal channels using box-counting
and contiguity methods for Landsat-5 data to derive the degree of geomorphological control
on a tidal channel network in the Bahia Blanca Estuary, Argentina.

Finally, optical satellite data have been widely used for tidal wetland classification. To
this end, various spectral and textural indexes, along with advanced ML algorithms, have
been employed [272,273,281–283].

3.5.2. GNSS-R

GNSS-R provides range measurements, which can be used to remove vertical land
motion from tide gauge records [284]. However, many GNSS-R stations are not directly
collocated to the tide gauge stations. GNNS time-series have also been applied in models
to remove the influence of non-OTL from GPS coordinates [285]. In this regard, the Precise
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Point Positioning (PPP) technique is used to process the GNSS-R data [286]. OT can cause
horizontal and vertical motions of more than a centimeter during a day, which is large
enough to be measured with space geodetic techniques. In this regard, Zhou et al. [286]
investigated OTL displacement parameters with kinematic PPP using the harmonic analysis
method from GNSS coordinate series considering the effect of mass loading.

Moreover, GNSS-R data, along with airborne RS techniques, have been utilized in
a semiautomatic method to propose 3D distribution tidal channel maps including their
shapes and locations [265]. The tidal channels’ volumes and locations were verified by
comparing GNNS positioning solutions and the coordinates extracted from UAV images.
Moreover, Lee et al. [265] generated 3D safety mapping of tidal channels located in the
western coastal area in Korea, where tidal channels were considered the main cause of the
summer drowning fatalities. Finally, GNNS technology has been extensively utilized to
determine real-time tidal information using tidal level extraction algorithms, which can
provide additional values to different aspects of OT studies.

3.5.3. SAR

SAR data have also been utilized for waterline extraction, which is an important step
for studying tidal flats. This can be performed through measuring the roughness of the
surface based on the differences in surface roughness between the smooth tidal flats and the
water surface [287]. Thus, an efficient edge detection method should be applied to delineate
the border between open water and tidal flats [288]. For instance, Heygster et al. [288]
obtained the border between tidal flats and adjacent water areas by applying a multiscale
edge detection algorithm using ERS-2 images. To this end, they used the computationally
efficient wavelet transform method in combination with a segmentation algorithm.

Additionally, SAR data are the most popular RS resources for studying tidal currents.
Thus, different SAR methods, such as radar Line of Sight (LOS), Fourier transformed images,
and interferometry, have been so far implemented for tidal current studies. The components
and variations of tidal currents can be found in the radar LOS [269]. Moreover, along-
track InSAR has been widely applied to monitor surface tidal currents [289]. To this end,
ocean waves are detected using SAR and transfer functions applied to the image spectra.
Furthermore, Doppler measurements by the along-track interferometry of two SAR images
can retrieve surface currents. For this purpose, phase differences between coregistered
pixels of two images are obtained using the signal phase [269,289]. The phase difference is
transferred into LOS scatterer velocity, and then the average effect of the horizontal wave
motion is subtracted from the current field [269]. Moreover, tidal currents are mapped
using equations including angular frequency, acceleration of gravity, two-dimension wave
number, water depth, and the surface current [270]. MCC is another method for tidal current
mapping using SAR data. Since this method cannot address the large spatiotemporal
variations in a typical diurnal or semidiurnal tidal current, temporal decorrelation is
minimized by a virtual SAR constellation data pair [290].

InSAR has also been used for OTL studies. Due to small changes caused by OTL,
InSAR techniques are the most common RS methods for OTL studies. However, it is chal-
lenging to distinguish the OTL effects from similar signals in Differential InSAR (DInSAR)
measurements. Since existing tools readily calculate the OTL effect, the OTL prediction
model should be subtracted from an interferogram before tectonic analysis [291]. The
dominant component of OTL displacement is vertical, and the LOS look angle of most
SAR satellites makes them sensitive to vertical-ground deformation [291]. The proposed
methods first accurately remove the orbit errors under the constraint of the relative dis-
placements of the GPS PPP solutions in the LOS direction. Then, the crustal deformations
caused by the OTL in DInSAR interferograms are analyzed. Finally, the OT model is
applied to correct the OTL effect in the DInSAR interferograms [292]. Many studies have
investigated the applications of the DInSAR technique for OTL analysis. For example,
DiCaprio and Simons [291] investigated the capability of OTL correction in DInSAR using
an empirical OT model to illustrate the superiority of an OT model in correcting the OTL
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effect in DInSAR results. The focus was on displacements from mass loading due to the OT
to study processes occurring using ERS and ENVISAT data. Additionally, Peng et al. [292]
measured the OTL effect as a potential error source exploiting DInSAR data and tried to
use empirical models to correct the error. They proposed a linear surface model to correct
the relative displacements of the GPS PPP in LOS over the Los Angeles basin. Then, an
OT model was applied to correct the OTL effect in the DInSAR interferograms. It was
observed that the bilinear ramp function model was in agreement with the experimental
results. Finally, multitemporal SAR data have been extensively used for tidal wetland
mapping [273,293–295]. For instance, Wdowinski et al. [293] presented the possibility of
using high-resolution ALOS, RADARSAT-2, and TSX to characterize the extent of the OT
flushing zone. They also provided quantitative constraints for detailed coastal wetland
flow models using wetland InSAR techniques.

3.5.4. Altimeter

Satellite altimetry data have been utilized to study OT and improve the global OT
models [296,297]. Furthermore, utilizing altimetry technology is one of the approaches
used to detect shoreline changes over tidal flats [298]. For two decades, global SL changes
were extensively studied using satellite altimetry [299]. For instance, Elachi et al. [49]
estimated water level over tidal flats by analysis of the waveforms. Tseng et al. [299]
also discussed the sufficiency of the coastal Digital Elevation Model (DEM) compared to
current altimetry methods. The measurement of quantitative changes of tidal flats was
performed by comparing the DEM produced using the waterline technique applied to
SAR images and a DEM constructed from airborne altimetry data acquired in different
years [300]. As discussed, satellite altimetry also enables global mapping of significant
OWH, the results of which can be used for OT studies. For example, Passaro et al. [301]
proposed a new algorithm for reprocessing altimetric waveforms to estimate significant
OWH over a challenging tidal flat using Envisat, Jason-1, and Jason-2 data.

Satellite altimetry is highly effective in observing global tidal currents. The satel-
lite altimetry sampling illustrates a broad view of the global distribution, variability,
and spatial structures of currents. Considering the potential of tidal current energy at
straits, Yu et al. [302] proposed a method to provide a global map of significant OWH.
Lee et al. [303] also used TOPEX/Poseidon altimeter data as one of the inputs to model
tidal currents. Additionally, Green and Pugh [304] argued that the current magnitude is
underestimated in altimetry-constrained OT databases.

3.5.5. LiDAR

LiDAR data, which provide topographic data over ocean and land, are considerably
helpful for OT studies. Since elevated shorelines can be detected using multiple images over
a range of tide and surge elevations, DEM data generated from LiDAR systems are useful.
Therefore, DEM data have been locally generated and applied along with waterline methods
to detect tidal flat changes [18,29,305–310]. However, it should be noted that the coastal DEMs
which are globally generated (e.g., WorldDEMTM, SRTM, and AW3D30) do not include tidal
flats because of the water-impermeable nature of existing RS approaches [49].

As mentioned, the most useful RS data for tidal channels detection are DEM, which can
be generated from LiDAR data. Different algorithms of fluvial channels extraction using
DEM were provided by [311]. For example, several studies generated a high-resolution
LiDAR DEM using a multilevel knowledge-based approach with multiscale edge detection
methods to map tidal channels [266,312]. LiDAR products, such as DEM and Digital
Surface Model (DSM), are also beneficial for tidal wetland classification [273,282]. For
example, Magolan and Halls [273] investigated tidal wetland changes under increasing
tidal range through time at two tidal creeks in south-eastern North Carolina, USA. Aerial
photographs, LiDAR DEM and DSM data, Worldview-2 optical images, the National
Agriculture Imagery Program (NAIP) orthophotos, and NOAA tide-gauge data were
applied to classify tidal wetlands using an object-based classification algorithm. It was
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reported that LiDAR products were significantly helpful in tidal wetland mapping and
change analysis.

3.5.6. Summary and Future Direction

The importance of areas affected by OT expands to food production, coastal storm
protection, trapping pollution, and drowning prevention. Waterline extraction has widely
been explored using optical, SAR, and LiDAR data to delineate tidal flats. These data have
improved the monitoring of tidal flats and have facilitated shoreline stabilization programs
compared to conventional techniques. Additionally, GNSS, UAV, and altimetry datasets
help in determining spatial distribution of tidal channels where drowning fatalities happen.
Moreover, tidal wetlands have been mapped using various types of RS data. SAR-based
methods have also facilitated OTL and tidal currents studies. Finally, altimetry datasets
have been employed for mapping the global distribution of tidal currents.

Although RS provides many advantages for OT studies, there are several challenges
that need to be addressed in the future. For example, the temporal analysis of OTs and their
effects on shorelines is limited due to the complex temporal nature of tides and the lack of
suitable multitemporal RS datasets. Moreover, although a large volume of RS datasets is
progressively produced, time dependency, low coverage, and complex processing steps
still restrict the efficiency of RS techniques for OT monitoring. It is expected that the recent
advances in ML and DL methods can fill some of these gaps. For example, DL architectures,
such as CNN, Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM)
can facilitate temporal analysis of OT.

3.6. Ship Detection (SD)

SD has a wide variety of environmental, civil, and military applications. For example,
the benefits of automatic locating and tracking ships for the civil sector are maritime
management, vessel traffic services, safety and rescue, fishery management, and illegal
fishery surveillance. Moreover, the main applications in the military sector include naval
warfare, battlefield environment assessment, and pirate activity surveillance [313–315]. RS
has a leading role in SD and monitoring because of its several advantages, such as the
availability of open-access multitemporal datasets and large area coverage.

Although various RS datasets have been used for SD (e.g., hyperspectral [316], TIR [317],
and UAV [318] imagery), optical, SAR, and HF radar are the most common RS systems
for SD [313]. Table 6 summarizes the main advantages and disadvantages of each of these
systems for SD.

Table 6. Different RS systems for SD along with their advantages and disadvantages.

RS System (Passive/Active) RS System (Type) Advantage Disadvantage

Passive Optical Relatively high resolution Functional only during the daytime,
affected by clouds and weather condition

Active
SAR Operational in all weather

conditions and all times Speckle noise, difficult interpretation

HF Radar Operational in all weather
conditions and all times

Lack of data availability due to the limited
number of radars

SD methods using spaceborne RS (i.e., optical and SAR) datasets generally have three
main steps (see Figure 9): (1) ocean–land segmentation, (2) ship candidate extraction, and
(3) classification of ship candidates [319–321]. Since the objective of the corresponding
studies is to detect ships in oceans, the first step is separating ocean and land regions. This
is usually performed using GIS layers of coastlines. However, with the end-to-end DL SD
methods, this step is not necessary anymore. Most of the SD research studies have focused
on the second and third steps by developing better features for ship description and False
Alarm Rate (FAR) reduction. For example, in the second step, a simple shape analysis is
performed to remove obvious FAR and extract Regions of Interest (ROI) that may contain
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potential ship candidates. In the third step, the ship candidates are classified into ship and
nonship classes.

Figure 9. A general ship detection method using spaceborne RS data.

In the following three subsections, the most commonly used approaches for SD using
optical, SAR, and HF radar data are discussed. However, it should be noted that more
advanced ML methods, such as DL, have been recently employed for SD with high accuracies.
For instance, among many object detection DL methods, the Region-based CNN (RCNN) [322]
and its modified versions (e.g., Fast-RCNN [323] and Faster-RCNN [324]) are mostly used
for SD. RCNN-based methods involve two major steps: (1) a CNN algorithm extracts the
shared feature maps, and the region proposal network algorithm generates candidate regions,
including potential ship targets; and (2) the network classifies these proposals into specified
classes. DL methods can extract semantic-level features that are robust to varying ship sizes
and different ocean conditions, resulting in better performance than traditional methods with
human-crafted features and descriptors. However, the main limitation of DL methods is the
limited accessibility to sufficient reference sample data [325,326].

3.6.1. Optical

With the advent of high-resolution optical systems, the volume of high spatiotemporal
resolution imagery is growing, making them suitable for SD and monitoring applica-
tions [314]. Although optical RS systems can only operate during the daytime, recently,
there has been a considerable focus on SD using optical imagery due to increasing the num-
ber of Very High Resolution (VHR) optical sensors [327]. There are a variety of methods for
SD using optical images, such as threshold-based methods [328], anomaly detection [321],
transform domain methods [313], Bayesian decision [329], shape and texture [314], and
visual saliency [330]. In this study, the methods based on visual saliency and shape and
texture are discussed in detail due to their relatively good performance and popularity.

A common approach for SD using optical images is applying the methods based on
shape and texture features. These methods are robust and provide high accuracy in SD.
However, false alarms (wakes and ocean clutter) still exist. So far, several studies have
used the shape and texture features extracted from VHR optical satellite images for SD.
For example, Zhu et al. [314] proposed an SD method based on shape and texture features
using a combination of China–Brazil Earth Resources Satellite (CBERS) and SPOT images
with a hierarchical coarse-to-fine FAR elimination process. They first carried out global and
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local image segmentation. Then, a simple shape analysis (e.g., region area and aspect ratio)
was employed to remove obvious false candidates. Subsequently, finer shape features (e.g.,
compactness, rectangularity, and moment invariants), texture features (e.g., simple texture,
wavelet-based, Multiscale Gaussian Differential Features (MGDFs)), and a novel operator,
called local multiple pattern, proposed based on local binary pattern, were employed. Finally,
they adopted a semisupervised hierarchical classification using SVM to identify ships.

Another popular approach in SD using optical satellite data is implementing methods
based on visual saliency. Inspired by the human visual system, the visual saliency method
tries to extract candidate regions that attract human eyes [330]. For example, Qi et al. [330]
presented a method for extracting salient signals using a Phase spectrum of Fourier Trans-
form (PFT). The binary saliency map was calculated through an adaptive segmentation.
Then, the image was homogenized using a homogeneous filter to make it smooth. Finally,
the Otsu segmentation method was applied to extract ship candidate regions. For discrimi-
nating ship targets, they developed a novel descriptor, called Ship Histogram of Oriented
Gradient (S-HOG), based on the symmetrical shape of the ship. Their results on GaoFen-1
satellite images showed that the method was robust in detecting ships of various sizes in
different ocean conditions.

As discussed, other than the abovementioned traditional methods, DL algorithms
along with optical data have been recently used for SD. For instance, Zhang et al. [325]
proposed a method based on Faster-RCNN to detect small ships and gather ships in offshore
and inland water scenes to cover shortcomings of the traditional approaches of SD. They
first classified the images into water and nonwater areas and created small ROIs that might
contain ships using the SVM classifier. Then, the ROIs were ingested into an RCNN-based
algorithm. They also modified the network architecture of the Faster-RCNN by combining
multiresolution convolutional features and performing ROI pooling on a larger feature
map. Their modified Faster-RCNN showed higher precision than various state-of-the-art
SD methods, including the original Faster-RCNN.

3.6.2. SAR

SAR systems have also been extensively utilized for SD due to their operational ability
in all weather conditions and all times [314]. However, compared to optical imagery, they
contain a higher amount of noise. Consequently, it is difficult to detect small ships using
SAR data. Moreover, there are relatively few SAR satellites compared to optical systems,
causing challenges for real-time ship tracking and monitoring [314].

Numerous algorithms have been developed for SD using SAR images, including
coherent target decomposition [331], polarimetric entropy [332], wavelet transforms [333],
and generalized-likelihood ratio test [334]. However, the most-used method in this regard
is the Constant FAR (CFAR) [335]. The CFAR algorithm searches for bright pixels in SAR
images by comparing their grayscale value to the surrounding pixels. The most important
step in the CFAR method is to design a distribution model for the background to specify an
associated Probability Density Function (PDF). The Gaussian distribution, K-distribution,
and Gamma PDFs have been widely used in this regard. Then, the Probability of False
Alarm (PFA) for the threshold T is calculated by Equation (4).

PFA = 1 −
T∫

−∞

fpd f (x)dx =

∞∫
T

fpd f (x)dx (4)

The conventional CFAR algorithm only considers the intensity value of the pixels.
However, this can be due to the SAR ambiguities and ocean clutter in complex ocean
conditions [320,321]. Therefore, FAR increases by incorrectly detecting bright clutter pixels
as ships and missing some not-that-bright ship pixels due to factors such as speckles,
incident angels, and materials of targets. With the advent of high spatial resolution SAR
systems, such as TerraSAR-X and Sentinel-1, researchers are encouraged to take advantage
of spatial relationships alongside the intensity of pixels to improve the conventional CFAR



Water 2022, 14, 3400 34 of 51

algorithm. For example, Leng et al. [336] proposed the bilateral CFAR algorithm, which
used kernel density estimation as an analytical tool to determine the structure of the targets.
Then, a combined value was generated using both intensity and spatial distributions.
Finally, the standard CFAR method was applied to the SAR images with combined values
to detect targets. Their results indicated that the bilateral CFAR reduced FAR compared
to the conventional CFAR. Moreover, Wang et al. [337] proposed an Intensity-Space (IS)
domain CFAR SD algorithm based on two factors [337]: (1) two neighboring pixels are
more likely to be of the same kind, and (2) two pixels with similar intensity have a higher
probability of belonging to the same class. In the IS-CFAR algorithm, intensity and locality
were considered at the same time, as opposed to the sequential approach of the bilateral
CFAR algorithm, and thus, the image was mapped into the IS domain to create a new
transformed image. Then, the CFAR method was applied to extract ship targets. Finally,
the results were refined using three target features of the target region area, form factor,
and aspect ratio to further eliminate false alarms. The results showed that this method
performed better than the bilateral CFAR only in terms of true target detection precision.

DL methods have also been widely investigated for SD using SAR data. For example,
Jiao et al. [338] proposed an end-to-end, densely connected multiscale neural network based
on Faster-RCNN for SD in SAR images [338]. They densely connected feature maps to each
other from top to down, instead of using one feature map for region proposal, to achieve
multiscale and multiscene (inshore and offshore) SD without ocean–land segmentation.
They also proposed a training scheme to decrease the weight of easy-to-detect targets to
decrease FAR in SD. Their results on multiresolution public SAR data, including imagery
from RADARSAT-2, TerraSAR-X, Sentinel-1, and GaoFen-3, indicated the effectiveness of
the method and its superiority over the Faster-RCNN algorithm. However, false alarms
were observed, and the method had a problem when two ships were side by side (they
were detected as one ship).

3.6.3. HF Radar

HF radars based on electromagnetic scattering and surface wave propagation can detect
and track targets far beyond the conventional microwave radar coverage [339,340]. HF radars
exploit the HF band (3–30 MHz) to offer a board coverage extended to more than 200 km in
the range [340]. However, the radio frequency interferences and external noise restrict the
detection capability of the HF radars [184,185]. Regarding SD using HF radar data, the sea
clutter is considered to be self-generated interference and creates the first- and second-order
resonant scattering effects in the Doppler spectrum. The first-order scattering is produced by
ocean waves with half of the radar wavelength, while the second-order scattering is caused by
the interaction of crossing sea waves [340]. SD using HF radar is mainly based on the CFAR
algorithm following the beamforming data process. The CFAR threshold is usually calculated
by the Neyman–Pearson approach and assuming a fixed PFA [341]. With this approach, a
detection decision is made for each Range-Doppler (RD) cell.

Many studies have so far utilized HF radar data for SD. For example, in Dzvonkovskaya
and Rohling [341], the adaptive threshold is obtained by applying the conventional curvi-
linear regression analysis [342] along with the Doppler and range cells to detect ships.
Additionally, the gating approach was used to associate each target plot with a track in
polar coordinates in order to track targets such as ships. Moreover, in Gorski et al. [343],
target detection was accomplished by applying the space-time adaptive processing tech-
nique to each range cell. This algorithm was operated on a so-called data cube including
complex samples, obtained from many coherent pulses for various range cells to acquire
test statistics.

Although the aforementioned approaches are applicable for SD using HF radar, several
issues may emerge when an HF radar observes the ocean surface and monitors moving
ships. The first issue is that ships’ maneuvering during a long coherent processing interval
creates Doppler blur in the Range-Doppler map. Therefore, SD may fail when the CFAR
detector is applied. The second issue is that the Bragg scattering may mask a ship signal
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or be a considerable source of false detection since Range-Doppler cells associated with
the Bragg scattering have a significant magnitude. In this regard, Roarty et al. [344]
attempted to decrease the effect of ship maneuvers by applying a median filter before
CFAR detection. Additionally, the decision fusion technique can be used for improving the
detection performance to solve the second issue [70]. Park et al. [345] proposed a method
to simultaneously solve the two abovementioned issues by adding a signal-enhancement
procedure before CFAR detection. Finally, Hong et al. [346] proposed a DL method for
SD using a combination of SAR and optical images. They developed a novel, robust
framework based on a real-time object detection model, called YOLO, to improve the
SD results compared to previous methods in the context of multisource, multiscale, and
multisensor datasets. It was reported that their model could detect ships at any time with
any available RS imagery with a high accuracy.

3.6.4. Summary and Future Direction

In summary, optical and SAR images have been extensively used for SD. However,
they have usually been employed separately, and multisensor approaches have rarely been
explored. Each of these data has its own advantages and disadvantages, and combining
them for SD overcomes their limitations and provides better results. The focus of the future
SD studies using SAR images should be concentrated on incorporating more precise spatial
feature extraction and speeding up the algorithms of the spatial information extraction.
This can improve the detection accuracy and reduce the detection time consumption [336].
Furthermore, in case of the existence of cooperative positioning data, more accurate and
better results can be achieved.

DL methods have shown promising results for a variety of SAR applications. However,
some further investigations are suggested for SD. First, more annotated SAR data are
needed for accurate detection because it can improve the learning network. Thus, it
is expected that more high-quality SAR datasets for SD will be provided for research
in the future [338]. Additionally, it is recommended to concentrate on improving the
segmentation algorithms in terms of both accuracy and computation time. In terms of
optical images, it might be valuable to carry out more research on more complex CNN and
RNN methods [325]. Moreover, regarding the spaceborne RS technology, it is worthwhile
to exploit the hyperspectral data to for SD.

4. Conclusions

The pivotal role of oceans in regulating climate patterns, transportation, provision of
human food, and economic growth is beyond any dispute. To this end, RS systems have
been widely used to tackle the issues with the traditional in situ or shipborne approaches.
In the first part of this review paper, 12 different RS systems, which are frequently utilized
for ocean studies, and six oceanographic applications of RS systems (i.e., OSW, OSC, OWH,
SL, OT, and SD) were discussed.

RS of OSW depends on the emissive and reflective properties of the ocean surface.
Microwave radiometer, GNSS-R, SAR, scatterometers, and HF radar are the systems widely
used for OSW estimation. Microwave radiometers provide large-scale coverage and are
suitable for high wind speeds. However, they have coarse spatial resolution and suffer
from low accuracy for estimating OSW direction in low wind speeds. Higher spatial
and temporal resolutions and less sensitivity to atmospheric attenuation are the major
privileges of GNSS-R systems for OSW estimation. SAR systems providing high spatial
resolution are applicable at both low and high wind speeds. However, speckle noise issue
and challenging preprocessing steps are the main drawbacks of SAR systems for OSW
studies. Scatterometers provide acceptable efficiency in low wind speeds. They can be
used for the entire globe at the cost of coarse spatial resolution. HF radars can provide
appropriate accuracy at diverse wind speeds, but OSW data are only available at specific
coastal regions where the HF radar has been installed.
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There are many RS systems to directly/indirectly estimate OSC. Among these systems,
HF and marine radar (i.e., X-band/C-band) provide a more accurate estimation of coastal
OSC and its variations by real-time observations. However, they need costly maintenance and
are not applicable for global OSC estimations. Therefore, the altimeter satellites have been
commonly used to provide geostrophic OSC at a global scale with a high temporal frequency.
However, the altimetry measurements are negatively affected by weather conditions and
atmospheric variations and need corrections before being used in the OSC estimation.

Different RS systems, such as GNSS-R, SAR, altimeter, and marine radar, have been
utilized for OWH estimation. GNSS-R systems have high temporal and spatial resolutions
but have relatively low accuracy for OWH estimation. Although SAR data are less affected
by the atmosphere, they are more affected by ocean surface substances. Altimeters also
suffer from low spatial and temporal resolutions, as well as sensitivity to wind and wave
directions. Although HF radars lack sufficient data availability, they provide accurate
measurements of OWH and are operational in all-weather and day/night conditions.
Marine radars provide a better SNR ratio and are cost-effective, but they can only be used
for local scales.

Both active and passive RS systems can also measure SL and its variations. GNSS-R is
often employed for global and regional SL monitoring. However, obtaining high accuracy
in SL estimation with such systems requires long-term GNSS-R observations. Moreover,
altimeters have been widely used for global SL mapping with a relatively coarse spatial
resolution. Gravimetry satellites are used for measuring SL changes and distribution of
ocean mass in very coarse spatial resolutions.

RS systems can be utilized to investigate various aspects of OT, such as tidal flats, tidal
channels, tidal currents, OTL, and tidal wetlands. Optical, GNSS-R, SAR, altimeter, and
LiDAR systems have been used for OT studies. Optical systems are not good at estimating
water height changes but provide a wide range of spectral and spatial resolutions. The NRT
data of GNSS-R are also important resources for OT studies. SAR systems are useful for
all OT applications because they estimate ocean surface topographic changes with a high
accuracy level. Altimeters benefit from multilook processing, but they are applicable only
to tidal channels and tidal flats. Finally, LiDAR systems are useful for data acquisition at
optimal tidal levels. Optical, SAR, and HF radar are the most commonly used RS systems
for SD. Optical systems are only applicable in the daytime and are affected by clouds.
Although SAR and HF radar are operational in all weather conditions and all times, the
interpretation of the data acquired by the former system is difficult, and the latter system
suffers from a lack of data availability.

Thanks to the high number of RS systems, along with their consistent archived datasets,
the ocean RS experienced the big data era over the recent years. Big RS data in oceans
provide the required datasets for advanced ML algorithms (e.g., DL). However, high
performance, cloud computing platforms are required to efficiently process these big
geo data. There is still plenty of room for future improvements in mapping various
oceanographic parameters using DL models. For example, multidecade RS data series
contain much hidden and critical information about oceans, which can be effectively
investigated using advanced ML and cloud computing algorithms.
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Appendix A

Table A1. Acronyms and corresponding descriptions.

Acronym Description

ADDMV Allan Delay-Doppler Map Variance
AMSR Advanced Microwave Scanning Radiometers
AOD Atmospheric and Ocean De-aliasing

ASCAT Advanced SCATterometer
AT-InSAR Along-Track InSAR
AVHRR Advanced Very High-Resolution Radiometer
AVISO Archiving, Validation, and Interpretation of Satellite Oceanographic
AWEI Automated Water Extraction Index

BT Brightness Temperature
BTD Brightness Temperature Difference

BTDSF Difference between the temperature of sea surface and fog (BTSea surface − BTFog)
BTDTM Brightness Temperature Difference recorded by the Thermal Infrared and Mid Infrared bands (i.e., BTTIR − BTMIR)

CAA Civil Aviation Authority
CBERS China–Brazil Earth Resources Satellite
CEOF Complex Empirical Orthogonal Functions
CFAR Constant FAR
CNN Convolutional Neural Network

CONUS Continental United States
CPI Coherent Processing Interval
CSR Center of Space Research
CTD Coherent Target Decomposition
CVI Composite Vulnerability Index

CYGNSS Cyclone Global Navigation System Satellite
DCA Doppler Centroid Anomaly

DDMA Delay-Doppler Map Average
DDMs Delay-Doppler Maps
DDMV Delay-Doppler Map Variance
DEM Digital Elevation Model
DFO Department of Fisheries and Oceans

DInSAR Differential InSAR
DL Deep Learning

DSM Digital Surface Model
ERS European Remote Sensing
ESA European Space Agency
ETS Equitable Threat Score
EVI Enhanced Vegetation Index
FAR False Alarm Rate
GFZ GeoForschungsZentrum

GNSS Global Navigation Satellite Systems Reflectometry
GNSS-R GNSS-Reflectometry

GNSS WG GNSS Wave Glider
GOES-16 Geostationary Operational Environmental Satellite system-16

GLONASS Global Navigation Satellite System
GMF Geophysical Model Function

GMSL Global Mean SL
GPS Global Positioning System

GRACE Gravity Recovery and Climate Experiment
GRD Ground Range Detected
HF High Frequency

HFHSSWR HF Hybrid Sky–Surface Wave Radar
HRC High-Resolution Current

ICOADS International Comprehensive Ocean-Atmosphere Data Set
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Table A1. Cont.

Acronym Description

IFR Instrument Flight Rules
InIRA Imaging Radar Altimeter
InSAR Interferometric SAR
INSAT Indian National Satellite
IPCC Intergovernmental Panel for Climate Change

IRNSS Indian Regional Navigation Satellite System
IS Intensity-Space

LBP Local Binary Pattern
LEO Low Earth Orbit
LES Leading Edge Slope

LiDAR Light Detection and Ranging
LIFR Low Instrument Flight Rules
LMP Local Multiple Pattern
LOS Line of Sight

LSWI Land Surface Water Index
LUT Look-Up Table

MANMAR Manual of Marine Weather Observations
MCC Maximum Cross-Correlation

METAR Meteorological Aerodrome Report
MetOp Meteorological Operational satellite
MGDFs Multiscale Gaussian Differential Features

MIR Mid Infrared
ML Machine Learning

MLE4 Maximum Likelihood Estimator
MNDWI Modified Normalized Difference Water Index
MSAVI Modified Soil-Adjusted Vegetation Index

MV Minimum Variance
MVFR Marginal Visual Flight Rules
NAIP National Agriculture Imagery Program
NASA National Aeronautics and Space Administration
NDBC National Data Buoy Center
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index

NIR Near-Infrared
NL Newfoundland and Labrador

NOAA National Oceanic and Atmospheric Administration
NRCS Normalized Radar Cross Section
NRT Near Real-Time

NOAA National Oceanic and Atmospheric Administration
NSF Nighttime Sea Fog

NWP Numerical Weather Prediction
OC Ocean Color

OOS Ocean Oil Spill
OS Ocean Salinity

OSC Ocean Surface Current
OSCAR Ocean Surface Current Analysis Real-time

OSW Ocean Surface Wind
OT Ocean Tide

OTL Ocean Tidal Load
OTV Optimum Threshold Value
OWH Ocean Wave Height
PDF Probability Density Function
PE Polarimetric Entropy

PFT Phase spectrum of Fourier Transform
POD Probability Of Detection
PPP Precise Point Positioning
PRF Pulse Repetition Frequency
PrStd Probability of Nighttime Sea Fog for each pixel obtained from the spatial uniformity analysis
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Table A1. Cont.

Acronym Description

PrNSF Probability of Nighttime Sea Fog for each potential fog pixel
PrBTDTM Probability of Nighttime Sea Fog for each potential fog pixel obtained from the BTDTM
PrBTDSF Probability of Nighttime Sea Fog for each potential fog pixel obtained from the BTDSF

QuikSCAT Quick SCATterometer
QZSS Quasi-Zenith Satellite System

RCNN Region-based CNN
RDM Range-Doppler Map

RF Random Forest
RIOPS Regional Ice-Ocean Prediction System
RMSE Root Mean Square Error
ROI Regions of Interest
RPN Region Proposal Network
RS Remote Sensing

RSLR Relative SL Rise
RT Radiative Transfer

SAR Synthetic Aperture Radar
SARAL Satellite with ARgos and ALtiKa

SD Ship Detection
SGR-ReSI Space GNSS Receiver Remote Sensing Instrument

S-HOG Ship Histogram of Oriented Gradient
SHP Second-order Harmonic Peaks

SI Sea Ice
SL Sea Level

SLC Single Look Complex
SMAP Soil Moisture Active Passive
SMV Significant Minimum Value

SMOS Soil Moisture and Ocean Salinity
SNR Signal-to-Noise Ratio

SONAR Sound Navigation Ranging
SQG Surface Quasi-Geostrophic
SST Sea Surface Temperature

STAP Space-Time Adaptive Processing
SVM Support Vector Machine
SWIR Shortwave Infrared

Std Standard deviation
TDS-1 TechDemoSat-1
TES Trailing Edge Slope
TIR Thermal Infrared

UAV Unmanned Aerial Vehicle
UK-DMC United Kingdom Disaster Monitoring Constellation

UTC Universal Time Coordinated
VHR Very High Resolution

WaMoS Wave and Current Analysis and Wave Spectra
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