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Preface

For millennia, human communities have wondered about the possibility of observing

phenomena in their surroundings, and in particular those affecting the Earth on which they live.

More generally, it can be conceptually defined as Earth observation (EO) and is the collection of

information about the biological, chemical and physical systems of planet Earth. It can be undertaken

through sensors in direct contact with the ground or airborne platforms (such as weather balloons and

stations) or remote-sensing technologies. However, the definition of EO has only become significant

in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit.

Referring strictly to civil applications, satellites of this type were initially designed to provide

satellite images; later, their purpose expanded to include the study of information on land

characteristics, growing vegetation, crops, and environmental pollution. The data collected are

used for several purposes, including the identification of natural resources and the production of

accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans.

Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras

for imaging the visible or active instrumentation such as radar. Generally, such satellites are

non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the

Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and

Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly

called ’temporal resolution’), i.e., in a certain number of orbits around the Earth.

The first remote-sensing satellites were the American NASA/USGS Landsat Program;

subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing

satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian

RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were

dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed

system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the

Chinese BuFeng-1 and Fengyun-3 series.

Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers

worldwide for a multitude of Earth monitoring and exploration applications. On the other hand,

over the past 40 years, GNSSs have become an essential part of many human activities. As is widely

noted, there are currently four fully operational GNSSs; two of these were developed for military

purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for

civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European

Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning

System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation

Satellite System (IRNSS/NavIC), will become available in the next few years, which will have

enormous potential for scientific applications and geomatics professionals.

In addition to their traditional role of providing global positioning, navigation, and timing (PNT)

information, GNSS navigation signals are now being used in new and innovative ways. Across the

globe, new fields of scientific study are opening up to examine how signals can provide information

about the characteristics of the atmosphere and even the surfaces from which they are reflected before

being collected by a receiver.

EO researchers monitor global environmental systems using in situ and remote monitoring tools.

Their findings provide tools to support decision makers in various areas of interest, from security

to the natural environment. GNSS signals are considered an important new source of information

because they are a free, real-time, and globally available resource for the EO community.

ix



Shuanggen Jin and Gino Dardanelli

Editors

x



remote sensing  

Article

Long-Term Variations of Plasmaspheric Total Electron Content
from Topside GPS Observations on LEO Satellites

Shuanggen Jin 1,2,*, Chao Gao 1,3, Liangliang Yuan 1, Peng Guo 1, Andres Calabia 2, Haibing Ruan 2

and Peng Luo 1,4

Citation: Jin, S.; Gao, C.; Yuan, L.;

Guo, P.; Calabia, A.; Ruan, H.; Luo, P.

Long-Term Variations of

Plasmaspheric Total Electron Content

from Topside GPS Observations on

LEO Satellites. Remote Sens. 2021, 13,

545. https://doi.org/10.3390/

rs13040545

Academic Editor: Roberta Giuliani

Received: 7 January 2021

Accepted: 29 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;
cgao@shao.ac.cn (C.G.); llyuan@shao.ac.cn (L.Y.); gp@shao.ac.cn (P.G.); luopeng@shao.ac.cn (P.L.)

2 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and
Technology, Nanjing 210044, China; andres@calabia.com (A.C.); rhb@nuist.edu.cn (H.R.)

3 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
* Correspondence: sgjin@shao.ac.cn or sg.jin@yahoo.com; Tel.: +86-021-34775292

Abstract: The plasmasphere is located above the ionosphere with low-energy plasma, which is an
important component of the solar-terrestrial space environment. As the link between the ionosphere
and the magnetosphere, the plasmasphere plays an important role in the coupling process. Therefore,
it is of great significance to study the electron content variation of the plasmasphere for the solar-
terrestrial space environment. Nowadays, the topside global positioning system (GPS) observations
on Low Earth Orbit (LEO) satellites provide a unique opportunity to estimate and study variations in
the plasmasphere. In this paper, the plasmaspheric total electron content (PTEC) is estimated, and its
long-term variations are studied from topside GPS observations onboard the Constellation Observing
System for Meteorology, Ionosphere, and Climate (COSMIC). The PTEC in the daytime is higher
than that in the nighttime, with the peak between 14:00 and 17:00 in the magnetic local time, while
the minimum value of PTEC in the belt appears between 3:00 and 6:00 in the magnetic local time
before sunrise. For seasonal variations, the PTEC is the highest in spring of the northern hemisphere
and the lowest in summer of the northern hemisphere regardless of the state of the solar activity.
The long-term variation in PTEC is further analyzed using 11-year COSMIC GPS observation data
from 2007 to 2017. A high correlation between PTEC and the F10.7 indices is found. Particularly in
the geomagnetic high-latitude region during the daytime, the correlation coefficient reaches 0.93. The
worst case occurs during the nighttime in the geomagnetic middle-latitude region, but the correlation
coefficient is still higher than 0.88. The long-term variations of plasmaspheric TEC are mainly related
to the solar activity.

Keywords: plasmasphere; PTEC; GPS; GCPM; F10.7 index

1. Introduction

With the continuous exploration into deep space and the increasing variety of elec-
tromagnetic applications, such as communication and navigation, monitoring and under-
standing of the solar-terrestrial space environment have become a hot field, including
the Earth’s neutral atmosphere, ionosphere, plasmasphere, magnetosphere, and so on [1].
The plasmasphere is a part of magnetosphere, also called the inner magnetosphere [2],
which starts from the top of the ionosphere and ends at the plasmapause. The plasmas-
phere is a donut-shaped region surrounding the Earth, containing the coldest plasma of
the magnetosphere [3]. It is currently believed that the charged particles in the plasmas-
phere mainly come from escape of the ionosphere and capture from the solar wind [4,5].
Richards et al. [6] examined the relative importance of ionospheric and thermospheric
densities and temperatures in producing the annual variation of the plasmaspheric electron
density. Lee et al. [7] compared the global plasmaspheric total electron content (TEC) with

Remote Sens. 2021, 13, 545. https://doi.org/10.3390/rs13040545 https://www.mdpi.com/journal/remotesensing
1



Remote Sens. 2021, 13, 545

the ionospheric TEC simultaneously measured by Jason-1 satellite during the declining
phase of solar cycle 23, and the results showed that the plasmaspheric density structures
fundamentally followed the ionosphere, but there were still significant differences.

Radio signals are refracted by the charged particles, which affects satellite navigation,
positioning and microwave remote sensing. When the navigation signals of Global Nav-
igation Satellite System (GNSS) pass through the Earth’s ionosphere and plasmasphere,
they are delayed due to the refraction. The magnitude of the impact is related to the total
electron content (TEC) of the signal path [8]. Although the electron density of the plasmas-
phere is much lower than that of the ionosphere, the region covered by the plasmasphere is
dozens of times larger than that covered by the ionosphere. Therefore, the electron content
of the plasmasphere accounts for a considerable proportion of the total electron content,
which is usually about 10% in the daytime, but can reach 60% in the nighttime [9,10].

In some practical applications, for example, when using a single frequency GPS re-
ceiver for navigation and positioning, it is impossible to eliminate the effects of charged
particles by ionosphere-free combined observations, while ionospheric empirical mod-
els are not precise enough to eliminate the error caused by such delay. Current main
ionospheric models, such as the International Reference Ionosphere (IRI) model and the
NeQuick model, can only estimate the electron content of the ionosphere, but ignore the
plasmaspheric TEC (PTEC). Therefore, the corresponding delay effect cannot be estimated
or corrected precisely, which has an impact on the final positioning results [11,12]. There-
fore, it is important to estimate the PTEC for the delay correction. Furthermore, the coupling
processes between the plasmasphere and the ionosphere are very complex. The studies on
the plasmaspheric electron content variations and dynamic coupling processes between
the plasmasphere and the ionosphere are crucial for understanding the plasmasphere [13].

Before the advent of GNSS radio occultation technology, the PTEC was generally
difficult to measure directly. The TEC acquired by ground GNSS receivers is the total
electron content of the ionosphere and the plasmasphere. The ionospheric TEC (ITEC) can
be obtained from the ionosonde or incoherent scattering radar (ISR), and then PTEC is
indirectly calculated by subtracting ITEC from the total TEC [14,15]. However, there are a
series of problems with these methods. Firstly, normally the electron density profile below
the peak value of F2 layer can be obtained by the ionosonde, and the electron density profile
above the peak value is extrapolated by the Chapman function [16]. Secondly, the number
of observation stations of ionosonde and ISR is relatively small, and the distribution is
very sparse. In addition, the cost is a little high, which leads to limited coverages in
the global ionospheric observations. Furthermore, there are likely systematic deviations
between different observation techniques and methods, which will be involved into the
PTEC estimation. Therefore, it is challenging to accurately estimate PTEC and establish the
plasmaspheric model.

Nowadays, with the increasing number of GNSS Radio Occultation observations on
Low Earth Orbit (LEO) satellites, the topside GNSS observations on LEO satellites provide a
unique opportunity to directly estimate PTEC and study its variations in the plasmasphere,
particularly Constellation Observing System for Meteorology, Ionosphere, and Climate
(COSMIC) with six LEO satellites. The COSMIC can provide more than 2500 occultation
events per day during the normal operation period of six LEO satellites [17,18]. In this
paper, the PTEC is estimated, and its long-term variations are studied based on topside
GPS observations on COSMIC with providing the slant TEC (sTEC) of the signal path.
The sTEC is transformed into vertical TEC (vTEC) by a mapping function, and then the
grid model of PTEC is established. The spatial and temporal distribution characteristics of
PTEC are analyzed as well as its long-time variation characteristics from January 2007 to
December 2017. In Section 2, the data and method are introduced, the results and analysis
are presented in Section 3, and finally, conclusions are given in Section 4.
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2. Data and Method

The data used in this paper are the precise podTec provided by COSMIC from January
2007 to December 2017, which can be obtained from the COSMIC data analysis and
archiving center (https://www.cosmoc.ucar.edu/cdaac/). The PodTec files provide UTC
time, three-dimensional coordinates of LEO and GPS satellites, observation elevation of the
GPS-LEO observation link at LEO satellite, and the slant TEC on the signal path. It is worth
noting that the hardware delays of the transmitters on GPS satellites and the receivers
on COSMIC satellites have been deducted from the TEC, and the sampling rate of the
observations is 1 s [19]. Since the volume of observation data after 2017 is too small,
we only use the observation data from 2007 to 2017 in this paper. In addition, to ensure the
consistency of the altitude region covered by the observations, the observation data before
LEO satellites lifting their orbits are also eliminated.

To estimate the plasmaspheric TEC, it is necessary to set a thin shell, and the elec-
tron content is assumed to be concentrated on the shell. The method of the gridded
plasmaspheric TEC model is basically the same as that of the Global Ionosphere Model
(GIM) [20,21]. We tested the effects of the thin shell heights on PTEC results, and found a
small difference and little effect on the temporal and spatial distribution of PTEC. Therefore,
we set the altitude of the thin shell at 1400 km. Detailed plasmaspheric TEC modeling is
shown in Figure 1.
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Firstly, the baseline between the LEO and GPS satellites is transformed to the station-
centered coordinate system, and then the azimuth angle A and the elevation angle h are
calculated as:

XNEU =




− sin B cos L − sin B sin L cos B
− sin L cos L 0

cos B cos L cos B sin L sin B


XXYZ (1)

A = arctan(
XE
XN

) (2)

h = arctan(
XU√

X2
N + X2

E

) (3)
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where B and L are the geographic latitude and longitude of the LEO satellite, respectively,
and XXYZ and XNEU are the coordinates of the LEO-GPS baseline in Earth-centered Earth-
fixed (ECEF) coordinate system and the station-centered coordinate system, respectively.

To reduce the mapping errors and multipath effects, only the observations with an
elevation angle greater than 40◦ are used to establish the plasmaspheric TEC grid model.
The sTEC observations with negative values or over 100 TECU, which can be considered to
be unreasonable observations, are also removed. Then, we calculate the obliquity factor z
between LEO and GPS satellites and the vertical TEC:

z = arcsin[(Rrcosh)/(RE + HI)] (4)

vTEC = sTEC· cos(z) (5)

where Rr is the distance between the receiver on the LEO satellite and the Earth’s center,
RE is the radius of the Earth, HI is the altitude of the single layer plasmasphere (here we set
it as 1400 km). Then, the geographic longitude and latitude of the plasmaspheric piercing
point can be calculated as follows:

ΨI = π/2 − h − z (6)

ϕI = arcsin(sin B cos ΨI + cos B sin ΨI cos A) (7)

λI = L + arcsin(sin ΨI sin A/ cos ϕI) (8)

where ΨI is the geocentric angle between LEO satellite and the piercing point, and ϕI and
λI are the geographic latitude and longitude of the piercing point, respectively.

The geographic longitude and latitude are converted to geomagnetic longitude and
latitude, and the magnetic local time is calculated as follows:

mϕI = arcsin(sin(ϕI) sin(b0) + cos(ϕI) cos(b0) cos(l0 − 1)) (9)

mλI = arctan
(

cos(ϕI) sin(l0 − 1)/ cos(mϕI)

(sin(b0) sin(mϕI)− sin(ϕI))/(cos(b0) cos(mϕI))

)
(10)

mLTI = UTI + (mλI − l0)/
(

15
◦ × π/180

◦)
(11)

where mϕI and mλI are the geomagnetic latitude and longitude of the piercing point,
respectively, b0 and l0 are the geographic latitude and longitude of the geomagnetic north
pole, respectively, and b0 = 80.0

◦
, and l0 = −72.2

◦
, UTI and mLTI are the universal time

and magnetic local time of the observation, respectively.
Finally, we divide all the observations in a month or a season into groups with a

latitudinal resolution of 2.5◦ and a temporal resolution of 20 min, and the observations
in each group are weighted and averaged according to the value of

(
1 + cos2h

)−1 as the
PTEC of the corresponding grid point. In all the formulas above, angles are in radians and
distances are in kilometers.

3. Results and Analysis

The COSMIC constellation consists of six LEO satellites, which provide dense global
coverage plamaspheric observations. Figure 2 shows the geographical distribution of the
piercing points on the 1400 km thin shell on 2 January 2008. Due to the inclination of the
satellite orbits and the lowest observation elevation angle of 40◦, the distribution of the
piercing points has gaps at the north and south poles. However, in the region between
72◦S and 72◦N, the topside observations of LEO satellites are well-distributed, and all
observations can be regarded as observations from GPS satellite altitude (about 20,200 km)
to COSMIC satellite altitude (about 800 km). Although this altitude range is not exactly
consistent with the real plasmasphere, the observations are homogeneous in the detection
altitude, and basically contain most of the charged particles of the plasmasphere, so they
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can be regarded as the observations for the plasmasphere. These conditions are quite
favorable for plasmaspheric modeling.
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3.1. PTEC Estimation from COSMIC

According to the definition of plasmasphere, the distribution of charged particles is
dominated by the Earth’s magnetic field. Therefore, the geomagnetic coordinate system
is used in modeling. The magnitude of PTEC is closely related to the position of the sun,
so the geomagnetic longitude is converted to the magnetic local time. On the basis of
topside GPS observations of COSMIC, the plasmaspheric TEC grid model is estimated.
This paper mainly analyzes the temporal and spatial distribution and long-term variation
of PTEC, considering the volume of data and the convenience of analysis, so we divide
the observations separately by month and model. In this way, the effects of long-period
variations like solar activity on PTEC are preserved, while the influence of geomagnetic
activities, such as magnetic storms and sub-magnetic storms, which are relatively short-
lived (from a few hours to one or two days), is averaged over one month’s observations,
with a minimal impact on modeling. When analyzing the seasonal variation of PTEC,
we combine the observations of three months together and re-weight the observations to
calculate the PTEC.

The Global Core Plasma Model (GCPM) is the first real global plasmaspheric model,
and was established by Gallagher et al. [22] by integrating density distribution models of
different regions. It covers the ionosphere, plasmasphere, plasmapause, plasmaspheric
poles, and so on. In the ionosphere, GCPM adopts the international reference ionosphere
model IRI. The plasmaspheric region is based on the density distribution model of H+
established according to the observations of DE-1 satellite by Gallagher et al. [22]. The Per-
soon model is adopted in the polar regions [23]. These regional models are integrated
by mathematical fitting to create a static three-dimensional plasmaspheric model GCPM,
which can extend from the ionosphere to 8 to 9 radii of the Earth.

Figure 3 shows the comparison of PTEC from the topside GPS observations of COSMIC
in January 2008 with the GCPM and the differences in the bottom panel. The blank regions
in the top and bottom panels are caused by the fact that the observations of COSMIC
cannot completely cover the polar region. In January 2008, the state of solar activity
was quiet, and the F10.7 indices exhibit little change, at less than 80 sfu. This that the
observations of PTEC from COSMIC and GCPM are almost consistent with respect to the
overall characteristics. There is a significant belt with higher values of PTEC at geomagnetic
latitudes between −45◦ and 45◦, and PTEC values in the daytime are higher than those
in the nighttime. In addition, the PTEC values in the top panel decrease slowly from the
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geomagnetic equatorial region to the geomagnetic polar regions, while in the middle panel,
the PTEC values decrease rapidly in the geomagnetic middle-latitude regions. As a result,
the differences show significant zonal belt distribution in the bottom panel, and in the
middle and high geomagnetic latitudinal regions.
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The left panel in Figure 4 shows the comparison of the PTEC values from topside
GPS observations of COSMIC and GCPM in January 2008 at corresponding positions.
The correlation coefficient of PTEC values is 0.85, which indicates a good consistency
between the PTEC from COSMIC observations and GCPM. The right panel shows the
distribution histogram of PTEC differences. Almost all the differences are within ±4 TECU,
and the numbers of differences over ±3 TECU are less than 5% of the total statistics, which
also shows that the two PTEC results are in good agreement with each other.

In general, it has a relatively high correlation of PTEC between GCPM and the COS-
MIC observations, and the correlation is higher in quiet period of solar activity. However,
since GCPM is a model fitted by mathematical formulas, the result is very smooth in numer-
ical value and therefore the details cannot be seen from the model. The PTEC estimation
from topside GPS observations of COSMIC is based on the actual observations, which
contains more rich details.
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3.2. Temporal-Spatial Distribution Characteristics of PTEC

The long-term variations of plasmaspheric TEC and its temporal-spatial distribution
characteristics are analyzed using COSMIC-derived PTEC. According to the solar activity,
we selected 2008 and 2014 as the representatives of low and high solar activity years,
respectively, and established the PTEC gridded model using COSMIC observations by
month and season, and the monthly and seasonal variations characteristics of PTEC under
different states of solar activity are analyzed.

Figures 5 and 6 show monthly and seasonal variations of plasmaspheric TEC in 2008,
respectively. Observations of January and February 2009 were also used in the subgraph in
the bottom right panel of Figure 6. The PTEC values in different months or seasons have
the same following basic characteristics: PTEC values at daytime are higher than those at
nighttime; PTEC values in lower geomagnetic latitudinal regions are higher than those
in higher geomagnetic latitudinal regions; and there are obvious zonal belts with higher
PTEC values within the ±45◦ geomagnetic latitudinal region. This is because the solar
incidence angle in the geomagnetic low-latitude region is the greatest in the daytime, where
the plasmasphere captures the most energy, and thus generates more charged particles
through ionization. These phenomena can also prove a close relationship between the
plasmaspheric TEC and solar activity, which will be analyzed in the next section.

In the high PTEC value belts within ±45◦ geomagnetic latitude, the peak values of
PTEC in monthly and seasonal models all appear in the geomagnetic equatorial region
between 14:00 to 17:00 o’clock in the magnetic local time, while the minimum values
of PTEC appear between 3:00 and 6:00 o’clock in the magnetic local time. This can be
explained by the coupling process between the plasmasphere and the ionosphere. The
charged particles in the ionosphere drift upward along the Earth’s magnetic field lines
to the plasmasphere in the daytime, while the charged particles in the plasmasphere will
return to the ionosphere to maintain the electron density of the F layer in the nighttime,
so the electron content of plasmasphere will reach the minimum value before sunrise [24].
In Figure 5, we can see that values of plasmaspheric TEC in June, July and August 2008
are significantly lower than those in other months, and values of plasmaspheric TEC in
March and November are the highest. At the seasonal scale, the plasmaspheric TEC is the
highest in the northern hemisphere spring and the lowest in northern summer, which are
related to the variation of the vertical radiation region of the sun. The seasonal variation of
the plasmaspheric TEC is consistent with the variation of the ionospheric TEC due to the
strong coupling interaction [25].
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To analyze the influence of magnetic local time and geomagnetic latitude on plas-
maspheric TEC, we divided the monthly PTEC into six parts. There are daytime and
nighttime regions: the magnetic local time from 6:00 to 18:00 o’clock is the daytime, and
the nighttime is from 18:00 to the second day’s 6:00 o’clock. As for geomagnetic latitude, it
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is divided into low-latitude, mid-latitude and high-latitude, with boundaries of ±30◦ and
±60◦. The average PTEC of each region was calculated, and is shown in Figure 7. Since the
solar and geomagnetic activities were quite calm in 2008, the variations of plasmaspheric
TEC in different regions were also small and gentle, with a maximum variation range of
about 1.2 TECU. Apparently, the maximum values of plasmaspheric TEC always appeared
in the low-latitude region in the daytime, and the maximum value was in November 2008,
reaching 6.2 TECU. The sub-maximum values were in the nighttime low-latitude region,
with a maximum value of 5 TECU in November. The differences between daytime and
nighttime PTEC in the low-latitude region are about 1 TECU. In mid-latitude region, the
plasmaspheric TEC is around 3 TECU, and there is a small difference between daytime and
nighttime. However, the relative differences of plasmaspheric TEC between daytime and
nighttime are quite large for the small value of PTEC in high-latitude region. In general,
the effect of geomagnetic latitude on plasmaspheric TEC is more obvious.
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Figures 8 and 9 show the monthly and seasonal variations of plasmaspheric TEC in
2014, respectively. Observations of January and February 2015 are also used in in the sub-
graph at bottom right of Figure 9. The basic distribution characteristics of plasmaspheric
TEC mentioned above still exist. The most obvious difference is that the belts with higher
PTEC values are wider during the solar active period, especially in the daytime, which
indicates that during the solar active period, a larger region of the plasmasphere can receive
strong solar radiation, thus ionizing to generate more charged particles. In terms of numer-
ical value, the peak values of PTEC are significantly higher than those in 2008, which are
almost double in some months. In June, July and August 2014, the values of plasmaspheric
TEC are smaller than those in other months, which is the same as 2008. This phenomenon is
also reflected on the seasonal scale, whereby the values of plasmaspheric TEC in northern
summer are much lower than those in other seasons. An interesting phenomenon is that the
local maximum values of PTEC appear around 12:00 o’clock in the region of geomagnetic
latitude -80◦ in spring, autumn and winter of the northern hemisphere, which indicates that
the charged particles of the plasmasphere will accumulate in this region at noon, and its
physical mechanism needs to be further studied.
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In the same way, we also analyzed the influence of magnetic local time and geomag-
netic latitude on plasmaspheric TEC in 2014, during which year the solar activity was
very active. An obvious feature is that the maximum values of plasmaspheric TEC in
different regions all appeared in March, and the maximum reached 13.7 TECU in the
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daytime low-latitude region (Figure 10). The variations of plasmaspheric TEC in different
regions were relatively large, with a maximum variation range of about 5.6 TECU, and the
relative variations were also greater than those in 2008. The same characteristics as 2008
were not repeated here. An obvious distinction is that values of plasmaspheric TEC in the
daytime high-latitude region were higher than those in the nighttime mid-latitude region,
except for January, June and July, which shows that the high-latitude region was more
affected in intense periods of solar activity.
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3.3. Correlation with Solar Activity

The plasmasphere is located above the Earth’s ionosphere with much lower particle
density, but it is greatly affected by the solar radiation, which leads to the complex char-
acteristics of plasmaspheric electron density variation. To study the relationship between
plasmaspheric TEC and solar activity, we chose the F10.7 index as the reference indicator.
There is a strong correlation between the 10.7 cm radio flux and the number or area of
sunspots. At present, as one of the most important indices of solar activity, the F10.7 index
has been widely used in space weather research and related studies of ionosphere and
magnetosphere [26].

Figure 11 shows the monthly mean F10.7 indices and monthly mean PTEC from 2007
to 2017, where the red line represents the monthly mean F10.7 indices, corresponding to
the left ordinate, and the blue line represents the plasmaspheric TEC, corresponding to
the right ordinate. Before 2011, the monthly mean F10.7 indices were relatively small, and
the variation was relatively gentle. During this period, the solar activity was relatively
calm. After January 2011, the monthly mean F10.7 index rose sharply, and the variation
was very intense, indicating that the solar activity was in an active period. Then, after 2015,
the F10.7 index began to decline, and the solar activity decreased accordingly. The variation
of monthly mean PTEC (the arithmetic average of PTEC at each grid point of the monthly
plasmaspheric model) from 2007 to 2017 is shown in Figure 11, and the standard deviation
of each monthly mean PTEC is also calculated and shown with an error bar. Most of the
standard deviations are less than 2.5 TECU, which indicates that the monthly mean PTEC
is of significance. The values of monthly mean PTEC were also low before 2011, basically
no more than 5 TECU, and the variation was relatively gentle. After 2011, the monthly
mean PTEC also began to rise, and then began to decline after 2015, which was basically
consistent with the variation of the monthly mean F10.7 indices.
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To determine the correlation between PTEC and solar activity in the daytime and
nighttime, we divided the plasmaspheric TEC into the daytime region and nighttime
region, and the division standard was the same as in the previous section. Similarly, the
values of PTEC in the daytime and nighttime were averaged by month, respectively. The
mean values and the standard deviations are shown in Figure 12. The variations of PTEC
in the daytime and nighttime are basically synchronous with differences less than 2 TECU,
and both show consistency with the variation of the monthly mean F10.7 indices.
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To further estimate the correlation between PTEC and the F10.7 index, we divided
the monthly plasmaspheric TEC into latitudinal regions according to the geomagnetic
latitude and the magnetic local time, and the criteria of division are the same as mentioned
before. The monthly mean PTEC for each geomagnetic latitudinal region was calculated for
daytime and nighttime. Then, they were counted with the corresponding monthly mean
F10.7 indices in different subgraphs in Figure 13. There are strong correlations between the
monthly mean F10.7 indices and the monthly mean daytime and nighttime PTEC in each
latitudinal region. In the same geomagnetic latitudinal region, the correlation between the
monthly mean PTEC and the monthly mean F10.7 indices in the daytime is higher than
that in the nighttime. This is because the plasmasphere in the daytime is directly exposed
to the sun and can receive solar radiation and the energy directly, while in the nighttime,
the plasmasphere is more affected by the ionosphere, which reduces the correlation with
the solar activity. In the term of geomagnetic latitudinal region, the correlation in the
geomagnetic high-latitude region is also the highest, while the geomagnetic middle-latitude
region has the lowest correlation. However, among these correlation coefficients, the lowest
one is still more than 0.88, indicating a very strong relationship between plasmaspheric
TEC and the solar activity.
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4. Conclusions

Using the topside GPS observations on COSMIC, the long-term plasmaspheric total
electron content was obtained. By comparison with the GCPM, the plasmaspheric TEC
from the topside observations of COSMIC was verified. Using the observation data in
the solar minimum year 2008 and the solar maximum year 2014, PTEC was estimated
at the monthly and seasonal scales, respectively, and its temporal-spatial distribution
characteristics under different states of the solar activity were analyzed. The PTEC was
mainly distributed in a belt region around the Earth within ±45◦ of the geomagnetic
latitude. The plasmaspheric TEC in the daytime is higher than that in the nighttime, which
reaches a peak between 14:00 and 17:00 in magnetic local time, while the minimum value
of PTEC in the belt appears between 3:00 and 6:00 in magnetic local time before sunrise.
For seasonal variations, the plasmaspheric TEC is the highest in the spring of the northern
hemisphere and the lowest in the summer of the northern hemisphere, regardless of the
state of solar activity. The variations of monthly mean PTEC in different regions were
quite gentle during the solar minimum year 2008, while dramatical changes were found
during the solar maximum year 2014. Furthermore, the long-term variations of the 11-
year plasmaspheric TEC were analyzed with the F10.7 index as the reference indicator.
The results showed a strong correlation between plasmaspheric TEC and solar activity.
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Abstract: The Global Navigation Satellite System (GNSS) plays an important role in retrieving high
temporal–spatial resolution precipitable water vapor (PWV) and its applications. The weighted mean
temperature (Tm) is a key parameter for the GNSS PWV estimation, which acts as the conversion
factor from the zenith wet delay (ZWD) to the PWV. The Tm is determined by the air pressure and
water vapor pressure, while it is not available nearby most GNSS stations. The empirical formular is
often applied for the GNSS station surface temperature (Ts) but has a lower accuracy. In this paper,
the temporal and spatial distribution characteristics of the coefficients of the linear Tm-Ts model are
analyzed, and then a piecewise-linear Tm-Ts relationship is established for each GPS station using
radiosonde data collected from 2011 to 2019. The Tm accuracy was increased by more than 10% and
20% for 86 and 52 radiosonde stations, respectively. The PWV time series at 377 GNSS stations from
the infrastructure construction of national geodetic datum modernization and Crustal Movement
Observation Network of China (CMONC) were further obtained from the GPS observations and
meteorological data from 2011 to 2019. The PWV accuracy was improved when compared with the
Bevis model. Furthermore, the daily and monthly average values, long-term trend, and its change
characteristics of the PWV were analyzed using the high-precision inversion model. The results
showed that the averaged PWV was higher in Central-Eastern China and Southern China and lower
in Northwest China, Northeast China, and North China. The PWV is increasing in most parts of
China, while the some PWVs in North China show a downward trend.

Keywords: GPS meteorology; weighted mean temperature; precipitable water vapor; radiosonde

1. Introduction

Water vapor is an important part of the Earth’s hydrosphere and plays a key role in
the energy exchange and water cycle in nature. The atmospheric water vapor content is
limited by local temperature and pressure and is closely related to the formation of various
precipitation, such as clouds, rain, and snow [1]. Accurate measurements of water vapor
and its distribution changes have become one of the basic problems in synoptics, weather
forecasting, and climate research [2–5]. One of the indicators to measure the amount of
atmospheric water vapor is the precipitable water vapor (PWV), which represents a certain
height of the water column produced by the condensation of all tropospheric atmospheric
water vapor in the column per unit bottom area at any time into liquid water. Since the
demand for real-time and accurate weather services is becoming more and more urgent,
the traditional detection technologies such as radiosondes, water vapor radiometers, and
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solar photometers cannot meet the application requirements for continuous high-precision,
high-temporal resolution monitoring of water vapor.

Nowadays, Global Navigation Satellite System (GNSS) technology has become an
important means to obtain precipitable water vapor with high temporal and spatial resolu-
tion, and many scholars have used GNSS technology to study global or regional climate
change and characteristics [6–12]. Bevis et al. first proposed the concept of GPS meteorol-
ogy and obtained the global surface temperature and weighted mean temperature from
8718 radiosonde stations in North America and explained the linear relationship coefficient
and specific process of ground-based GPS inversion of water vapor [13]. Ross and Rosen-
feld used 23 years of profile data from 53 radiosonde stations from the National Center for
Atmospheric Research to calculate the global Tm-Ts linear coefficient and demonstrated
that it was related to the station and the season except the equatorial region [14]. Several
Tm-Ts conversion models were established for different regions and different seasons us-
ing limited meteorological observation data [15–18]. Yao et al. established the nonlinear
transformation relationship by combining mathematical statistics and derivation, which
can improve the accuracy of fitting in China [19]. However, many GPS stations are not
equipped with temperature and pressure sensors due to cost and other reasons. Hence, it
is impossible to use transformation coefficient from real observations to calculate Tm.

Many researchers used the National Centers for Environmental Prediction (NCEP),
and the European Center for Medium-term Weather Prediction (ECMWF) reanalyzed
data and interpolated data from the ground meteorological observation station to obtain
ground temperature and air pressure for ground-based GNSS PWV inversion [20–25].
Yao et al. established a global Tm model and a tropospheric delay model using spherical
harmonic functions with considering annual, semi-annual, and diurnal changes, which
greatly improved the accuracy of the PWV estimation [26,27]. However, the empirical
models have relatively low accuracy. The research on Tm-Ts models in the region of China
was mostly focused on climate zones and seasonal divisions. Since many GPS stations in
China lacked meteorological data in the past, they cannot obtain precise PWV, as well as
investigate their long-term variation characteristics of GPS PWV.

In this study, we collected more radiosonde stations observations at co-located GNSS
stations from the infrastructure construction of national geodetic datum modernization and
Crustal Movement Observation Network of China (CMONC). The temporal and spatial
distribution characteristics of the Tm-Ts model were analyzed from radiosonde data, and
a piecewise-linear model was established at each radiosonde station in China. With this
model, the nine-year GPS PWV time series at GNSS stations was obtained from CMONC
GNSS observations and meteorological data. The precision of the PWV was evaluated, and
the distribution characteristics and their changes were investigated. Section 2 shows the
data and methods, evaluation and comparison are presented in Section 3, variations in the
characteristics of GNSS PWV are presented in Section 4, and finally, the conclusions are
given in Section 5.

2. Data and Methods
2.1. Observation Data

The infrastructure construction of national geodetic datum modernization in China
was launched in 2012 and completed in 2017, which contained 210 GPS stations. A high-
precision, dynamic, and unified modern surveying and mapping datum system was
established to provide coordinate frame services, including data products, real-time posi-
tioning, processing and analysis, and other services [28]. Crustal Movement Observation
Network of China (CMONC) was established in 2006 and completed in 2012, which con-
tained 360 GPS stations [29,30]. The National Geomatics Center of China (NGCC) provided
the hourly ZTD data and 1-h measured temperature and atmospheric pressure data at
these GPS stations from 2011 to 2019. We used BERNESE 5.2 software [31] to process the
raw data, including the implementation of daily solutions and adjustments [32].
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The Integrated Global Radiosonde Archive (IGRA) has released radiosonde and pilot
balloon observations with more than 2700 stations around the world since 1905, including
air pressure, temperature, geopotential height, and relative humidity (ftp://ftp.ncdc.noaa.
gov/pub/data/igra, accessed on 24 January 2021), whose temporal resolution is 12 h. We
used IGRA-released radiosonde profiles in China from 2011 to 2019 to calculate the Tm at
each radiosonde station. Figure 1 shows all the used GPS stations and radiosonde stations.
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2.2. Establishment of Site-Specific Piecewise-Linear Tm-Ts Relationship

Tm is related to the temperature and vapor pressure at different altitudes in the
atmosphere, which can be obtained from the IGRA. The method to calculating the 12-h Tm
can be expressed as [13]:

Tm =

∫ +∞
z0

( e
T
)
dz

∫ +∞
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(
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T2

)
dz

≈
∑N

i=1

(
ei
Ti

)
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∑N
i=1

(
ei
T2

i

)
∆zi

(1)

where e (hPa) refers to the water vapor pressure, T (K) is the corresponding temperature,
and Z (m) denotes the starting height of integration. ∆zi (m) denotes the altitude of the
ith atmospheric layer, N denotes the number of the atmospheric layer, ei (hPa) denotes
the water vapor pressure of ith atmospheric layer, and Ti (K) denotes the temperature of
ith atmospheric layer. We converted the geopotential height into the geoid height in the
calculation process.

The empirical formula based on the long-term radiosonde data in the study area and
the linear relationship between surface temperature Ts and Tm can be established by a
regression analysis as:

Tm = a·Ts + b (2)

where a and b are the linear regression equation parameters.
The Tm variation has a significant annual variation. In some studies, the half-year

variations and the daily variations are also considered when building the model. In order to
get the time-varying characteristics of the Tm-Ts coefficient, a piecewise-linear least squares
fitting is performed for each radiosonde station for one month.
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2.3. PWV from Site-Specific Piecewise-Linear Tm-Ts Relationship

Three hundred and seventy-seven GPS stations were selected for estimating the PWV
time series. Since the cubic spline method has a higher accuracy than the nearest-neighbor
interpolation method and linear interpolation method, we used the cubic spline method
to obtain the Tm-Ts model coefficients a and b at the GPS stations in the corresponding
time period.

ZTD is the sum of Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD), as

ZTD = ZHD + ZWD (3)

The Saastamoinent model has been widely used for ZHD computation [33], as

ZHD = 0.002277· P
1 − 0.0026·cos (2φ)− 0.00028·h0

(4)

where P (hPa) denotes the ground pressure of the GPS station, φ denotes the latitude of
the GPS station, and h0 (m) denotes the elevation of the GPS station.

The ZWD is caused by water vapor in the atmosphere under nonstatic equilibrium.
Generally, empirical models and meteorological parameters at GPS station are used to
obtain the ZHD, and then, the ZHD is deducted from the ZTD to obtain the ZWD.

ZWD = ZTD − ZHD (5)

The linear relationship between the ZWD and PWV can be expressed as [13]

PWV = Π·ZWD (6)

Π =
106

ρw·
R

mw
·
[

k3

Tm
+ k2 − mw

md
·k1

] (7)

where Π is the conversion factors between the ZWD and PWV; Π is a function of Tm;
ρw represents the density of the liquid water; R is the universal gas constant and R = 8314
Pa·m3·K−1·kmol−1; mw represents the molar mass of water vapor and mw = 18.02 kg·kmol−1;
md represents the molar mass of the dry atmosphere and md = 28.96 kg·kmol−1; and k1, k2,
and k3 are constants (k1 = 77.604 ± 0.014 K/hPa, k2 = 70. 4 K/hPa, and k3 = (3.776 ± 0.014)
× 105 K2/hPa) [13].

In general, approximately 6.7 mm of ZTD error will cause a PWV error of 1 mm. Hence,
the ZTD with a Root Mean Square Error (RMSE) of greater than 6.7 mm are eliminated. In
addition, ZTD data and meteorological parameters are missing at some stations in a few
time periods. For sites with missing data for more than one year, they will not be used when
analyzing the long-term changes. Then, Equations (3)–(6) were used for high-precision
PWV estimations based on the site-specific piecewise-linear Tm-Ts relationship in China.
Finally, the PWV time series derived from 377 GPS stations in China from 2011 to 2019
were obtained.

2.4. PWV from Radiosonde

The PWV at the radiosonde station is calculated as follows:

PWV =
∫ p0

0

q
ρwg

dp (8)

where p (hPa) denotes the atmospheric pressure, p0 (hPa) is the ground pressure at the GPS
station, q (g·kg−1) denotes the specific humidity, g (m·s−2) is the acceleration of gravity,
and ρw (g·cm−3) refers to the density of the liquid water. By discretizing Equation (8),
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the integral equation of PWV from the ground to the top of the atmosphere is obtained
as follows:

PWV = − 1
g

p

∑
p0

q × p (9)

2.5. Fitting Function of the PWV Time Series

Jin and Luo [34] analyzed the PWV series derived from 155 globally distributed GPS
sites observations and found that most of the periods of the PWV series were 1 year,
0.5 years, 1 day, and 0.5 days. To fit the PWV time series of 377 GPS stations in China, we
established the following equation:

PWV = k0 + k1· cos
(

DOY − c1

365.25
·2π
)
+ k2· cos

(
DOY − c2

365.25
·4π
)
+ k3· cos

(
HOD − c3

24
·2π
)

+k4· cos
(

HOD − c4

24
·4π
)
+ ε

(10)

where k0 is a constant term; k1, k2, k3, k4, c1, c2, c3, and c4 are the amplitude and phase
at the period (1 year, 0.5 years, 1 day, and 0.5 days); DOY is the day of year; HOD is the
hour of day; and ε is the residual. The least square method was used to determine the
unknown parameters in Equation (10) with the PWV time series.

3. Evaluation and Comparison
3.1. Spatial Distribution and Time-Varying Characteristics of the Tm-Ts Coefficient

Figure 2 shows the spatial distribution of the Tm-Ts relationship coefficients. The slope
coefficient ranges from 0.5 to 0.7 in South China, around 0.7 in Northwest China, and about
0.8 in Central and Northeast China. As shown in the right panel, the intercept coefficient
is from 80 to 140 in Southern China, about 60 in Central and Northwestern China, and
approximately 20 in Northeastern China.
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is the hour of day; and 𝜺 is the residual. The least square method was used to determine 
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Figure 2. Distribution of the Tm-Ts fitting coefficients a and b at each station by Tm = a ∗ Ts + b. (a)
The slope coefficient a and (b) the intercept coefficient b.

Figure 3 shows the distribution diagram of the slope coefficient with the elevation,
latitude, and longitude. No evident correlation is found with the elevation and longitude,
whereas there is strong positive correlation with the latitude, especially in low-latitude
areas. Some studies have shown that when the same Tm-Ts coefficient is used at a global
scale, it will cause different errors in the Tm of different latitudes [35,36]. Wang et al. found
that the Tm derived from the Bevis Tm-Ts relationship has a cold bias in the tropics and
subtropics and a warm bias in middle and high latitudes, and furthermore, the RMS was
dominated by the mean bias rather than the random error. Therefore, the distribution of
the Tm-Ts coefficients is mostly related to the latitude. The slope coefficient a is generally
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less than 0.6 in low-latitude areas, which is consistent with the previous results of some
global Tm-Ts models.
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The monthly coefficients of the Tm-Ts model are obtained. The slope coefficients
have obvious annual cycle at most stations. The time series of slope coefficients at four
radiosonde stations are randomly selected and shown in Figure 4. The information of the
four stations is shown in Table 1. The slope coefficients of the Tm-Ts model vary greatly
with the time, from about 0.5–1. The regression slope and its changing tendency are smaller
at the SIMAO station, which is due to the lower latitude.
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Table 1. Information about the 4 stations used in Figure 4.

Name Number Latitude
(◦)

Longitude
(◦) Height (m)

YICHUN 50,774 47.72 128.83 264.8
HARBIN 50,953 45.93 126.57 118.3
SIMAO 56,964 22.77 100.98 1303.0

ANQING 58,424 30.62 116.97 62.0
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3.2. Comparison with Bevis Tm-Ts Relationship

We calculated the root mean square error (RMSE) (in unit of K) and accuracy improve-
ment (%) of Tm for 94 radiosonde station, which are shown in Figure 5. Compared with
the Bevis model, the site-specific piecewise-linear model has a significant improvement
in the regression accuracy at most stations due to the consideration of the temporal and
spatial distributions of the Tm-Ts conversion coefficient. According to the statistics, the Tm
accuracy with 86 radiosonde stations is increased by more than 10% and by more than 20%
with 52 radiosonde stations, and the lowest is increased by 6% (station 58457, 30.23◦ N,
120.17◦ E), and the highest is increased by 69% (station 56691, 26.87◦ N, 104.28◦ E).
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Figure 5. RMSE (K) (a) and accuracy improvement of the Tm (b) calculated by the site-specific
piecewise-linear and Bevis Tm-Ts relationship.

Figure 6 shows the RMSE distribution of the Bevis model and the site-specific piecewise-
linear model. As we can see, compared with the Bevis model, the single-station piecewise-
linear model has a greater accuracy improvement in the southern, southwest, and north-
eastern regions by more than 30%. The increase in the central and northwestern regions is
relatively small and approximately 15%.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 6. RMSE (K) distribution of the Tm calculated by the site-specific piecewise-linear relation-
ship (a), Bevis Tm-Ts relationship (b), and reduction of the RMSE (%) by the site-specific piecewise-
linear Tm-Ts relationship (c). 

3.3. Comparison with GPS-Derived PWV and Radiosonde PWV 
The selected GPS stations are closer to the radiosonde, in which the horizontal dis-

tance is less than 10 km and the elevation difference is less than 100 m. The water vapor 
obtained by the integral of the radiosonde profile data was used to evaluate the ground-
based GPS PWV based on the Bevis model and the site-specific piecewise-linear Tm-Ts 
model. We calculated the deviation bias (in unit of mm) and relative errors. For example, 
Figure 7 shows the results at GXHC station in 2018. The accuracy of the PWV is better 
based on the site-specific piecewise-linear Tm-Ts relationship when compared to the 
Bevis’s model. 

 
Figure 7. Bias (mm) (a) and relative error (%) (b) of the precipitable water vapor (PWV) calculated 
based on different Tm-Ts models at GXHC station in 2018. The blue dots are the PWV based on the 
Bevis model, and the red dots are the PWV based on the site-specific piecewise-linear model. 

The distribution of water vapor in the atmosphere is not uniform. Thus, the ground-
based GPS water vapor can get the average distribution of water vapor in each satellite 
signal direction. In addition, the layered meteorological parameter data of the radiosonde 
is not strictly vertical. These factors will bring errors into the PWV results. However, it 
still can be seen that the accuracy of the PWV is significantly improved based on site-

Figure 6. RMSE (K) distribution of the Tm calculated by the site-specific piecewise-linear relationship
(a), Bevis Tm-Ts relationship (b), and reduction of the RMSE (%) by the site-specific piecewise-linear
Tm-Ts relationship (c).

23



Remote Sens. 2021, 13, 1296

3.3. Comparison with GPS-Derived PWV and Radiosonde PWV

The selected GPS stations are closer to the radiosonde, in which the horizontal distance
is less than 10 km and the elevation difference is less than 100 m. The water vapor obtained
by the integral of the radiosonde profile data was used to evaluate the ground-based GPS
PWV based on the Bevis model and the site-specific piecewise-linear Tm-Ts model. We
calculated the deviation bias (in unit of mm) and relative errors. For example, Figure 7
shows the results at GXHC station in 2018. The accuracy of the PWV is better based on the
site-specific piecewise-linear Tm-Ts relationship when compared to the Bevis’s model.
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Figure 7. Bias (mm) (a) and relative error (%) (b) of the precipitable water vapor (PWV) calculated
based on different Tm-Ts models at GXHC station in 2018. The blue dots are the PWV based on the
Bevis model, and the red dots are the PWV based on the site-specific piecewise-linear model.

The distribution of water vapor in the atmosphere is not uniform. Thus, the ground-
based GPS water vapor can get the average distribution of water vapor in each satellite
signal direction. In addition, the layered meteorological parameter data of the radiosonde
is not strictly vertical. These factors will bring errors into the PWV results. However, it still
can be seen that the accuracy of the PWV is significantly improved based on site-specific
piecewise-linear Tm-Ts relationship, especially when there are more atmospheric water
vapors in the summer.

4. Variations Characteristics of GNSS PWV
4.1. Spatial Distribution of PWV in China

The annual averaged PWV at all GPS stations from 2011 to 2019 in China range from
0 to 48 mm. As shown in Figure 8, the annual averaged PWV in Central-Eastern China and
Southern China are relatively high, reaching above 25 mm, while the annual averaged PWV
in Northwest, Northeast, and Northern China regions are lower, below 15 mm. Southeast
China has a low latitude and is close to the East China Sea and the South China Sea, which
are subject to subtropical monsoons. Monsoons transport water vapor from the sea to these
areas, resulting in the higher annual averaged PWV [37]. Northwest China has a relatively
high latitude and is an inland region with a temperate continental climate, so the annual
averaged PWV is lower.

The GPS stations are divided into four regions: the eastern central region (24.5◦–37◦ N,
105◦–123◦ E), the southern region (19◦–24. 5◦ N, 105◦–120◦ E), the northwestern region
(42◦–49◦ N, 80◦–90◦ E), and the northeastern region (37◦–50◦ N, 110◦–130◦ E). Figure 9
shows the nine-year daily averaged PWV of these four regions. The variation characteristics
of the PWV in each region are consistent throughout the year, with the peaks in June and
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July and the droughts in January and December. Among them, the peak in Southern China
appeared the earliest, which was affected by the south-to-north monsoon. Atmospheric
circulation transported the water vapor to the Yangtze River Basin and then continued to
transport it to other regions [38].
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Figure 9. Nine-year averaged daily PWV (mm) in four regions of China from 2011 to 2019.

4.2. Seasonal Variations of PWV in China

Figures 10 and 11 show the annual and semiannual PWV variation amplitudes at
377 GPS sites. The spatial distribution of the annual PWV variations is similar to the annual
average distribution of the PWV. Central China, Southern China, and the southeast coastal
areas have higher annual PWV variation amplitudes, reaching about 15 mm, while the
annual cycle amplitude in Northwest China is lower, below 10 mm. The semiannual PWV
variation amplitudes are relatively small, about 3–9 mm. Among them, the semiannual
PWV variation amplitudes are the highest in Central China and Southwest China, reaching
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above 6 mm, while the semiannual PWV variation amplitudes in Southern China and
Northwestern China are lower, below 5 mm.
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4.3. Long-Term Variation Trend of PWV in China

Figure 12 shows the long-term variation trends of the PWV (mm/year) of all GPS
stations from 2011 to 2019. It can be seen that the PWV has been increasing in most parts
of China, while the PWV in Northeast China shows a downward trend. To understand
the variations of the PWV in more detail, a monthly anomaly of the PWV is obtained
by subtracting the monthly averaged PWV of every month from the mean value of the
monthly averaged nine-year PWV in each region, which can be seen in Figure 13. The
monthly anomaly of the PWV was mainly negative before 2015 and then turned negative.
The PWV in Northwest China, Northeast China, and Northern China were relatively stable,
and the monthly mean value changed little, which was related to the dry inland climate.
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5. Discussion

Most of the published Tm models that considered the temporal and spatial distribu-
tions of the relationship between the Tm and meteorological measurements have been
empirical models on a global scale. Their accuracy remains to be verified in a specific
area and a period of time. Here, we estimated the monthly coefficients at each station,
and Table 2 shows the comparison between the piecewise-linear model and two recently
published representative models: the time-varying global-gridded Ts–Tm model (TVGG)
and neural network-based Tm model (NN). We tested our model with radiosonde data
from 2011 to 2019, and the results showed that our model has the best accuracy.

Table 2. Statistics of the Tm estimates for different models.

Statistics Bevis TVGG NN-I Piecewise Linear

Bias (K) −0.74 −1.25 0.03 0.00
RMS (K) 4.58 3.84 3.62 3.38

The spatial distribution characteristics of the PWV are consistent with other studies in
different years [39,40]. There are bimodal characteristics of the PWV in Southern China,
and the formation mechanism of the bimodal characteristics remains to be further studied.
The past results of some studies in China indicated that the PWV showed a downward
trend from 1995 to 2012 [41–43], while the trends of this article are upward from 2011 to
2019. Most PWV in Central and Eastern China and Southern China show an upward trend
and some PWV in North China is downward from 2011 to 2019. The monthly averaged
PWV increased significantly in 2015, which was affected by the El Niño.

6. Conclusions

In this study, we analyzed the temporal and spatial distribution characteristics of the
coefficients of the linear Tm-Ts model and showed that the distribution of Tm-Ts coefficients
is mainly related to the latitude. The Tm-Ts conversion coefficient changes with the time
and has an obvious annual cycle. Based on the spatial distribution and time-varying
characteristics of the Tm-Ts coefficients, a site-specific piecewise-linear model was estab-
lished. Compared with the Bevis model, this model reduced the Tm RMS by more than
20% for the most of the tested radiosondes. The accuracy of GPS PWV is better based on
the site-specific piecewise-linear Tm-Ts relationship when compared to the Bevis model.
Furthermore, the PWV time series at 377 GNSS stations were further obtained and analyzed
from the GPS observations and meteorological data from 2011 to 2019. The results showed
that the average PWV in Central and Eastern China and Southern China is higher, reaching
more than 25 mm, while the average value is lower and below 15 mm in Northwest China,
Northeast China, and North China. The PWV is increasing in most parts of China, while
some PWV in North China show a downward trend.
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Abstract: Worldwide, the determination of the coordinates from a Global Navigation Satellite System
(GNSS) survey (in Network Real Time Kinematic, Precise Point Positioning, or static mode) has
been analysed in several scientific and technical applications. Many of those have been carried
out to compare Precise Point Positioning (PPP), Network Real Time Kinematic (NRTK), and static
modes’ solutions, usually, using the latter as the true or the most plausible solution. This approach
is not always possible as the static mode solution depends on several parameters (baseline length,
acquisition time, ionospheric, and tropospheric models, etc.) that must be considered to evaluate the
accuracy of the method. This work aims to show the comparison among the GNSS survey methods
mentioned above, using some benchmark points. The tests were carried out by comparing the survey
methods in pairs to check their solutions congruence. The NRTK and the static solutions refer to
a local GNSS CORS network’s analysis. The NRTK positioning has been obtained with different
methods (VRS, FKP, NEA) and the PPP solution has been calculated with two different software
(RTKLIB and CSRS-PPP). A statistical approach has been performed to check if the distribution
frequencies of the coordinate’s residual belong to the normal distribution, for all pairs analysed.
The results show that the hypothesis of a normal distribution is confirmed in most of the pairs and,
specifically, the Static vs. NRTK pair seems to achieve the best congruence, while involving the
PPP approach, pairs obtained with CSRS software achieve better congruence than those involving
RTKLIB software.

Keywords: NRTK; PPP; static; congruence; GNSS; CORS

1. Introduction

The coordinates from a Global Navigation Satellite Systems (GNSS) survey, as it
is known throughout literature, can be computed with different approaches (relative
and differential techniques, or absolute precise point positioning method). Traditionally,
according to the relative survey, there are many differences distinguishing the static and the
kinematic modes (RTK, real time kinematic or NRTK, network-based RTK). Specifically, the
static mode allows reaching the highest precisions, despite the time involved for the survey
and the data post-processing could limit its application [1–4]. Using the kinematic mode,
the distance between the master and the rover receivers needs to be low, generally less than
20 km to solve the ambiguity phase fixing with “on the fly” procedure in order to retrieve
the centimetre accuracy of the static positioning [5]. To overcome the above mentioned
constrain, in the last few years, the GNSS Continuously Operating Reference Stations
(CORS) networks have been widely used for real time positioning with high-precision.
The presence of widely spread GNSS CORS networks encouraged the use of the NRTK
technique that allows overcoming the limits of the distances among the stations. The use
of GNSS CORS network, also, allows applying differential corrections more reliable on
wide areas, such as the Virtual Reference Station (VRS) approach [6], the Multi Reference
Station (MRS) approach [7], the Flächen Korrektur Parameter (FKP) approach or other
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surface correction approaches [8,9]. Several authors [10–12] demonstrated that the NRTK
technique allows reaching centimeter accuracy, comparable with the accuracy of the static
measurements.

The fundamentals of the PPP method were presented in [13] and in [14]. Many
other research have discussed this methodology, to establish a geodetic survey control
network [15] and to verify the possibilities of multi-constellation measurements for both
static and kinematic acquisitions, to improve the convergence of PPP solutions [16–19]. The
accuracy of PPP method has also been studied comparing the outcomes from online web
services using different software and satellite ephemerides products [20], evaluating the
performances of online free available PPP services for static positioning and tropospheric
delay estimation [21,22]. Other works have also analyzed the possibility to achieve high
positioning accuracy with PPP using a short period of observations [17,23–25].

A very prominent segment of PPP applications, known to the scientific community as
GNSS-Ionosphere, has been developed to measure the ionospheric total electron content
(TEC) aiming monitoring the global ionospheric climate. The TEC observations record
regional ionospheric perturbations due to earthquakes/tsunamis, or geomagnetic storms,
typhoon, and eclipses.

Moreno et al. [26] examined the relation between large changes in the rate of TEC with
positioning errors in single PPP epochs, at equatorial latitudes during post-sunset hours,
establishing that estimated altitudes have errors up to several meters for a single-epoch
positioning. Results have been validated via the online CSRS-PPP software using three
International GNSS Services (IGS) stations. Afraimovich et al. [27] report that the total GPS
L2 phase slipped during the recovery phase of a geomagnetic storm due to GPS signal
scattering on field aligned irregularities, both for the lines-of-sight aligned to the magnetic
field line (the field of aligned scattering) and across the magnetic field line (the field of
across scattering). Demyanov et al. [28] observed that the signal carrier phase scintillations
can be caused by the ionospheric irregularities and also by a satellite oscillator anomalies
and troposphere. The authors also reports that the parameter sensitivity crucially depends
on the GPS receiver hardware and the carrier phase data sampling rate. A second-order
derivative of the GPS signal phase is suggested as a mean to detect small-scale ionospheric
irregularities. It was found that a 50 Hz data sampling rate is an adequate time resolution to
reveal small-scale irregularities responsible for the ionospheric scintillations. More recently,
Jin et al. [29], by analyzing a decade long observations of Constellation Observing System
for Meteorology, Ionosphere, and Climate (COSMIC), estimated the long-term variations
of the plasmaspheric total electron content (PTEC).

The above-mentioned studies propose methodologies and mathematical approaches
to analyze peculiar environmental conditions (magnetic storms, solar flares, atmospheric
storms, and ionospheric scintillations) inducing positioning inaccuracies as highlighted in
the suggested references, which may be referred to for further details, without claiming to
be exhaustive.

In this work, we aim to compare NRTK, PPP and static methodologies to retrieve the
coordinates of several benchmarks. The NRTK and static solutions have been performed
using the GNSS CORS network of University of Palermo (UNIPA) located in the western-
part of Sicily (Italy) included in the national Topcon Italy GNSS CORS network (TopNET
live, [30]). The PPP solutions were carried out using two different software: the Canadian
Spatial Reference System Precise Point Positioning (CSRS-PPP) online Web service and the
open source program package RTKLIB. To compare Static and PPP solutions, only an hour
of observations was considered.

In the assessment of NRTK or PPP positioning, most scientific studies use as ref-
erence the results obtained by the comparison with static mode positioning, especially
if the processing is performed with scientific software (Bernese, GAMIT (GNSS at MIT,
Massachusetts Institute of Technology), GBLOCK (Global Kalman filter), GIPSY-OASIS
(GNSS-Inferred Positioning System and Orbit Analysis Simulation Software)) in which it is
possible the errors’ components modelling (final ephemeris, tropospheric, ionospheric).
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Based on results from similar tests (short baselines, 10–30 kilometres in length, observed
for a hour), it has been demonstrated that the commercial software packages performs
better than a scientific one (e.g., Bernese) [31,32].

However, in this study, the static observations are relatively short (about an hour)
and the static processing was processed with a commercial software; these conditions
are not able to guarantee the best performance of static positioning, since, as reported
by [20,31], the results of the processing can be different from each other (difference of a few
centimetres), in the three geodetic components, depending on the software used.

For these reasons, the best strategy, used by the authors of this work, established
the comparison between all different modes (NRTK, PPP, static) in order to provide a
congruence analysis of the results obtained with different approaches.

The paper is organized as follows. A description of the UNIPA GNSS CORS network,
the benchmark tests and a short introduction to the software involved for the analyses are
discussed in Section 2. A synopsis of the results is presented and discussed in Section 3,
and finally, concluding remarks and future applications are reported in Section 4.

2. Materials and Methods
2.1. UNIPA GNSS CORS Network

The UNIPA GNSS CORS network has been materialized in 2006 for scientific purposes
by University of Palermo [33]. It is made up of eight CORSs located in western Sicily with
inter-distances ranging between 22 and 80 km, equipped with Topcon NET G-3 GPS and
GLONASS enabled receivers.

Up to 2012, the Control Centre (CC) was at the Department of Engineering of Univer-
sity of Palermo and the GNSS − State Monitoring and Representation Technique (GNS-
MART) software by Geo++ was used to manage the CORS network and to produce the
NRTK corrections. From 2013, all reference stations were included in the NetGEO GNSS
CORS network, managed by Topcon Italy. The network provides daily RINEX data (30”),
hourly raw data (1”) and real-time GNSS data streams code, Nearest Station (hereinafter
NEA), VRS and FKP.

Preliminary, the coordinates of the reference stations were established in ITRF05 and
ETRF89 (epoch 1989.0) frames. Recently, six CORSs have been included in the Italian
GNSS dynamic network denominated Rete Dinamica Nazionale (RDN), that is a Regional
Reference Frame sub-commission for Europe (EUREF) European sub-network, aiming
to monitor the reference system variations [34]. The RDN network is computed in the
ETRF2000 reference frame (epoch 2008.0) using the Bernese 5.0 software; thus, the coordi-
nates of the UNIPA GNSS CORS network have been also calculated in this frame. Data
from UNIPA GNSS CORS network have been also included within a European regional in-
tegration of long-term national dense network solutions [35] for the positions and velocities
of more than 3000 stations.

In the last few years, the UNIPA GNSS CORS network has been involved for scientific
applications in different fields, including the electromagnetic pollution monitoring via a
GPS-GIS integrated system [36], the trajectories calculation of Mobile Mapping System
(MMS) [37,38], the dams monitoring with integrated InSAR and GNSS techniques [39,40],
the geodetic measurements of the stalactite elevation in geological analyses [41], the use
of unmanned aerial vehicles for soil moisture characterization [42], the positioning and
guidance of agricultural machines via GNSS [43], the monitoring of active faulting, with
integrated geodetic and InSAR techniques [44,45].

2.2. Static, NRTK Survey and Software Processing

In the last years, several projects were carried out to evaluate the performance of the
UNIPA GNSS CORS network using several GPS reference benchmarks. These reference
benchmarks have been also used for our tests since they have good-excellent sky visibility
and therefore were suitable for GPS-GLONASS observations. In order to use permanently
materialized points, easily reachable and detectable without specific arrangements, the
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GNSS reference benchmarks have been chosen among the points belonging to the national
and local static GNSS networks in Sicily. Fourteen of those belong to the national static
GNSS network (IGM95 network), and fifty-seven to the local GNSS network. The IGM95
network was developed by Italian Military Geographic Institute (IGM) in the nineties using
differential techniques and it was calculated in the European ETRS89 system, using the
EUREF points available in the country [46]. The network is connected with the levelling
geodetic networks and it is made up of 3000 distributed points (177 are located in Sicily),
approximately distant 20 km with a Root-Mean-Square Error (RMSE) of ±5 cm. The local
static GNSS regional network in Sicily was mainly developed for technical applications
and it is made up of 523 points, spaced 7–9 km from each other. Benchmarks have been
stabilized in various modes, including concrete pier with aluminum plate, stainless steel,
stainless steel mast, and roof mounted on buildings, according to national regulations.

The coordinates of the local static GNSS network have been computed with observa-
tions of three independent bases in relation to the points of the IGM95 network. All these
points are distributed on the area covered by the UNIPA GNSS CORS network and they
have been used for the tests of this work (Figure 1); in addition, some new reference points
(fifteen points) were also materialized (mostly around the city of Palermo) and used for
the tests.
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and not detectable. Also, the computation of the VRS, FKP, and NEA solutions was not 
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Figure 1. UNIPA GNSS CORSs (black triangles) and GNSS reference benchmarks (IGM95 network
benchmarks, white triangles; Sicily network benchmarks, white squares; local benchmarks, white
circles); 20 km buffer circles from the GNSS CORS are shown. Reference system UTM-WGS84 33N
(ETRF2000-RDN2008)-EPSG6708.

Preliminarily, the coordinates of all GNSS reference benchmarks were computed in
ITRF05 frame performing the static survey with dual-frequency GNSS receivers Topcon
HiPer-Pro and Topcon GR3, equipped with controller FC-100 and FC-200. The occupation
time was about 60 min. We chose a one hour observations since distances from CORSs to
benchmarks were about 15–20 km at most (≈80% of the benchmarks), and according to
literature [31,32] this occupation time is sufficient at these distances. A maximum distance
of ≈30 Km characterizes an IGM95 benchmark. The elevation mask was set to 10 degrees,
the epoch/logging rate to 15 s, and the maximum PDOP was fixed to 6.
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The Topcon Tools package ver. 8.2.3 by Topcon Corporation was used for the static
measurements. The software allows the data processing from different devices such as
total stations, digital levels and GNSS receivers, and it is used in several technical-scientific
applications [47,48]. Topcon Tools uses the Modified Hopfield Model for the tropospheric
corrections [49]. The employed positioning mode was Code-based differential (“CODE
DIFF”), the time range and the cut-off angle were set to 15 s and 10 degrees, respectively.
Each GPS reference benchmark was measured with three independent baselines from the
nearest permanent stations. The precision of all GNSS reference benchmark coordinates in
ITRF05 frame is approximately few millimeters.

The survey was verified by recalculating the coordinates of the benchmark, belonging
to the IGM95 and local network in Sicily, in the ETRF89 frame (epoch 1989.0) and then the
results were compared with the official coordinates; the differences between the results
were in the same order of magnitude of the intrinsic accuracy of the geodetic networks.
For the NRTK processing was used GNSMART (GNSS − State Monitoring and Repre-
sentation Technique), developed by Geo++ GmbH (Garbsen, Germany). It is one of the
earliest systems guaranteeing an uniform coverage for the absolute positioning in real
time with centimeter precision [50]. The GNSS observations (GPS and GLONASS, in
this study) are stored in RTCM 2.3 (Radio Technical Commission for Maritime Services)
format, able to send the differential corrections (VRS, FKP, NEA). GNSMART uses the same
tropospheric delay model of Topcon Tools (the modified Hopfield model) [51], with two
scaling parameter/station, while regarding the ionospheric delay a single layer model with
polynomial, one bias per satellite (vertical delay), with 3D Gauss–Markov process (one
bias per receiver−satellite combination) [50]. Also used Meridiana ver. 2011, developed by
GEOPRO s.r.l. (Ancona, Italy), only for recording data from the different NRTK corrections
(VRS, FKP, NEA).

The NRTK positioning was carried out using a scientific protocol given by [52]. Specif-
ically, it is based on taking measurements during the weekdays from 8:00 am to 6:00 pm,
without a preliminary check about the geometric configuration of the satellites or the
stations efficiency and using dual-frequency geodetic GNSS receivers Topcon Hiper-Pro
(by Topcon Corporation, Japan) with controller FC-100. Two separate sessions are recorded
for each benchmark to obtain independent satellite configurations; for each session, four
independent tests (from the startup to the turning off of the instruments) for each network
solution, were analyzed (VRS, FKP, NEA). The results, recorded at the fifth epoch, were
accepted with both phase solution and ambiguity phase fixed, while the solution is consid-
ered rejected when the ambiguity phase fixing did not occur within five minutes since the
connection with the software (float or stand-alone solution).

Overall, 86 GNSS reference benchmarks have been measured in NRTK survey (out
over 100 benchmarks); indeed, some benchmarks during the investigation were damaged
and not detectable. Also, the computation of the VRS, FKP, and NEA solutions was
not possible for all points. The NEA solution has been only used for GNSS reference
benchmarks distant less than about 20 km from the nearest reference station. An evaluation
between valid tests, in which the NRTK corrections were obtained, and failed tests, in which
the receiver has not received the network corrections, showed that the VRS correction was
achieved for 72% of GNSS benchmarks, the FKP for 61% and the NEA for 59%. Totally, the
benchmarks used to detect the differential corrections were 61, 52, and 50 in VRS, FKP, and
NEA modes, respectively.

2.3. PPP Software Processing

The PPP processing was carried out using one-hour of static acquisitions and two
different packages, CSRS-PPP and RTKLib.

CSRS-PPP is an on-line service developed by Geodetic Survey Division of Natural
Resources Canada that allows an easy access to the Canadian Spatial Reference System
(CSRS). The CSRS-PPP allows GPS users in Canada (and abroad) to achieve accurate
positioning by submitting GPS observations from a single receiver over the Internet. It
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can process GNSS observations from single or dual-frequency GPS receivers operating in
static or kinematic mode. The aim to this software is the use of precise GNSS orbit and
clock products generated through international collaborations [53–55]. CSRS-PPP uses the
Estimate ZTD (Zenith Total Delay) model for tropospheric corrections, with the IGS final
(Repro1) orbits and Observations Frequency Mode Phase and Code Double Static in which
the elevation cut-off is 15◦.

Within this research, the raw data of all 86 benchmarks were sent by email; the
computation reports, by the software online, included the coordinates in the ITRF05 frame
and the associated plots.

RTKLib (version 2.4.2 p13) is an open source program package used for standard and
precise positioning with GNSS (Takasu and Yasuda 2009) [56]. This software is widely
used in scientific research for smartphone in static and kinematic modes [57], although the
performance of GPS-only, BeiDou Navigation Satellite System (BDS)-only, and combination
of BDS/GPS have been analyzed recently [58]. The NRTK corrections to the raw data
have been also applied to a GNSS CORS of the mass market receivers [59,60]. However,
the Pseudo-VRS technique incorporates high-precision GNSS positioning methods, for
instance in the developments of vehicle-to-vehicle communication [61]. The software was
used for static and kinematic surveys using GNSS multi-constellation receivers acquiring
GPS, GLONASS and Galileo Open Service (OS) [62]; more recently, its performance using
the GNSS multi-constellation PPP technique in static mode has been also analyzed [19].

The processing with RTKLib was performed by selecting the Ionospheric Iono-Free
LC model and the Estimate ZTD to correct the ionospheric and the tropospheric influence,
respectively; and the IGS (International GNSS Service) ephemerids to correct orbit and
clock, in accordance with a similar studies conduct recently by Angrisano et al. [19].
In particular:

- GDOP threshold is set to reject solutions with GDOP values higher than 30◦, and a
mask-angle equal to 10◦ is applied.

- No ambiguity resolution strategy is used, since the PPP-AR (Ambiguity Resolution)
function selectable in RTKLib software, was experimental at experimental at the
time of data processing, providing unstable and inaccurate solution with respect to
standard PPP according to the RTKLib manual. A detailed description of Ambiguity
Resolution, in particular using GLONASS, is reported in [63].

- The Phwindup (phase wind-up) option is set to correct the delay caused by the relative
rotation between the satellite and receiver antennas.

- Reject Ecl, is set to exclude the GPS Block IIA eclipsed satellites, that degrade the PPP
solutions due to unpredicted behavior of yaw-attitude.

- RAIM (Receiver Autonomous Integrity Monitoring Receiver Autonomous Integrity
Monitoring) FDE (Fault Detection Fault Detection and Exclusion) detect and exclude
possible outliers from the measurements set used for the solution computation.

- Sat PCV (phase center variations) and Rec PVC, were set to consider the phase center
variations of the satellite and the receiver, respectively. It requires the so-called
“igs14.atx” file, provided by the IGS (International GNSS Service), containing the
correction parameters of several types of antenna.

The Ionospheric Iono-Free model and the estimated zenith total delay (ZTD) option
were selected to correct the ionospheric and the tropospheric influence, respectively, while
through the IGS ephemerids we accounts for the orbit and clock corrections [19].

The Saastamoinen model [64] computes the tropospheric delay Tr using the following
expression (1):

Tr =
0.002277

cos(z)

[
p +

(
1255

T
+ 0.05

)
e− tan2(z)

]
(1)

where: p, is the total pressure; T, is the absolute temperature of the air; e, is the partial
pressure of water vapor; z, is the zenith angle.
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In the Saastamoinen model [64], a standard atmosphere is considered as a reference,
the geodetic height is approximated to the ellipsoidal height, and a humidity percentage is
fixed to 70%.

The model considers the troposphere as divided into two layers. The first layer, from
the earth surface to 10 km on it, has a constant descent rate of temperature of 6.5 ◦C km−1.
The second layer, from 10 to 70 km on the earth surface, has assumed having a constant
temperature value. Therefore, for atmospheric refraction integral, the function of refractive
index can be computed based on the zenith distance trigonometric functions and term wise
integration. In this way, the ZTD is expressed as (2)–(4):

ZTD = 0.002277
(P0 +

(
0.05 + 1255

P0+273.15

)
e0

f (ϕ, h)
(2)

e0 = rh·rh·6.11·10
7.5T0

T0+273.3 (3)

f (ϕ, Z) = 1− 0.00266 cos 2ϕ− 0.00028Z (4)

where P0, T0, and e0 are, respectively, the surface pressure, the surface temperature, and
the water vapor pressure at the surface level, rh is the relative humidity, f (ϕ, Z) is the
correction of gravity acceleration caused by the rotation of the earth, and ϕ and Z are the
point latitude and altitude, respectively.

The Estimate ZTD model computes the tropospheric delay starting from the expression
of the Saastamoinen model with the zenith angle and relative humidity equal to zero and
employing the NMF (Niell Mapping Function), based on receiver geographical coordinates
and measurement time [65]. The mapping function in terms of the elevation (El) and the
azimuth (Az) angles between the satellite and the receiver is expressed as:

M(El) = Mw(E){1 + cot(El)·(GN cos(El)·(GN cos(Az) + GE sin(Az ))} (5)

Tr,z = Mh(El)·ZH + M(El)(ZT − ZH) (6)

where, ZT accounts for the tropospheric zenith total delay that is estimated from the
extended Kalman filter together with the north (GN) and the east (GE) components of
the tropospheric gradient. ZH accounts for the tropospheric zenith hydro-static delay
computed using a tropospheric model, such as Saastamoinen, Hopfield [51], or modified
Hopfield models with the zenith angle and relative humidity equal to zero. Mh (El) and
Mw (El) are, respectively, the hydro-static and wet mapping-functions.

Niell [65] kept the basic form of the Herring (MTT model, [66]) mapping function
adding a height correction term and assuming that the elevation dependence is a function
of only geographical parameters (if we accept that, in a way, the day of the year is also a
constant and independent parameter) and proposed the function (7):

m(υ) =
1 + a

1+ b
1+c

sin(υ) + a
sin(υ)+ b

sin(υ)+c

+ ∆m(υ) (7)

The wet delay parameters a, b, c are given at tabular latitude ϕi 15◦, 30◦, 45◦, 60◦ and
75◦. The hydrostatic parameters ah, bh, and ch at time in UT days is calculated as (8):

ah(φi, t) = aavg(φi)− aamp (φi) cos
(

2π
t− T0

365.25

)
(8)

where aavg and aamp are given at tabular latitude ϕi 15◦, 30◦, 45◦, 60◦ and 75◦, and T0 is the
adopted phase, DOY 28 as described in [66]
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The height correction is given by (9) as a function of the coefficients ah, bh, and ch and
the orthometric height:

∆ m(υ) =
1

sin(υ)
−

1 + ah

1+
bh

1+ch

sin(υ) + ah

sin(υ)+
bh

sin(υ)+ch

× H (9)

2.4. Data Analysis

The aim of this work is to evaluate the congruence of different positioning solutions
obtained with alternative GNSS methodologies. The solutions’ congruence was assessed
by statistically analyzing the coordinate’s differences on selected benchmarks. The analysis
was performed by considering separately each coordinate component, North (N), East (E)
and Ellipsoidal Height (Z). The static results were compared to NRTK solutions, namely
VRS, FKP and NEA, and PPP solutions by CSRS and RTKLIB. The NRTK solutions were
compared to the two PPP solutions; in additional, the two PPP solutions (CSRS and
RTKLIB) were compared with each other. Totally, twelve different comparisons have been
carried out (Figure 2): Static vs. CSRS, Static vs. RTKLIB, CSRS vs. RTKLIB, CSRS vs. VRS,
CSRS vs. FKP, CSRS vs. NEA, RTKLIB vs. VRS, RTKLIB vs. FKP, RTKLIB vs. NEA, Static
vs. VRS; Static vs. FKP and finally Static vs. NEA.
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The procedure used for statistical analysis aimed to remove the extreme values (con-
sidered as possible outliers), if occurring. Indeed, some authors analyzed the statistical
distribution of GNSS errors [67] using a normal distribution as discussed and justified
by [68]. A normal distribution was fitted to the empirical frequency under the hypotheses
of equal mean and standard deviation. According to Specht [67], values exceeding 95.4%
in the cumulative frequency, corresponding to a span of ±2 standard deviations from the
mean, were considered possible outliers and removed from the comparison. Although it
can be considered a poorly conservative threshold [69], it allows dealing with relatively
small sets of observations. The normal distribution is considered separately from each
of the measured coordinates [67]. The correlation between coordinate components is ne-
glected in the univariate analysis, moreover multivariate analyses of outliers tend to reject
less data samples than univariate under the same confidence level [70]. Despite these
approximations, univariate analysis occurs in a relatively straightforward examination
with the identification of possible outliers [70].

Several statistical tests can be applied to examine the consistency of empirical dis-
tribution with the theoretical normal distribution, including the Anderson–Darling [71],
Cramér-von Mises [72], Kolmogorov–Smirnov [73], and Lilliefors [74] tests.

Two tests were selected being the most frequently applied to verify if the empirical
distribution of the solutions differences, once removed the possible outliers, follows a
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normal distribution, namely the Kolmogorov–Smirnov (KS) and the Anderson–Darling
(AD) tests. The KS test is a non-parametric method and it was used to assess whether
the empirical distribution frequency of the coordinates differences belongs to a reference
normal distribution (the null hypothesis, H0) against the alternative hypothesis (H1) that the
empirical distribution does not fit the theoretical distribution [75]. The null hypothesis was
evaluated for rejection at a significance level α, by comparing the KS value, resulting from
the test, with the critical value, KSC. As well as the two-sample KS test, the two-sample
AD test is used to test whether the two samples originate from the same distribution [76].
The AD test can be considered a modification of the KS test and it weighs more the tails
than the KS test does.

The mean values, µ, and the standard deviations, σ, of the coordinates differences, ∆N,
∆E and ∆h, were compared, as well, to the corresponding value prior removing extreme
values. Another two statistical indices, the sample skewness, S, and the kurtosis index,
K, [77], evaluated before and after extreme values removal, allowed assessing whether and
how much the empirical frequency distribution gets more symmetricity and mesokurticity.

After removing extreme values, the determination coefficient, r2, between the empiri-
cal frequency and the corresponding values of the fitted normal distribution, was used to
measure the strength of a linear relation between the corresponding values. All correlations
are classified according to Evans [78].

3. Results and Discussion

The first analysis aimed to check the range of variability of coordinates differences for
all pairs involved (Table 1). This analysis shows that the variability of the pairs involving
RTKLIB is always much higher than the other, as confirmed by the range always higher
than 500 mm, 1000 mm and 500 mm for N, E and h components. In the other cases the
range of variability is less than 400 mm, excluding the differences for h component in the
comparisons Static vs. CSRS and Static vs. RTKLIB, where the values are 531 mm and 594
mm, respectively. A suitable comparison of the results should require the removal of any
outliers, if occurring. So, as discussed in the previous section, assuming that the coordinates’
differences belong to a normal distribution, the extreme values can be considered possible
outliers and then removed. Some statistics descriptors of the ∆N, ∆E and ∆h algebraic
differences among different pairs of solutions were applied to discuss if and to what extent
different solutions lead to comparable results.

Table 1. Range of variability of the coordinate differences (min – max in mm).

Min
Max

(mm)

Static
CSRS

Static
RTKLIB

RTKLIB
CSRS

Static
VRS

Static
FKP

Static
NEA

CSRS
VRS

CSRS
FKP

CSRS
NEA

RTKLIB
VRS

RTKLIB
FKP

RTKLIB
NEA

∆N −50
100

−409
133

−107
116

−47
110

−60
36

−32
41

−78
105

−70
56

−75
54

−85
433

−209
585

−82
652

∆E −184
141

−606
462

−603
745

−148
190

−121
118

−149
78

−131
170

−106
122

−169
101

−492
580

−782
583

−697
653

∆h −185
346

−375
219

−402
298

−206
187

−137
173

−135
174

−130
203

−170
208

−120
210

−318
504

−166
1328

−245
480

The mean values µ of the coordinates differences, calculated before and after outliers
removal, were compared for the different cases (Figure 3). Once extreme values were
removed, it was observed that µ of ∆N, ∆E and ∆h increases while oppositely decreases
in other cases, depending on the values and the number of extreme values removed. As
already highlighted, in the analysis of the range of variability, the pairs involving RTKLIB
behave differently than the remaining pairs except for the comparison RTKLIB vs. CSRS
which shows similar values to the other cases. Specifically, µ for the RTKLIB vs. NRTK
(VRS, FPK and NEA) comparison was on average 85, 65 and 144 mm in the pre outliers
removal and 81, 93, and 146 in the post outliers removal, respectively, for of ∆N, ∆E, and ∆h,
while in the Static vs. RTKLIB comparison was −53, −52, and −83 mm in the pre outliers
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removal and −47, −40, and −68 in the post outliers removal. For the other observations
the mean values on average was 3, 8 and 51 mm in the pre outliers’ removal and 5, 11, and
59 mm in the post outliers removal respectively for ∆N, ∆E, and ∆h.
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Figure 3. Mean values, µ (mm), of: (a) ∆N; (b) ∆E; (c) ∆h differences, pre and post outliers’ removal (dashed and continuous
lines, respectively). Pairs involving static are here highlighted in grey and in figures hereinafter.

Also, for the standard deviation σ, a similar behavior can be observed. Generally,
σ are higher for the pairs involving RTKLIB (RTKLIB vs. NRTK and Static vs. RTKLIB)
compared to the remaining pairs, 119, 212, and 164 mm on average for ∆N, ∆E, and ∆h,
respectively, compared to the remaining pairs (25, 50, and 26 mm for ∆N, ∆E, and ∆h,
respectively) (Figure 4). The lowest σ were always obtained for Static vs. NRTK pairs (σ of
22, 44 and 73 mm, on the average in the pre outliers removal and of 18, 33, and 54 mm in
post outliers removal). As expected, σ is often reduced after removing the extreme values;
the reduction is more evident for ∆N and ∆h than for ∆E.
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The highest leptokurticity characterizes the Static vs. VRS for the ΔN component (K 
≈ 8.6), RTKLIB vs. CSRS for the ΔE component (K ≈ 10.9) and RTKLIB vs. FKP for the Δh 
component (K ≈ 7.8) before extremes removal (Figure 6, continuous lines). Once extreme 
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0.3, 4.7, and –0.1 for ΔN, ΔE and Δh, respectively). 

  

Figure 4. Standard deviation, σ (mm), of: (a) ∆N; (b) ∆E; (c) ∆h differences, pre and post outliers’ removal (dashed and
continuous lines, respectively).

The highest skewness characterizes the ∆N component of the Static vs. VRS and
Static vs. CSRS differences (S ≈ 1.54 and 0.78, Figure 5, panel a, continuous line) and
the ∆E component of the Static vs. VRS and Static vs. FKP differences (S ≈ 0.51 and
0.55). The extreme values removal generally reduces the asymmetry of the differences
frequency distribution (Figure 5), except for the ∆N component of Static vs. NEA and the
∆h component of CSRS vs. VRS, CSRS vs. FKP and Static vs. VRS. The reductions for
CSRS vs. Static, CSRS vs. NEA and Static vs. FKP were 57, 58 and 50%, respectively. Static
vs. NEA and Static vs. PPP (CSRS and RTKLIB) exhibited the lowest average skewness
(S ≈ 0.07 and 0.06, respectively) after the extreme values removal, while CSRS vs. FKP
showed the highest average skewness (S ≈ 0.58).
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values were removed (dashed lines), the abovementioned pairs loose leptokurticity (K ≈ 
0.3, 4.7, and –0.1 for ΔN, ΔE and Δh, respectively). 
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The highest leptokurticity characterizes the Static vs. VRS for the ∆N component
(K ≈ 8.6), RTKLIB vs. CSRS for the ∆E component (K ≈ 10.9) and RTKLIB vs. FKP for
the ∆h component (K ≈ 7.8) before extremes removal (Figure 6, continuous lines). Once
extreme values were removed (dashed lines), the abovementioned pairs loose leptokurticity
(K ≈ 0.3, 4.7, and –0.1 for ∆N, ∆E and ∆h, respectively).
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removing the extreme values, the normal distribution well describes the empirical 
distribution. At least, only the pairs Static vs. CSRS, RTKLIB vs. CSRS and CSRS vs. NEA 
exhibit moderate correlation for all components. Analyzing the ΔN differences, results 
shown that, CSRS vs. Static, RTKLIB vs. CSRS, CSRS vs. VRS and Static vs. VRS pairs 
exhibit very strong correlations (r2 = 0.81, 0.93, 0.74 and 0.67, respectively) (Table 2). 
Considering the ΔE differences, only, RTKLIB vs. CSRS exhibits the maximum value of r2 
(r2 = 1.00), while the Δh differences exhibit very strong correlation for the pairs RTKLIB 

Figure 6. Kurtosis, K: (a) ∆N; (b) ∆E; (c) ∆h differences, pre and post outliers’ removal (dashed and continuous lines,
respectively).

According to the KS test, the differences belong to a normal distribution at a signifi-
cance level α (Figure 7 panel a, α = 0.05) except for ∆E for the Static vs. FKP pair, and ∆N
for the Static vs. RTKLIB and RTKLIB vs. VRS pairs, where the null hypothesis is rejected
and the ratio KS/KSC is greater than unity (1.16, 1.31, and 1.14). The lowest values of
KS/KSC characterize the RTKLIB vs. CSRS pair (0.27, on the average). According to these
results, the AD test shows that the differences belong to a normal distribution (Figure 7
panel b, α = 0.05) excluding one more time ∆E in the Static vs. FKP pair, ∆N in the RTKLIB
vs. VRS and RTKLIB vs. NEA differences, and ∆Z in the Static vs. RTKLIB pair (AD/ADC
= 1.07, 2.28, 1.17, and 1.15, respectively). The lowest value of AD/ADC was achieved for
the CSRS vs. NEA differences (0.16 on the average). If the variables (e.g., ∆N, ∆E and
∆h) are normally distributed and independent, this implies they are “jointly normally
distributed”, i.e., their pairs must have multivariate normal distribution [79].
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Figure 7. Normality tests applied on the frequencies of: (a) ∆N; (b) ∆E and (c) ∆h. The ratio between KS and KSC based on
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The determination coefficients are used to corroborate the assumption that after remov-
ing the extreme values, the normal distribution well describes the empirical distribution.
At least, only the pairs Static vs. CSRS, RTKLIB vs. CSRS and CSRS vs. NEA exhibit
moderate correlation for all components. Analyzing the ∆N differences, results shown that,
CSRS vs. Static, RTKLIB vs. CSRS, CSRS vs. VRS and Static vs. VRS pairs exhibit very
strong correlations (r2 = 0.81, 0.93, 0.74 and 0.67, respectively) (Table 2). Considering the
∆E differences, only, RTKLIB vs. CSRS exhibits the maximum value of r2 (r2 = 1.00), while
the ∆h differences exhibit very strong correlation for the pairs RTKLIB vs. FKP, RTKLIB vs.
NEA, Static vs. VRS and Static vs. FKP (r2 = 0.64, 0.77, 0.69 and 0.85, respectively). Very
weak and weak correlations were removed from Table 2.

Table 2. Determination coefficient, r2, between empirical and normal frequencies of ∆N, ∆E and ∆h differences among
pairs of processing techniques (after extreme values removal): very strong correlations (r2 > 0.62) are highlighted in bold,
correlations assumed as strong are in the following range (0.35 < r2 ≤ 0.62), moderate correlations (0.16 ≤ r2 < 0.35) are
reported in grey, very weak and weak correlations (r2 < 0.15) were removed.

R2 Static
CSRS

Static
RTKLIB

RTKLI
CSRS

Static
VRS

Static
FKP

Static
NEA

CSRS
VRS

CSRS
FKP

CSRS
NEA

RTKLIB
VRS

RTKLIB
FKP

RTKLIB
NEA

∆N 0.81 0.93 0.67 0.30 0.74 0.45
∆E 0.57 0.30 1.00 0.39 0.20 0.29 0.23 0.58 0.34 0.21
∆h 0.43 0.21 0.59 0.69 0.84 0.23 0.54 0.64 0.77

Finally, once removing extreme values, a comparison between the best fitting normal
distribution and the empirical distribution frequencies has been performed for the Static vs.
VRS, CSRS vs. VRS and CSRS vs. Static coordinates differences (Figure 8). The minima and
maxima x-axis values change for different pairs according to the corresponding range of
variability. From the comparison, the best fitting seems to characterize the ∆N differences.
The maximum range of variability is ~ ± 80 mm (CSRS vs. VRS, panel b). The distributions
of the empirical frequencies of ∆E CSRS vs. Static and ∆h CSRS vs. VRS show many gaps,
while those of ∆E Static vs. VRS and ∆h CSRS vs. Static highlight a secondary peak. By
visually interpreting the empirical frequency distributions of the ∆N and ∆E differences:
the ∆N Static vs. VRS, CSRS vs. VRS and CSRS vs. Static well represent the bell shape.
Meanwhile, ∆E Static vs. VRS, Static vs. CSRS relatively well represent the bell shape.
Considering the altimetric component ∆h, only the Static vs. VRS rather well represents
the bell shape.
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Figure 8. Empirical distribution frequency after extreme values removal (empty bars), best fitting normal distribution 
(black lines) and cumulative frequency of the empirical frequency before removing the extreme values (dashed line). ΔN, 
ΔE and Δh differences (mm) are represented in the upper, central and lower graphs, respectively. Static vs. VRS, CSRS vs. 
VRS and CSRS vs. Static differences are represented in the left, central and right graphs, respectively, the minimum and 
maximum x-axis values change for the different pairs according to the corresponding range of variability: (a) ΔN Static-VRS 
(mm), (b) ΔN CSRS-VRS (mm), (c) ΔN CSRS-Static (mm), (d) ΔE Static-VRS (mm), (e) ΔE CSRS-VRS (mm), (f) ΔE CSRS-Static (mm), 
(g) Δh Static-VRS (mm), (h) Δh CSRS-VRS (mm), (i) Δh CSRS-Static (mm) 

The range of variability of the 5 pairs involving RTKLIB remains higher than that of 
the remaining 7 pairs (Table 3), even after removing the extreme values for all 
computation schemes. The average ΔN, ΔE and Δh indeed were 374, 791, and 540 mm 
being reduced of ~ 102 mm, while they were slightly reduced for the latter seven being 76, 
170, and 232 mm. The lowest range of variability min–max pre extremes value removal 
were obtained for Static vs. NRTK pairs (109, 268, and 337 mm for ΔN, ΔE, and Δh, on the 
average), and it remains the lowest also after removal (70, 135, and 190 mm). 

Table 3. Range of variability minima – maxima values, min – max (mm), for ΔN, ΔE and Δh 
differences, post removal of the extreme values. 

min 
max 

(mm) 

Static 

CSRS 

Static 

RTKLIB 

RTKLIB 

CSRS 

Static 

VRS 

Static 

FKP 

Static 

NEA 

CSRS 

VRS 

CSRS 

FKP 

CSRS 

NEA 

RTKLIB 

VRS 

RTKLIB 

FKP 

RTKLIB 

NEA 

ΔN 
−24 

54 

−353 

46 

−42 

67 

−38 

40 

−52 

29 

−20 

31 

−23 

52 

−33 

56 

−37 

43 

−42 

355 

−124 

374 

−36 

431 

ΔE 
−92  

141 

−418 

258 

−201 

341 

−43 

118 

−82 

34 

−51 

78 

−106 

151 

−32 

122 

−42 

101 

−173 

580 

−481 

583 

−269 

653 

Δh 
−33 

212 

−204 

219 

−120 

298 

−61 

69 

−44 

173 

−49 

174 

−69 

203 

−23 

208 

−96 

210 

−76 

504 

−166 

511 

−120 

480 

4. Conclusions 
As a result of this work, the coordinates retrieved with different GNSS approaches 

(static, NRTK, and PPP) were compared. It is commonly accepted that the static survey 
guarantees the best results in terms of precision, increasing the occupation time, but it 
needs a long time to post-process data. The NRTK technique allows the measurements of 
coordinates in real-time, but strictly depends on the network configuration and the active 
reference stations during the processing. Finally, the PPP approach is automatized with 
online software, but needs the implementation of ultra-precise ephemerides and post-
processing elaboration. 

Some statistics descriptors of the north, east, and ellipsoidal height differences 
among different pairs of solutions were analyzed, among the Static, NRTK, and PPP 
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Figure 8. Empirical distribution frequency after extreme values removal (empty bars), best fitting normal distribution (black
lines) and cumulative frequency of the empirical frequency before removing the extreme values (dashed line). ∆N, ∆E
and ∆h differences (mm) are represented in the upper, central and lower graphs, respectively. Static vs. VRS, CSRS vs.
VRS and CSRS vs. Static differences are represented in the left, central and right graphs, respectively, the minimum and
maximum x-axis values change for the different pairs according to the corresponding range of variability: (a) ∆N Static-VRS

(mm), (b) ∆N CSRS-VRS (mm), (c) ∆N CSRS-Static (mm), (d) ∆E Static-VRS (mm), (e) ∆E CSRS-VRS (mm), (f) ∆E CSRS-Static
(mm), (g) ∆h Static-VRS (mm), (h) ∆h CSRS-VRS (mm), (i) ∆h CSRS-Static (mm)

The range of variability of the 5 pairs involving RTKLIB remains higher than that of
the remaining 7 pairs (Table 3), even after removing the extreme values for all computation
schemes. The average ∆N, ∆E and ∆h indeed were 374, 791, and 540 mm being reduced of
~102 mm, while they were slightly reduced for the latter seven being 76, 170, and 232 mm.
The lowest range of variability min–max pre extremes value removal were obtained for
Static vs. NRTK pairs (109, 268, and 337 mm for ∆N, ∆E, and ∆h, on the average), and it
remains the lowest also after removal (70, 135, and 190 mm).
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Table 3. Range of variability minima – maxima values, min – max (mm), for ∆N, ∆E and ∆h differences, post removal of the
extreme values.

Min
Max

(mm)

Static
CSRS

Static
RTKLIB

RTKLIB
CSRS

Static
VRS

Static
FKP

Static
NEA

CSRS
VRS

CSRS
FKP

CSRS
NEA

RTKLIB
VRS

RTKLIB
FKP

RTKLIB
NEA

∆N −24
54

−353
46

−42
67

−38
40

−52
29

−20
31

−23
52

−33
56

−37
43

−42
355

−124
374

−36
431

∆E −92
141

−418
258

−201
341

−43
118

−82
34

−51
78

−106
151

−32
122

−42
101

−173
580

−481
583

−269
653

∆h −33
212

−204
219

−120
298

−61
69

−44
173

−49
174

−69
203

−23
208

−96
210

−76
504

−166
511

−120
480

4. Conclusions

As a result of this work, the coordinates retrieved with different GNSS approaches
(static, NRTK, and PPP) were compared. It is commonly accepted that the static survey
guarantees the best results in terms of precision, increasing the occupation time, but it
needs a long time to post-process data. The NRTK technique allows the measurements
of coordinates in real-time, but strictly depends on the network configuration and the
active reference stations during the processing. Finally, the PPP approach is automatized
with online software, but needs the implementation of ultra-precise ephemerides and
post-processing elaboration.

Some statistics descriptors of the north, east, and ellipsoidal height differences among
different pairs of solutions were analyzed, among the Static, NRTK, and PPP methodologies.

Among the twelve pairs of evaluated solutions, those five involving RTKLIB exhibited
a different behavior compared to the others and they often did not belong to a normal
distribution.

Once extreme values were removed, the Static vs. NRTK pair showed the lowest
range of variability and the lowest standard deviation (≈−70, 135, 190 mm and 18, 33, and
54 mm on average, respectively, for the ∆N, ∆E and ∆h).

The analysis of Kurtosis highlighted that, on the average, the frequency distribution
loses leptokurticity tending to the normal distribution (particularly the CSRS vs. Static,
CSRS vs. VRS, RTKLIB vs. NEA and Static vs. FKP pairs). The standard deviation of the
differences for the N, E and h components of pairs which did not involve RTKLIB was
~20, ~40, and ~70 mm, respectively, while the standard deviation of the differences for the
∆N, ∆E, and ∆h components of pairs involving RTKLIB was ~100, ~170, and ~120 mm,
respectively.

Two statistic tests, the Kolmogorov–Smirnov and the Anderson–Darling, were im-
plemented to verify if the frequency distribution of the differences belonged to a normal
distribution. Both showed that excluding the ∆E in the Static vs. FKP comparison, and
some pairs including RTKLIB (Static vs. RTKLIB for ∆N and ∆h, Static vs. VRS and Static
vs. NEA for N), for which the null hypothesis is rejected, mostly the distribution frequency
of the differences among pairs belonged to a normal distribution, at a significance threshold
of 0.05. In particular, according to the Kolmogorov–Smirnov test, the best values were
found for the differences CSRS vs. Static and CSRS vs. NEA, while in agreement with the
Anderson–Darling test, the best values were found for Static vs. NEA and once again for
PPP vs. NEA differences.

The coefficient of determination between the empirical and the theoretical frequency
distributions provided a measure of how well observed frequencies were replicated by the
theoretical frequencies. The analysis highlighted that CSRS vs. Static, RTKLIB vs. CSRS
and Static vs. VRS exhibited the highest correlations (~0.6 – 0.9) while Static vs. FKP, Static
vs. NEA, CSRS vs. VRS, and CSRS vs. FKP exhibited weak correlations.

Need to be remarked that the aim of this work was to analyze the congruence of the
solutions obtained with different methodologies (Static, PPP and NRTK), nor to judge
software packages. Although the lowest congruencies seem characterizing the pairs in-
volving RTKLIB, this result should not be considered a criticism on the performance of this

44



Remote Sens. 2021, 13, 1406

well-known open access program, which undoubtedly is one among of the most useful
PPP processing software available, given its very straightforward applicability, considering
also that our analysis is limited to one hour of data.

With extended observation times, the congruence among different solutions could
be enhanced. Moreover, enlarging the number of benchmarks, the accuracy of the NRTK
positioning compared to PPP and Static should be improved, in turn affecting related
congruencies.

Other analyses are required to further investigate the performances of different solu-
tions and to test other methods for GNSS network solutions (such as the Master Auxiliary
Concepts, MAC). In addition, the recent development of Galileo and Beidou-3 constella-
tions could give more indications than those obtained in this study with only GPS and
GLONASS constellations.

In the last few years, several applications have been developed employing the IGS
stations in static mode. Specifically, the available online services and packages include
the Automatic Precise Positioning Service (APPS), GPS Analysis and Positioning Software,
the Canadian Spatial Reference System precise point positioning service, and the Magic-
PPP [17,23–25], or the comparative analysis of ZTD-estimates obtained with six different
software packages (JPL’s APPS [80], CSRS-PPP, MagicGNSS [81], European Space Agency
and Barcelona’s tech GNSSLab Tool (gLAB) [82], RTKLIB, the University of Nottingham’s
POINT) respect the ZTD-estimates obtained from the IGS tropospheric product [17,23–25].
Moreover, these applications and services could be engaged to analyze the PPP positioning
compared to other solutions.NRTK, PPP, or Static, that is the question!
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Abbreviations

Acronym Meaning
AD Anderson-Darling Test
APS Automatic Precise Positioning Service
AR Ambiguity Resolution
CC Control Centre
CODE DIFF Code-based differential
CORS Continuously Operating Reference Station
COSMIC Constellation Observing System for Meteorology, Ionosphere, and Climate
CSRS Canadian Spatial Reference System
DEM Digital Elevation Model
DInSAR Differential InSAR
DOY Day of Year
ETRF European Terrestrial Reference System
EUREF Regional Reference Frame sub-commission for Europe
FKP Flächen-Korrektur-Parameter
FTP File Transfer Protocol
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GAMIT GNSS at MIT, Massachusetts Institute of Technology
GBLOCK Global Kalman filter
GIPSY-OASIS GNSS-Inferred Positioning System and Orbit Analysis Simulation Software
GLONASS GLObal NAvigation Satellite System
GNSMART GNSS − State Monitoring And Representation Technique
GNSS Global Navigation Satellite System
GPS Global Positioning System
InSAR Interferometric SAR
IGM Istituto Geografico Militare
IGS International GNSS Service
ITRF International Terrestrial Reference System
KS Kolmogorov-Smirnov Test
MAC Master Auxiliary Concepts
MRS Multi Reference Station
MMS Mobile Mapping System
NEA Nearest
NMF Niell Mapping Function
NRTK Network-based Real Time Kinematic
PCV Phase Center Variations
PTEC Plasmaspheric Total Electron Content
PPP Precise Point Positioning
RAIM FDE Receiver Autonomous Integrity Monitoring Fault Detection and Exclusion
RDN Rete Dinamica Nazionale
RTCM Radio Technical Commission for Maritime Services
VRS Virtual Reference Station
WGS84 World Geodetic System 1984
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Abstract: The conversion between the line-of-sight slant total electron content (STEC) and the vertical
total electron content (VTEC) depends on the mapping function (MF) under the widely used thin
layer ionospheric model. The thin layer ionospheric height (TLIH) is an essential parameter of the
MF, which affects the accuracy of the conversion between the STEC and VTEC. Due to the influence
of temporal and spatial variations of the ionosphere, the optimal TLIH is not constant over the globe,
particularly in the polar regions. In this paper, a new method for determining the optimal TLIH
is proposed, which compares the mapping function values (MFVs) from the MF at different given
TLIHs with the “truth” mapping values from the UQRG global ionospheric maps (GIMs) and the
differential TEC (dSTEC) method, namely the dSTEC- and GIM-based thin layer ionospheric height
(dG-TLIH) techniques. The optimal TLIH is determined using the dG-TLIH method based on GNSS
data over the Antarctic and Arctic. Furthermore, we analyze the relationship between the optimal
TLIH derived from the dG-TLIH method and the height of maximum density of the F2 layer (hmF2)
based on COSMIC data in the polar regions. According to the dG-TLIH method, the optimal TLIH is
mainly distributed between 370 and 500 km over the Arctic and between 400 and 500 km over the
Antarctic in a solar cycle. In the Arctic, the correlation coefficient between the hmF2 and optimal
TLIH is 0.7, and the deviation between them is 162 km. Meanwhile, in the Antarctic, the correlation
coefficient is 0.60, with a phase lag of ~3 months, with the hmF2 leading the optimal TLIH, and the
deviation between them is 177 km.

Keywords: thin layer ionospheric height (TLIH); mapping function; dG-TLIH technique; global
navigation satellite system (GNSS); height of maximum density of the F2 layer (hmF2)

1. Introduction

The ionosphere is an important part of the solar-terrestrial space environment, and it
is closely related to human production and life. Due to the influence of free electrons in the
ionosphere, global navigation satellite system (GNSS) signals are affected by the reflection,
refraction, and delay of the ionosphere [1–3]. In order to improve the correction accuracy
of ionospheric error for single-frequency users, it is necessary to obtain the temporal and
spatial distribution of the ionospheric total electron content (TEC) [4].
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Most of the ionospheric correction information broadcasted by GNSS and their aug-
mentation systems (such as WAAS and EGNOS) provides users with the vertical TEC
(VTEC) based on two-dimensional ionospheric models [5–7]. GNSS users need to convert
the VTEC to slant TEC (STEC) on the satellite-to-receiver line-of-sight (LOS) path, under
the thin layer ionospheric model (TLIM) [7]. The conversion between VTEC and STEC is
performed through a mapping function (MF) related to satellite elevation and thin layer
ionospheric height (TLIH).

In order to realize the conversion between STEC and VTEC, the ionosphere is assumed
to be an infinitely thin fixed-height layer. The intersection of the straight line from the
satellite to the receiver and the thin layer is called the ionosphere piercing point (IPP) [7].
The STEC at the IPP represents the ionospheric TEC in the LOS path from the satellite to
the receiver. Two-dimensional ionospheric models can be used to calculate the VTEC at the
IPP. Then, the thin layer ionospheric model (TLIM) assumes a sample vertical gradient of
ionospheric electron density, typically for ground-based receivers [8–10]. Nava et al. [11]
detected the influence of electron density gradients for the thin layer model in the Amer-
ican sector using the coinciding pierce point (CPP) technique. In the calm period of the
ionosphere, the TLIM can successfully simulate VTEC in the middle latitudes. However, in
low-latitude regions or in the case of ionospheric storms, the TLIM can produce ionospheric
mapping errors (IMEs) of up to dozens of TEC units (TECU) [12–14]. In order to reduce the
impact of IMEs, many scholars have detected the optimal TLIH under different temporal
and spatial conditions [11,15–17].

The TLIH is an important parameter of the mapping function, and it directly affects
the conversion accuracy between STEC and VTEC [11]. It is usually selected at a ground
height of between 350 km and 450 km [4,18]. Klobuchar [4] suggested that the global
positioning system (GPS) broadcast ionospheric model uses a TLIH of 350 km. Wide-
area augmentation systems also establish ionospheric TEC grid models with a TLIH of
350 km [19]. The global ionosphere map (GIM) products provided by the International
GNSS Service (IGS) Ionospheric Analysis Center use a TLIH of 450 km [18,20,21]. How-
ever, in comparison with the Chapman profile mapping function, the mapping function
value based on a TLIH of 428.8 km is the closest to the true value on the global scale [7].
Li et al. [17] determined the optimized TLIH using combined IGS global ionospheric maps
over China. Birch et al. [15] determined the TLIH by comparing the TEC from a pair of
satellites observed simultaneously along slant and vertical paths over a ground station.
However, due to the limitations of satellite orbit inclination and the accuracy of the GIM
model [22], the aforementioned methods are not applicable in the polar regions. In addition,
the height of maximum density of the F2 layer (hmF2) has also been used to model the
ionospheric TEC, and it is superior to the constant TLIH [23,24].

The polar regions, namely the Arctic and the Antarctic, are the locations of the geo-
graphical and geomagnetic poles. The magnetic field lines over the polar caps penetrate
the Earth or extend outward to connect with the interplanetary magnetic field, and the
high-energy particles are mapped into the high-latitude ionosphere along magnetic field
lines [25]. The polar ionosphere is controlled by the solar wind and the interplanetary
magnetic field; meanwhile, it is coupled with the magnetosphere and thermosphere [26,27].
Many factors cause the complex characteristics of the ionosphere in the polar regions [28].
Moreover, the large-scale convection of the ionosphere in the polar regions also affects the
ionospheric electron density [29]. The temporal and spatial variations of the ionosphere
in the polar regions is obviously different from those at middle and low latitudes. How-
ever, there are still some problems that have not been systematically investigated over the
Antarctic and Arctic, for example, whether the most widely used TLIH of 350–450 km is
valid, and how to choose the range of optimal TLIH values for TEC conversion.

This paper presents a new method for detecting the optimal TLIH based on the
dSTEC (differential STEC) measurements and UQRG (UPC quarter-of-an-hour rapid GIM)
GIMs [6,30]. Meanwhile, we analyzed the reference range of the optimal TLIH values
during almost one and a half solar cycles from 2003 to 2018 over the Antarctic and Arctic
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to mitigate ionospheric delay errors, using ionospheric modeling under the TLIM based
on the new method, and the relationships between the optimal TLIH and the hmF2 were
analyzed. To provide a detailed analysis of the variations of the optimal TLIH during a solar
cycle, Constellation Observing System for Meteorology, ionosphere, climate (COSMIC),
and GNSS data are used in this paper.

2. Methods and Data
2.1. The CPP Method

The conversion between VTEC and STEC is given by a mapping function related to
satellite elevation and the TLIH, as shown in Equation (1).

m f (E) =
STEC
VTEC

∼= 1
cos z

=
1√

1− (R cos(E)/(R + H))2
(1)

where m f (•) denotes the mapping function, R is the geocentric distance of the receiver
antenna, H is the thin layer ionospheric height, z is the satellite zenith distances at the IPP,
and E is the satellite elevation at the observation point receiver antenna phase center (see
Figure 1).

Figure 1. Geometry for estimating the ionospheric mapping errors (IMEs) [16].

The CPP method determines the optimal TLIH by analyzing the IMEs based on all
pairs of CPP for a given epoch [11]. As illustrated in Figure 1, for practical purposes, if two
pierce points, IPP1 and IPP2, satisfy Equation (2), they are considered to be a “coinciding”
pierce point: { |ϕ1 − ϕ2| < 0.2◦

|λ1/ cos(ϕ1)− λ2/ cos(ϕ2)| < 0.2◦
(2)

where (ϕ1, λ1) and (ϕ2, λ2) are the geomagnetic latitude and longitude of ionospheric IPP1
and IPP2, and the unit is degrees.

According to the thin layer approximation for the ionosphere, the converted VTEC
values at IPP1 and IPP2 should be equivalent. However, due to the strong gradients of
ionospheric electron density, conversion between the STEC and VTEC using the mapping
function could result in TEC conversion errors related to the TLIH. The difference between
the two converted VTEC values at IPP1 and IPP2 is defined as the IMEs, as shown in
Equation (3). The optimalTLIH is defined as the one that minimizes the slant-to-vertical
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TEC conversion errors. In order to obtain enough CPP ionospheric TEC, dense GNSS
monitoring stations are required to use this method.

∆VTEC = |VTEC1 −VTEC2| =
∣∣∣∣

STEC1

m f (Z1)
− STEC2

m f (Z2)

∣∣∣∣ (3)

The STEC is derived from the GPS dual-frequency pseudo-range and carrier–phase
measurements based on carrier-to-code leveling methods [7]. In addition, the differential
code biases (DCB) products provided by the Center for Orbit Determination in Europe [31]
were adopted to eliminate the GPS satellite DCBs. The receiver DCBs are estimated in
conjunction with ionospheric model parameters using the generalized triangular series
function [32].

2.2. The dG-TLIH Method

To overcome the limitations of the existing methods used in the polar regions, a new
approach, based on the UQRG GIMs and dSTEC method [6], is proposed for optimal TLIH
determination.

The GNSS dual-frequency carrier–phase observation equation can be expressed as follows:

φs
r,k(t) = ρs

r(t) + c(δtr(t)− δts(t))− κkδIs
r,1(t) + δTs

r (t) + c(γs
k + γr,k) + ϑk(t) + λk Ns

r,k(t) + εφ (4)

where s, r, k denote the satellite PRN, receiver, and frequency, respectively; φs
r,k represents

the carrier–phase measurement at frequency fk; ρs
r is the geometric range from satellite s

to receiver r; c is the speed of light in a vacuum; δtr and δts are the receiver and satellite

clock errors; κk =
f 2
1

f 2
k

is a constant factor; δIs
r,1 = 40.3STECs

r
f 2
1

denotes the ionospheric delays at

frequency f1; δTs
r denotes the tropospheric delays; γs

k and γr,k are the satellite and receiver–
phase instrumental delays; ϑk is the carrier–phase windup and is considered corrected; λk
denotes the wavelength at frequency fk; Ns

r,k is the carrier–phase ambiguity; and εφ is the
noise and multipath effect of carrier–phase measurements.

According to Equation (4), the geometry-free combination of the carrier phase can be
calculated as follows:

{
φs

r,GF(t) = φs
r,1(t)− φs

r,2(t) = υ · STECs
r(t) + Ñs

r + εφGF

Ñs
r = (λ1Ñs

r,1 − λ2Ñs
r,2) + c(γr,1 − γr,2) + c(γs

1 − γs
2)

(5)

where υ = 40.3× 1016 × ( f−2
2 − f−2

1 ) is the conversion factor between the ionospheric
delay (δIs

r,1) and the ionospheric TEC (STECs
r ). Along a phase-continuous satellite-receiver

arc, as shown in Figure 2, there is an observation time (tEmax ) with the maximum elevation.
In theory, an observation value with higher elevation has lower errors, due to the much
lower relevance of the mapping function. Based on Equation (5), in a continuous satellite–
receiver arc of measurements, the difference in the given φs

r,GF(t) and the φs
r,GF(tEmax) can

be expressed as:

∆S(t) = φs
r,GF(t)− φs

r,GF(tEmax) = υ(STECs
r(t)− STECs

r(tEmax)) (6)

where the definitions of the variables in Equation (6) are the same as in Equation (5).
According to Equation (6), the amount of STEC change between the given time t and

the time tEmax can be expressed as:

dSTEC(t) =
1
υ

∆S(t) = STEC(t)− STEC(tEmax) (7)

where the definitions of the variables in Equation (7) are the same as that in Equation (6).
Since the dSTEC is calculated from carrier–phase observations, its accuracy is less than
0.1 TECU.
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According to Equation (7), the STEC at the given time t can be expressed as Equation (8)
for each given pair of satellites and receivers, and for a common arc of measurements.

STEC(t) = STEC(tEmax ) + dSTEC(t) (8)

Indeed, the “true” mapping value at the given time t can be expressed as:

MFT(t) =
STEC(t)
VTEC(t)

=
VTEC(tEmax ) ·m f (Emax) + dSTEC(t)

VTEC(t)
(9)

where VTEC(tEmax ) and VTEC(t) are the vertical TEC at the maximum elevation and time
t, respectively, calculated using UQRG–GIM; and m f (Emax) is the mapping function value,
calculated by Equation (1) at the maximum elevation. As can be seen from the equation,
the “true” mapping value is independent of the TLIH.

Figure 2. Schematic diagram of dSTEC method.

The mapping function error indicator (σH) at a given TLIH can be expressed as

σH =

√
1
n

n

∑
i=1

(MFT(ti)−m fH(Eti ))
2 (10)

where n is the total number of samples; MFT(ti) denotes the mapping value calculated
by Equation (9) at time ti; Eti is the satellite elevation; and m fH(·) denotes the mapping
function with the TLIH of H.

According to Equation (10), the indicator σH at different TLIHs can be calculated, and
then the TLIH corresponding to the minimum σH can be selected as the optimal TLIH.
According to previous studies, it has been found that when the elevation angle is increased
to approximately 40◦, the mapping errors caused by ionospheric gradients can be ignored.
Then, the STEC calculated by Equation (8) is not affected by the ionospheric gradient.
Therefore, for the present study, only a continuous satellite–receiver arc with a time length
of more than 2 h and a maximum elevation angle greater than 50◦ were used.

In this paper, only the STEC at the maximum elevation angle in the continuous arc
segment is calculated using the GIM model and the mapping function, to reduce the
influence of the ionospheric gradients. Therefore, the reliability of this method depends on
the accuracy of the GIM model used. In this study, the VTEC value was calculated by the
UQRG–GIM model, which is provided by UPC, one of the IGS Ionosphere Working Group
members. According to the comparison with the VTEC altimeter and globally distributed
dSTEC GPS data, the RMS errors of the UQRG–GIM model are 2.0 TECU and 0.5 TECU,
respectively [6]. In comparison with other GIM models, UQRG is the most accurate, and it
has been used to detect ionospheric events in the polar regions [30].
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2.3. Observation Data

In order to investigate the variation of optimal TLIH at high latitudes, datasets under
different spatio-temporal conditions were used, including GPS data for the 2003–2018
period and COSMIC data for the 2007–2016 period. The time series of solar activity index
F10.7 is shown in Figure 3.

Figure 3. Time series of the solar activity index F10.7 from 2003 to 2017.

GPS observations provided by the IGS and the Polar Earth Observing Network
(POLENET) were used in this study. Figure 4 shows the geographical locations of the
GPS ground stations over the Arctic and Antarctic, where the blue points are used for
mapping ionospheric total electron content (TEC), the red circles are used for detect-
ing the optimal thin layer ionospheric height (TLIH), and the green points are used for
evaluating the ionospheric TEC model. For the present study, the sampling rate of the
GPS measurements was set to 30 s. The maximum elevation of the GPS measurements
was greater than 60◦ at latitude 75◦. Before 2010, only a few stations with non-uniform
distribution were available in the Antarctic [28]. In addition, in order to show the relation-
ship between the IMEs and the TLIH, global GPS ground observation data from the IGS
(www.igs.org/station-resources/#site-guidelines, accessed date: 1 December 2019) were used.

Figure 4. Locations of GPS ground stations over the Arctic (left) and Antarctic (right), with the blue
points mapping ionospheric total electron content (TEC), the green points detecting the optimal thin
layer ionospheric height (TLIH), and the red circles evaluating the ionospheric TEC model.
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To better understand how the hmF2 varies depending on solar activity and season in
the polar regions, COSMIC data for the years 2007–2016, which were obtained from the
COSMIC Data Analysis and Archive Center (CDAAC, http://cosmic-io.cosmic.ucar.edu/
cdaac/index.html, accessed date: 1 January 2018), are also considered.

3. Results and Discussion
3.1. Optimal TLIH Determination Using CPP Method

The CPP technique requires a dense GNSS monitoring network; otherwise, it is
difficult to obtain GPS-derived TEC observations for the “coinciding” pierce points for
a given epoch. To investigate the effects of the electron density gradients on the global
ionosphere, GPS-derived STEC data for DOY 203, 300, and 355 in the year 2014 were used.
The STEC data were obtained using a GPS satellite tracked globally by 460 IGS ground
stations. The experiment was repeated for three different levels of solar activity: low
(F10.7 = 92.6 sfu), medium (F10.7 = 187.8 sfu), and high (F10.7 = 205.8 sfu), corresponding
to DOY 203, 300, and 355 in the year 2014, respectively. For the present study, the sampling
interval of the data was set to 30 s, and only the STEC data corresponding to the line-
of-sight of the receiver to the satellite with elevation angles between 15◦ and 40◦ at the
observation points were used.

Values were computed for all epochs available during the analysis period. Examples
of IMEs as a function of local time for different thin layer heights are illustrated in Figure 5.
It can be seen that the solar activity had a significant impact on the IMEs: during low solar
activity (DOY 203), most of the IMEs were between 0 and 8.0 TECU and there was no
significant fluctuation; during medium solar activity (DOY 300), most of the IMEs were
between 0 and 10 TECU, but the IMEs in the daytime were obviously greater than those in
the nighttime, and some error values were higher than 20 TECU; during high solar activity
(DOY 355), the IMEs increased significantly and large fluctuations appeared. In particular,
during local times 00:00–04:00 and 13:00–16:00, the maximum IME reached up to 80 TECU,
which was larger than at other times. Therefore, ignoring the ionospheric gradient when
using TLIM will introduce significant errors caused by the conversion between STEC and
VTEC. In addition, the standard deviations of the IMEs were smallest at the thin layer
height of 400 km, during the selected days.

According to previous studies [15,16,33], it has been found that IMEs are related to
latitude and TLIH. In the Northern Hemisphere, IMEs at high latitudes are greater than
those at middle latitudes [16]. Although the TEC at high latitudes is lower than that at
middle latitudes, due to the complex ionospheric variations in the polar regions, both the
ionospheric gradient and the IMEs are larger than those at middle latitudes. In order to
improve the conversion accuracy between the STEC and VTEC, it is necessary to deeply
study the variation of the thin layer ionospheric height in the polar regions. All IGS tracking
stations north of 55◦N were used in 30 s intervals. The mapping errors at the thin layer
ionospheric height ranging from 300 to 700 km in steps of 50 km were calculated, and
the thin layer height corresponding to the minimum error was selected as the optimal
TLIH. Figure 6 presents the time series and histograms of the optimal TLIH for the Arctic
region from 2003 to 2014, based on the CPP method. The optimal TLIH increased with the
increase in solar activity. As illustrated in Figure 6, the highest proportion of the optimal
TLIH was 400 km. The TLIH had a relatively low resolution of 50 km, mainly because
this method was too computationally intensive and time-consuming. Meanwhile, the low
resolution could introduce some errors, which could decrease the accuracy and reliability
of the results.

Although the use of the CPP method to determine the TLIH has been investigated by
many researchers in recent years, there are still some limitations with this method when it
is used in the polar regions. First, this method depends on the dense GNSS monitoring
network, but the available stations are few in the polar regions and their distributions
are uneven. Therefore, it is difficult to get enough evenly distributed GNSS-derived TEC
observations for the “coinciding” pierce points for a given epoch. Second, ionosphere
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activity is intense, as ionospheric scintillation and patches often occur in the polar regions,
both of which have greater effects on the statistical results of the CPP method.

Figure 5. IMEs as a function of local time for different layer heights. The data are related to the periods DOY 203, 300, and
355 in the year 2014.
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Figure 6. Time series (top) and histograms (bottom) of daily optimal TLIH for the Arctic region from
2003 to 2014 based on the CPP method.
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3.2. Optimal TLIH Determination Using dG-TLIH Method

Considering the limitations of the CPP method, a new approach for detecting the
optimal TLIH is proposed. Figure 7 shows the time series and histograms of the daily
optimal TLIH based on the dSTEC method and UQRG–GIM during a whole solar cycle:
days 001, 2002 to 223, 2018 in the polar regions. In this experiment, the resolution of
the TLIH was set to 1.0 km. As illustrated in Figure 7, the optimal TLIH typically varies
from 300 to 600 km, and the difference between the maximum and the minimum is about
100 km in one year in the polar regions. In addition, solar activity has a considerable
influence on the optimal TLIH, which is manifested as an upward optimal TLIH with
the increase in solar activity, and which is similar to the optimal TLIH from the CPP
method variation against solar activity shown in Figure 6. In the Arctic region, the optimal
TLIH is mainly distributed between 370 and 500 km. During high solar activity years
(2011–2014), the optimal TLIH mainly varies from 400 to 500 km, and during low solar
activity years (2007–2009), the optimal TLIH mainly ranges from 300 to 500 km. In the
Antarctic region, the distribution of the optimal TLIH has been more dispersed than that
in the Arctic, especially before 2010. This can be attributed to the fact that the GNSS
observation stations in the Antarctic are few and unevenly distributed, resulting in the low
accuracy of the GIM model in this region, which affects the reliability of the mapping value.
The time series of optimal TLIH can reflect its overall trend of change over the Antarctic. In
addition, the optimal TLIHs show different seasonal characteristics: in the Arctic, the peak
of optimal TLIH occurs from February to March and the valley appears from September to
October, while in the Antarctic, the peaks appear from April to May and the valley appears
from November to December. The seasonal variations of optimal TLIH are caused by
many factors. In the summer, with the increase of local solar activity, the ionization of the
middle and lower atmosphere increases, which leads to the downward movement of the
optimal TLIH. In the winter, with the weakening of the local solar activity, the ionization
of the middle and lower atmosphere weakens, resulting in the upward movement of the
optimal TLIH. In addition, the polar ionosphere is affected by the magnetosphere and the
interplanetary magnetic field, and the electron density also fluctuates.

Figure 7. Time series (left) and histograms (right) of daily optimal TLIH during a whole solar cycle:
days 001, 2002 to 223, 2018 over the Arctic (top) and Antarctic (bottom).
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To further analyze the variations of the optimal TLIH across different seasons and
solar activity conditions, we computed the “true” mapping values based on Equation (9)
and the mapping function values based on Equation (1) corresponding to the differ-
ent TLIHs. Figures 8 and 9 show the variation in the mapping values computed by
Equations (1) and (9) as a function of elevation angle for different TLIH under three differ-
ent solar activity conditions: low (2009), medium (2016), and high (2014), for the months of
March, June, September, and December over the Antarctic and Arctic, respectively. The
“true” mapping values vary considerably across different seasons and years. During a
low solar activity year (2009), there were significant differences in the mapping values
in the different seasons, which is consistent with the characteristic of the optimal TLIH
shown in Figure 7. When the elevation angles were greater than 50◦, the mapping values
tended to be uniform. When the elevation angles are the same, the largest mapping value
occurs in the spring and the smallest in the autumn in the Antarctic, as contrasted to the
Arctic region. In addition, we also find that the mapping function values corresponding to
different TLIHs were very different when the elevation angle was less than 15◦.

Figure 8. Variation of the mapping values computed by Equation (1) for different TLIHs and
Equation (9) against elevation angles for three different solar activity conditions: low (2009), medium
(2016), and high (2014), for the seasons of spring (September), summer (December), autumn (March),
and winter (June) over the Antarctic.

Table 1 shows the optimal TLIH and the corresponding mapping function error
indicator (σH) estimated by Equation (10) in March, June, September, and December during
low (2009), medium (2016), and high (2014) solar activity years in the polar regions. The
standard deviations at low solar activity are relatively larger than those at high solar
activity, which indicates that the mapping values fluctuate greatly during low solar activity
years. The difference between the maximum optimal TLIH in March and the minimum in
September is more than 120 km. There are two main causes for the large fluctuations of
the mapping values during low solar activity. First, the ionospheric TEC is smaller during
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low solar activity, and a slight change in the TEC will cause a great change in the mapping
value. Second, there are few available GNSS tracking stations in Antarctica (especially
before 2010) and the stations are unevenly distributed, resulting in low accuracy of the
GIM model, which affects the reliability of the mapping value. At both medium and high
solar activities, the variation of optimal TLIH in one year was only about 50 km. On the
same date, the optimal TLIH in the Antarctic was higher than in the Arctic.

Figure 9. Variation of the mapping values computed by Equation (1) for different TLIHs and
Equation (9) against elevation angles for three different solar activity conditions: low (2009), medium
(2016), and high (2014), for the months of spring (March), summer (June), autumn (September), and
winter (December) over the Arctic.

Table 1. The optimal TLIHs (km) and the corresponding standard deviations in March, June, Septem-
ber, and December of 2009, 2014, and 2016, respectively, over the Antarctic and Arctic.

Region Year
Month

March June September December

Antarctic
2009 (448, 0.08) (386, 0.16) (322, 0.06) (392, 0.02)
2016 (492, 0.03) (460, 0.02) (454, 0.03) (456, 0.03)
2014 (476, 0.02) (506, 0.04) (460, 0.02) (446, 0.01)

Arctic
2009 (424, 0.02) (342, 0.02) (300, 0.06) (322, 0.05)
2016 (466, 0.03) (414, 0.02) (410, 0.02) (412, 0.02)
2014 (480, 0.03) (452, 0.02) (428, 0.02) (460, 0.01)

The ionospheric gradient does not have a significant influence on the thin layer model
with an elevation angle above 50◦. Therefore, only cases with an elevation angle lower
than 56◦ were considered in the experiment. Figure 10 shows the variations of optimal
TLIH against the day of year (DOY) and elevation angle in low (2009), medium (2016), and
high (2014) solar activity years in the polar regions. It can be seen that the optimal TLIH
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increases with the increase in elevation angle. At low solar activity, the optimal TLIH with
elevation between 25◦ and 55◦ in the Antarctic was significantly higher than that in the
Arctic. The maximum value of the optimal TLIH in one year occurs in local winter, and the
minimum occurs in local summer.

Figure 10. Variations of the optimal thin layer ionospheric height (TLIH) for three different solar
activity conditions: low (2009), medium (2016), and high (2014), over the Antarctic (left) and Arctic
(right), and as a function of the day of year (DOY) and elevation angle.

In order to verify the reliability of the dG-TLIH method, we used three kinds of TLIH
(350 km, 450 km, and optimal TLIH from the dG-TLIH method) to build the ionosphere
TEC model in the polar regions. The spherical cap harmonic (SCH) model was used to
construct the ionospheric TEC model. The specific parameters of the SCH model are shown
in previous research [28]. The numerical experiment was repeated for three different levels
of solar activity: low (DOY 136, 2017), medium (DOY 127, 2014), and high (DOY 46, 2014),
as detailed in Table 2.

Table 2. The information of solar activity and optimal TLIH for the 3 days selected to verify the
reliability of the optimal TLIH over the Antarctic and Arctic.

Time F10.7 (sfu)
Optimal TLIH (km)

Antarctic Arctic

DOY 046, 2014 162.1 464 508
DOY 127, 2014 145.9 504 466
DOY 136, 2017 71.9 328 376

In addition, we compared the performances of the three models based on different
TLIHs for mapping the polar ionospheric TEC using dSTEC method [6]. Table 3 presents
the mapping bias and RMS errors of the three models for the Arctic and Antarctic regions,
respectively. The statistical results were based on the dSTEC measurements provided by
the verification stations shown in Figure 3. When the elevation angle of the satellite was
greater than 40◦, the influence of ionospheric gradient on the thin layer ionospheric model
was weak. Therefore, statistical results only considered the data in the range of 10◦ to 40◦

for the elevation angle. It can be seen from the table that the performance of the model
based on the optimal TLIH was better than the model based on 350 and 450 km, especially
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in the case of high solar activity. By statistical analysis of the average of bias and RMS error
on these three days, it can be found that in the Antarctic, the model bias error from the
optimal TLIH was better than 1.21 and 0.20 TECU for 350 and 450 km, respectively, and the
RMS error was better than 0.79 and 0.06 TECU, respectively; meanwhile in the Arctic, the
bias error was better than 1.22 and 0.25 TECU for 350 and 450 km, respectively, and the
RMS error was better than 0.90 and 0.20 TECU, respectively.

Table 3. Statistical results of ionospheric TEC models for different TLIHs using dSTEC measurements
in the Antarctic and Arctic.

Region Time TLIH
(km)

Bias
(TECU)

RMS
(TECU)

Antarctic

DOY 046, 2014
350 5.14 7.91
450 2.48 5.94
464 2.14 5.80

DOY 127, 2014
350 1.52 3.98
450 1.09 3.75
504 0.91 3.73

DOY 136, 2017
350 0.36 1.64
450 0.41 1.66
328 0.35 1.64

Arctic

DOY 046, 2014
350 2.90 5.51
450 1.81 4.96
508 1.35 4.50

DOY 127, 2014
350 3.41 4.66
450 1.59 3.22
466 1.36 3.12

DOY 136, 2017
350 0.54 1.96
450 0.53 1.82
376 0.49 1.80

3.3. Relationship between hmF2 and Optimal TLIH

According to previous research [17,23,24], hmF2 is related to the TLIH, but it is
typically lower due to the asymmetry in the electron density profiles at GNSS transmitter
heights, and it can reflect the characteristics of the TLIH to a certain extent. In general,
the centroid height of the ionospheric electron density was used as the TLIH. In practical
applications, the centroid height of the ionospheric electron density is equal to the hmF2
plus 80 km [23]. Therefore, as an indicator of the TLIH, we analyzed the relationship of the
hmF2 from COSMIC data and the optimal TLIH from the dG-TLIH method in the Arctic
and Antarctic.

Figure 11 shows the time series of the daily optimal TLIH from the dG-TLIH method,
the hmF2 from the COSMIC data, and the solar activity index F10.7, from 2007 to 2016 in
the Arctic. In nearly one solar cycle, the daily mean hmF2 ranges from 200 to 330 km. It
can be seen that the hmF2 is highly correlated with optimal TLIH, and increases with the
increase in the solar activity. The correlation coefficient between these two variables is up
to 0.70 in the Arctic.

Figure 12 shows the time series of the daily optimal TLIH from the dG-TLIH method,
the hmF2 from the COSMIC data, and the solar activity index F10.7, from 2007 to 2016
in the Antarctic. It can be seen that the time series of the optimal TLIHs are relatively
dispersed. In order to better analyze the change characteristics of the optimal TLIH, we use
a Fourier series to fit it, as shown by the green line in Figure 12. Although both the optimal
TLIH and the hmF2 have an upward trend with the increase in solar activity, the change
trend of the two variables in one year is opposite, especially in the high solar activity
year. Therefore, we measured the relationship between the optimal TLIH and the hmF2 by
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the maximum correlation coefficient and corresponding phase discrepancy, as shown in
Figure 13. The optimal TLIH positively relates to the hmF2, with a correlation coefficient
of 0.60 and a phase lag of ~3 months, with the hmF2 leading optimal TLIH.

Figure 11. Time series of optimal TLIH (blue line), hmF2 (red line), and the levels of solar activity,
F10.7 (bottom), from 2007 to 2016 over the Arctic.

Figure 12. Time series of optimal TLIH (blue dots), fitting TLIH (green line), hmF2 (red line), and
levels of solar activity, F10.7 (bottom), from 2007 to 2016 over the Antarctic.

In the Arctic, the average values of optimal TLIH and hmF2 were 420.43 and 258.43 km
during 2007–2016, respectively; meanwhile in the Antarctic, they were 441.87 and 264.60 km,
respectively. The differences between the optimal TLIH and the hmF2 were 162 and
177.27 km over the Arctic and Antarctic, respectively, which is greater than the empirical
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value of 80 km. The main reason for this lies in the existence of the plasmasphere outside
the ionosphere, and the TEC observed by GNSS will inevitably reflect the contribution of
the plasmasphere [23]. The contribution of the plasmasphere to the vertical TEC is about
10~20% during the day and up to 50% at night [34].

Figure 13. The correlation between the optimal TLIH and the hmF2; positive lag means hmF2 leads,
and vice versa.

4. Conclusions

In this paper, a new method (dG-TLIH) to determine optimal TLIH was proposed,
and the optimal TLIH was determined using the dG-TLIH method and the CPP technique
over the Antarctic and Arctic based on GNSS data during a period of about one solar cycle.
Relationships between the optimal TLIH from the dG-TLIH method and the hmF2 from
the COSMIC data in the polar regions were analyzed.

According to the tests of the CPP technique, the results indicate that the optimal TLIH
ranges from 300 to 600 km, and the height of 400 km ws the most frequent TLIH during
2003–2014 in the Arctic. Because the method requires dense and uniform ground tracking
stations, it is not suitable for use in the Antarctic. When compared to the CPP method,
the dG-TLIH method used in this study overcomes the limitation of requiring dense
observation stations. According to the test of the dG-TLIH method, it is also confirmed
that the optimal TLIH is related to solar activity, which mostly ranges from 320 to 500 km
during one solar cycle. The optimal TLIH values present obviously seasonal variation
characteristics, and most of the maximum and minimum values occurred in local winter
and summer, respectively. Compared with the fixed TLIH (350 and 450 km), the bias
errors of the ionospheric TEC model based on the optimal TLIH are decreased by 0.05 to
3.0 TECU, and the RMS errors are decreased by 0.02 to 2.11 TECU under different solar
activity. According to the analysis of the relationship between the optimal TLIH and the
hmF2, it was found that in the Arctic, the correlation coefficient between the hmF2 and
optimal TLIH was 0.7, and the deviation between them was 162 km. In the Antarctic, they
had a correlation coefficient of 0.60 with a phase lag of ~3 months, with the hmF2 leading
the optimal TLIH, and the deviation between them was 177 km.

In order to facilitate ionospheric TEC modeling, we give an optimal TLIH each day
over the Antarctic or Arctic. However, because the variation of ionospheric electron density
is affected by solar activity, latitude, season, time, and other factors, it leads to the complex
spatiotemporal variation of the optimal TLIH. In addition, the shape of the earth also needs
to be taken into account when determining the optimal TLIH at the global scale. These
problems will be the focus of future study.
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Abstract: In network real-time kinematic (NRTK) positioning, atmospheric delay information is
critical for generating virtual observations at a virtual reference station (VRS). The traditional linear
interpolation method (LIM) is widely used to obtain the atmospheric delay correction. However,
even though the conventional LIM is robust in the horizontal direction of the atmospheric error,
it ignores the influence of the vertical direction, especially for the tropospheric error. If the height
difference between the reference stations and the rover is large and, subsequently, tropospheric
error and height are strongly correlated, the performance of the traditional method is degraded for
tropospheric delay interpolation at the VRS. Therefore, considering the height difference between
the reference stations and the rover, a modified linear interpolation method (MLIM) is proposed to
be applied to a conventional single Delaunay triangulated network (DTN). The systematic error of
the double-differenced (DD) tropospheric delay in the vertical direction is corrected first. The LIM
method is then applied to interpolate the DD tropospheric delay at the VRS. In order to verify the
performance of the proposed method, we used two datasets from the American NOAA continuously
operating reference stations (CORS) network with significant height differences for experiments
and analysis. Results show that the DD tropospheric delay interpolation accuracy obtained by the
modified method is improved by 84.1% and 69.6% on average in the two experiments compared
to the conventional method. This improvement is significant, especially for low elevation satellites.
In rover positioning analysis, the traditional LIM has a noticeable systematic deviation in the up
component. Compared to the conventional method, the positioning accuracy of the MLIM method is
improved in the horizontal and vertical directions, especially in the up component. The accuracy of
the up component is reduced from tens of centimeters to a few centimeters and demonstrates better
positioning stability.

Keywords: GPS; NRTK; VRS; tropospheric delay; interpolation

1. Introduction

The traditional single-baseline real-time kinematic (RTK) positioning technology has
been developed over the last several decades. However, due to the influence of atmospheric
errors, orbital errors, and other distance-related errors, the distance between the rover and
the reference station can only be about 10 km for centimeter-level positioning. The emer-
gence of network real-time kinematic (NRTK), which is based on multiple reference stations,
has expanded the scope of services for precise real-time positioning [1–3]. Virtual reference
station (VRS) technology has been widely applied in NRTK data processing. When the
ambiguities between reference stations are fixed in the network, distance-dependent errors,
such as the double-differenced (DD) ionospheric and tropospheric delay of baselines, can
easily be calculated. Using the estimated error among the reference stations, we can obtain
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the corresponding error between the reference stations and the VRS near the rover through
the interpolation method. Finally, the generated virtual observations and the rover’s actual
observations can be used for short baseline relative positioning, and the centimeter-level
coordinates of the rover can be quickly obtained [4,5].

After extracting the atmospheric error from the baseline of the reference stations
correctly, selecting the appropriate algorithm to generate the virtual observations at the
VRS becomes a crucial issue. Therefore, researchers have proposed several interpolation
models. Wanninger originally proposed a linear interpolation method (LIM) that requires
at least three reference stations around the rover. The dual-frequency phase observations
and the known coordinates of the reference station are applied to derive the regional DD
ionospheric model [6]. The LIM can also build the model of other distance-dependent errors,
such as tropospheric delay [7]. Han and Rizos introduced a linear combination model
(LCM) of single-differenced (SD) observations, mainly used to eliminate orbital errors and
that can be applied to model atmospheric errors [8]. The distance-based linear interpolation
method (DIM), proposed by Gao et al., interpolates the rover’s ionospheric delay based
on the distance between the reference stations and the rover [9]. Wübbena applied a
suitable trend surface, called the low-order surface model (LSM), to simulate the distance-
dependent error trend in the network. The coefficients of the LSM model can be obtained
from the observation data of the reference stations by the least-squares adjustment [10].
The least-squares collocation method can also be applied to interpolate the atmospheric
delay [11–13]. A comprehensive comparison of the advantages and disadvantages of
these interpolation methods was undertaken by Dai et al. [14], Fotopoulos et al. [15], Wu
et al. [16], and Al-Shaery et al. [17]. All results showed that the effects of these interpolation
methods are similar. It is difficult to say which one performs the best. However, The LSM
requires at least four stations to resolve the model coefficients. If the network is formed by
Delaunay triangulation in VRS mode, it is difficult to use LSM in the smallest triangular
unit. The rover station is generally surrounded by three reference stations in the traditional
Delaunay triangulated network (DTN), so the LIM method is easier to implement for a
triangulation model.

With the increase of the baseline length, the correlation of tropospheric errors among
the stations decreases, which leads to large residual errors in DD observations. Significant
residual errors will affect the ambiguity resolution (AR) and positioning quality. Since the
tropospheric delay is highly correlated with elevation, its correlation coefficient exceeds
0.9, which will seriously affect the estimation of the station positions [18–20]. Landau used
the experimental data of the German SAPOS network and found that when an obvious
height difference exists between the rover and reference stations, the tropospheric delay
systematic error caused by the height deviation can reach 6.8 cm [21]. If the interpolation
algorithms mentioned above are applied in the smallest triangular unit directly, they only
consider the horizontal distribution of the tropospheric errors. The tropospheric delay
interpolated at the VRS is strongly constrained in the horizontal plane that is formed by
the reference stations. The tropospheric delay in the vertical direction may be significantly
inaccurate. Wu et al. proposed that the multi-baseline tropospheric delay interpolation
method has better accuracy than the traditional LIM in the star network [22]. In addition,
based on the BP artificial neural network method, Qiu et al. used a neural network to better
correct the tropospheric delay and build the spatial tropospheric delay error model [23].

The above-mentioned interpolation methods either did not consider the systematic
error of the tropospheric delay caused by the height difference between the user station
and the reference station or required using multiple baselines and complex modeling
methods, which are not convenient in practice. In our study, we proposed an improved
linear interpolation method that was simple to implement and that was effective. Taking
the height difference between the reference stations and the rover into account, the prior
model of the troposphere was used to correct the estimated DD tropospheric delay on
the network baseline first. After that, the LIM was used to interpolate the tropospheric
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delay between the VRS and the master reference station. Finally, the interpolated value
was applied to generate virtual observations and positioning.

The main objective of this research is to improve the accuracy of the tropospheric delay
correction using the interpolation algorithm in the NRTK of the Delaunay triangulated
network (DTN) model in order to obtain more stable and more accurate positioning results
through the modified method, especially in the vertical direction. The structure of this
paper is as follows: In Section 2, the calculation method of the DD tropospheric delay
of the network baseline is introduced, and the traditional LIM and MLIM methods are
presented in detail. In Section 3, using the experimental data from the triangular units,
the accuracy of the tropospheric delay correction when applying both the conventional
and modified methods is analyzed with different satellite elevation angles. The difference
in the positioning results from the two methods is compared. The results of the analyses
are then discussed in Section 4. Finally, the conclusions are drawn, and further research
directions are suggested in Section 4.

2. Materials and Methods

Here, we first describe the VRS’s tropospheric delay acquisition process, which in-
cludes the calculation of the DD tropospheric delay among the reference stations and the
traditional modeling method of the tropospheric delay at the VRS. The modified method
is then developed in Section 2.2, using the prior tropospheric model to correct the tro-
pospheric elevation system error due to the height difference between the reference and
the rover stations and combining the LIM interpolation algorithm with the calculated DD
tropospheric delay to obtain the DD tropospheric delay between the VRS and the master
station.

2.1. Calculation and Modeling Process of the Tropospheric Delay

In order to accurately obtain the tropospheric delay of the network baselines, we
established the DD observation equations to obtain the wide-lane (WL) ambiguities, which
can be expressed as follows:
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Using WL ambiguity obtained by Equation (1), the L1 ambiguity was then estimated
using the following observation equation:
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where IF denotes the ionosphere-free combination. Nij
rb,WL is DD WL ambiguities. The

other symbols are the same as in Equation (1).
The prerequisite for obtaining the DD tropospheric delay is to resolve the ambiguity

correctly. Generally, the baseline difference of the reference stations is tens of kilometers
or even more than 100 km, and the AR is difficult. Therefore, we used Equation (1) to
estimate the SD WL ambiguity, and the SD L1 ambiguity was then estimated by applying
Equation (2). The ionospheric delay is one of the major factors restricting the AR among the
reference stations. This effect is handled with a temporal and spatial correlation weighting
scheme for the ionospheric pseudo-observations in Equation (1) [13,24]. The DD iono-
spheric pseudo-observations can be obtained from the broadcast Klobuchar ionospheric
model [25] or the IGS global ionosphere models (GIM). We selected the GIM model because
it has better accuracy than the broadcast Klobuchar model [26]. On the other hand, the
UNB3m model combined with Niell mapping functions (NMF) was used to compute the
hydrostatic tropospheric corrections [27,28]. The wet tropospheric delay was estimated as
the relative tropospheric zenith delay (RZTD) parameter [29].

The Kalman filter was adopted to estimate the float SD WL, L1 ambiguity, the SD
ionospheric delay, and the RZTD. The DD ambiguity was obtained from the SD ambiguity
through the transition matrix, and the LAMBDA method was applied to obtain the integer
of the DD WL and L1 ambiguities [30]. The L2 DD ambiguity could then be directly derived
from the linear relationship between the WL and L1 DD ambiguities.

After we obtained the L1 and L2 DD integer ambiguities, the tropospheric slant delay
corresponding to each satellite pair between r and b was calculated as follows:
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where T̂ij
rb represents the calculated DD tropospheric delay. Ñij

rb,1 and Ñij
rb,2 denote fixed DD

ambiguities on L1 and L2 in units of cycles. Observation noise, multipath effects, and other
errors are ignored here.

Generally, at least three reference stations around the rover are used to build a DD
tropospheric interpolation model, and the reference station closest to the rover is selected
as the master reference station, while the other two are auxiliary reference stations. The
interpolation model for applying the LIM can be expressed as

T̂ = BXab (4)

T̂ =




T̂ij
M,1

T̂ij
M,2
...

T̂ij
M,n−1




B =




∆XM,1 ∆YM,1
∆XM,2 ∆YM,2

...
...

∆XM,n−1 ∆YM,n−1


 Xab =

[
a
b

]
(5)

where i, j denote the reference and rover satellite, subscript M is the master reference
station, and 1, 2, . . . , n − 1 represent the auxiliary reference stations. ∆X and ∆Y are the
difference of the horizontal coordinates between the master and auxiliary reference stations.
T̂ is the calculated DD tropospheric delay, and B is the coefficient matrix. When the DD
tropospheric delay is determined by (3), the coefficients a and b in (5) can be estimated by
least-squares adjustment:

Xab =
(

BT B
)−1

BT T̂ (6)

The DD tropospheric delay between the VRS and the master reference station can then
be obtained as follows:

Tij
M,V =

[
∆XM,V ∆YM,V

]
· Xab =

[
∆XM,V ∆YM,V

]
·
(

BT B
)−1

BT T̂ (7)
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where Tij
M,V is the interpolated DD tropospheric delay between the master reference station

and the VRS for the satellite pair i, j. ∆XM,V and ∆YM,V are the difference in the horizontal
coordinates between the VRS and the master reference station.

2.2. The Modified Tropospheric Interpolation Algorithm

In GNSS data processing, the ionosphere is assumed to be a single-layer model above
the earth, and its height is generally 350 km. For a small area, the point where the satellite
signal passes through the single layer will form an approximate plane. Therefore, when
ionospheric changes are not active, using conventional LIM to interpolate the ionospheric
delay will achieve a sufficient accuracy in the NRTK. Compared to the ionospheric delay,
the tropospheric temporal and spatial distribution characteristics are significantly different.
The tropospheric delay is affected by both horizontal and height factors. It can be seen
from Section 2.1 that the traditional interpolation method only uses horizontal coordinates
to interpolate tropospheric errors, but ignores the vertical element. This method constrains
the interpolation of the tropospheric delay to the height level constituted by reference
stations. When the height of the rover is much higher or lower than the selected reference
stations, it causes the positioning performance to decrease, especially in the up component.
Therefore, we proposed that the tropospheric system error caused by the height difference
between the reference stations and rovers should be corrected first. The LIM was then used
for the DD tropospheric delay modeling.

Assuming that the reference stations M, A, and B form a triangular unit and assuming
that station M is selected as the master reference station, A and B are the two auxiliary
reference stations. The coordinates of the VRS are the result of the standard point position-
ing (SPP) of the rover. Suppose the height of the VRS is much higher or lower than the
reference stations. In that case, the tropospheric delay between the master station and the
auxiliary reference stations calculated by Equation (3) needs to be corrected in advance
before applying the LIM. Take the baseline between A and M as an example. The calculated
DD tropospheric delay is

Tij
MA(∆hMA) = Tij

A(hA)− Tij
M(hM) (8)

where Tij
MA(∆hMA) is the calculated DD tropospheric delay of the reference and rover

satellite, i and j are on the baseline MA with the height difference ∆hMA. Tij
A(hA), and

Tij
M(hM) are the SD tropospheric delays of the reference and rover satellites i, j at stations A

and M, with heights of hA and hM, respectively.
The SD tropospheric delay correction equations for station A and M are as follows:

Tij
A(hA) = Tij

A(hA) + TCorA (9)

Tij
M(hM) = Tij

M(hM) + TCorM (10)

where Tij
A(hA) and Tij

M(hM) are the corrected SD tropospheric delays for stations A and M.
The specific derivations of the correction terms TCorA and TCorM are as follows:

TCorA = Tij
A(hV)− Tij

A(hA)

= ZTDA(hV)× (MFj
A(hV)− MFi

A(hV))− ZTDA(hA)× (MFj
A(hA)− MFi

A(hA))
(11)

TCorM = Tij
M(hV)− Tij

M(hM)

= ZTDM(hV)× (MFj
M(hV)− MFi

M(hV))− ZTDM(hM)× (MFj
M(hM)− MFi

M(hM))
(12)

where TCorA and TCorM are the correction items, and hA and hV are the height of station
A and the VRS, respectively. ZTDA(hA) and ZTDA(hV) represent the ZTD at station
A with height hA and hV, respectively, which can be calculated using the prior model.

73



Remote Sens. 2021, 13, 2994

MFj
A(hA), MFi

A(hA), MFj
A(hV) and MFj

A(hV) denote the tropospheric mapping functions
corresponding to the satellites i, j at station A with the height hA and hV, respectively.

Although the ZTD calculated by the prior model has model errors, the difference
of the ZTD obtained by the prior model at the same horizontal position but at different
heights can effectively eliminate the tropospheric system error caused by the height dif-
ference. Therefore, the TCorA and TCorM obtained by the prior model still have a high
correction accuracy. We substituted Equations (11) and (12) into Equations (9) and (10),
respectively, and replaced Tij

A(hA) and Tij
M(hM) in Equation (8) with Tij

A(hA) and Tij
M(hM)

in Equations (9) and (10). Equation (8) then became

Tij
MA(∆hVV) = Tij

A(hA)− Tij
M(hM) = Tij

A(hV)− Tij
M(hV) (13)

where Tij
MA(∆hVV) is the corrected DD tropospheric delay of the reference and rover

satellites i, j on the baseline MA.
The mean error of the ZTD calculated by the UNB series model in North America is

about 2 cm [31], which represents good accuracy. The NMF and other mapping functions
have similar accuracy. Taking the experimental data from North America into account, the
tropospheric systematic deviation correction was calculated using the UNB3m model with
the NMF in this paper. After correcting the systematic error of the DD tropospheric delay
in advance, and then using the LIM for interpolation, a DD tropospheric delay with no
height difference deviation on the VRS baseline and the master station could be obtained.

3. Results

In this chapter, we first describe the two experimental datasets used to verify the mod-
ified interpolation algorithm. After that, in the first experiment, we chose different periods
and satellites in various triangular units in Dataset One to analyze the tropospheric delay
interpolation effect of the traditional and modified methods. In the second experiment,
several satellites in the same period in the same triangle unit in Dataset Two were selected
to analyze the interpolation effects. Finally, the positioning performance after adopting the
traditional and proposed methods was analyzed.

3.1. Experimental Data

The experimental data were from the US CORS network. We chose 21 stations as
reference stations and another ten stations as simulated rovers for experimental analysis.
These data were divided into two experimental datasets.

Dataset One consisted of six independent triangular units, and each unit contained a
simulated rover. Dataset Two only had one triangle unit, but it included four simulated
rover stations. The plane distribution and baseline length of Dataset One and Dataset Two
are shown in Figures 1 and 2. The reference station closest to each rover was selected as
the master reference station; they are connected by the green dashed line in the figure.
Figures 3 and 4 show the station height distribution of the two datasets. The observation
data on day of year (DOY) 180 in 2020 were selected. The sampling interval was set to 30 s,
and the cut-off angle was set to 15◦.
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Figure 1. Geographical distribution of the selected stations in Dataset One.

Figure 2. Geographical distribution of the selected stations in Dataset Two.
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Figure 3. The elevation distribution of the stations in Dataset One.

Figure 4. The elevation distribution of the stations in Dataset Two.

The coordinates of the reference stations and the simulated rovers were obtained from
the US CORS website and were used as known coordinates in the experiments. The Kp
index, proposed by Bartels, is an indicator of geomagnetic activity and is updated every
three hours [32]. We checked the Kp value of DOY 180 in 2020; the maximum was 2 and
the minimum was 0, which meant that the ionosphere was quiet on that day. Therefore,
the DD ionospheric delay obtained by the LIM had high accuracy, and it did not affect the
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tropospheric delay interpolation. Multipath effects, antenna phase center correction, and
other errors were ignored.

The slant DD tropospheric delay between the auxiliary and master stations is calcu-
lated using Equation (3). The traditional LIM and modified LIM are then applied to obtain
the slant DD tropospheric delay between the rover and master stations. The true value
of ZTD between the rover and the master reference stations could be obtained using the
latest Canadian Spatial Reference System precise point positioning (CSRS-PPP) service,
provided by Natural Resources Canada [33]. Since the estimation accuracy could reach
0–2 cm [34,35], the slant DD tropospheric delay of each satellite pair calculated in combi-
nation with the mapping function could be used as the reference true value. The whole
experiment was conducted in post-processing mode.

3.2. Analysis of Tropospheric Delay Interpolation Results with Dataset One

The triangular units of Dataset One were distributed in different areas, and the height
distribution of the reference stations and rovers also had apparent differences. They were
used to verify the effectiveness of the proposed method compared to the traditional LIM.
The DD tropospheric delay was obtained using the CSRS-PPP as the true value. The values
of the root mean square (RMS) of the tropospheric delay obtained by the two methods
were analyzed and compared.

In each triangle unit, we selected different periods, different elevation angle changes,
and three continuously observed satellites to analyze the effect of tropospheric interpolation.
The results were obtained using both the traditional LIM and the modified LIM, which
are denoted here as TLIM and MLIM. A comparison with the true value is shown in
Figures 5–10.

Figure 5. The DD tropospheric delay obtained by different methods (a) and elevation angles (b) for
satellites G10, G18, and G32 at the rover station P478.
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Figure 6. The DD tropospheric delay obtained by different methods (a) and elevation angles (b) for
satellites G15, G18, and G21 at the rover station EWPP.

Figure 7. The DD tropospheric delay obtained by different methods (a) and elevation angles (b) for
satellites G08, G14, and G20 at the rover station P603.
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Figure 8. The DD tropospheric delay obtained by different methods (a) and elevation angles (b) for
satellites G01, G14, and G31 at the rover station P225.

Figure 9. The DD tropospheric delay obtained by different methods (a) and elevation angles (b) for
satellites G16, G22, and G26 at the rover station WINT.
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Figure 10. The DD tropospheric delay obtained by different methods (a) and elevation angles (b) for
satellites G07, G11, and G13 at the rover station P121.

We selected three satellites with different elevation angle range changes on each
rover for the analysis. The trend of elevation angle changes for these selected satellites
was also different. Overall, from Figures 5–10, we can see that as the elevation angles of
each satellite increased, the DD tropospheric delay became smaller, and vice versa. These
selected satellites can be divided into three types: low-elevation, medium-elevation, and
high-elevation angle satellites.

For high elevation angle satellites, we took G10, G18, and G14 in Figures 5–7 as
examples. The DD tropospheric delay obtained using TLIM at the VRS had a slight offset
from the true value. However, the DD tropospheric delay corrected using MLIM almost
coincided with the true value. For G14, which had the largest elevation angle increase, the
results of the proposed method were the most consistent with the true value.

Similarly, we took G18, G20, and G14 in Figures 5, 7 and 8 as medium elevation angle
satellites for analysis. These three satellites showed a downward trend in the range of
medium elevation angles. The offset between the DD tropospheric delay obtained by the
TLIM and true value was obvious. As the elevation angles of these satellites decreased,
these offsets became larger. The changing trend of the TLIM value and the true value was
not the same. When MLIM was adopted, the offsets between the interpolation results of the
MLIM and true value were mostly eliminated, and a better correction effect was obtained.

From Figures 7, 9 and 10, the low elevation angle satellites G08, G16, and G11 were
analyzed. Their elevation angles were relatively low, and they showed almost no change
trend. Therefore, their tropospheric delay change trends according to the TLIM, MLIM, and
true values were not noticeable. However, their tropospheric delay values were consider-
able. This is because the lower the elevation, the longer the satellite signal propagation path
becomes, and the delay of signal propagation will increase the range of the troposphere.
The most significant offsets between TLIM and the true value occurred with this type of
elevation satellite. Although the DD tropospheric delay obtained by the MLIM still had
a small difference from the true value, it effectively eliminated this offset compared to
the TLIM.
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It can be seen that whether the DD tropospheric delay interpolated by the proposed
method is from high elevation or low elevation satellites, the offset with the true value
is smaller. For all of the satellites, the trend of the MLIM results was consistent with the
true value.

The statistical analysis of the results of the TLIM and MLIM for each rover is shown
in Figure 11. Overall, the RMS errors of the MLIM are smaller than those of the TLIM. This
indicates that the accuracy of the interpolated tropospheric delay improved after applying
the proposed method. The RMS errors of the MLIM on each continuously observed satellite
showed a significant improvement. The maximum increases were achieved on the G32,
G29, G08, G11, G16, and G11 satellites at stations P478, EWPP, P603, P225, WINT, and P121,
respectively, with an improvement of 90.1%, 92.5%, 90.0%, 93.2%, 90.6%, and 78.5%.

Figure 11. RMS errors of the DD tropospheric delay using modified and traditional methods for all
non-reference satellites at all rover stations. The percentages on each bar are the improvements of the
MILM with respect to the TLIM.

To analyze all tropospheric interpolation accuracies for all of the satellites with dif-
ferent elevation angles during the selected period for each rover, Figure 12 shows the
TLIM and MLIM modeling error curves for all of the satellites with different elevation
angles. Overall, from Figure 12, we can see the accuracy of the tropospheric modeling
using TLIM increased with increasing satellite elevation. However, the accuracy of the
MLIM was always better than that of the TLIM at any elevation interval. For low elevation
satellites, the error of the TLIM was obvious. For example, the error forP603 reached
0.2 m, but the error from the MLIM was still minimal. The mean error values of the TLIM
were 0.017 m, −0.027 m, 0.068 m, 0.029 m, 0.045 m, and 0.010 m, and the corresponding
standard deviations (STD) were 0.014 m, 0.023 m, 0.048 m, 0.023 m, 0.031 m, and 0.006 m,
respectively. The accuracy of the MLIM was significantly improved, especially for low
elevation satellites. The mean errors of each rover were 0.002 m, 1.65 × 10−5 m, 0.007 m,
0.005 m, 0.005 m, and 0.003 m, and the corresponding STDs were 0.002 m, 0.004 m, 0.006 m,
0.004 m, 0.004 m, and 0.002 m, respectively. The discontinuous part in Figure 12 indicates
that there were no visible or ambiguity fixed satellites within that elevation angle range.
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Figure 12. The DD tropospheric delay interpolation errors obtained by the TLIM and MLIM (left and right) with different
satellite elevation angles at different rover stations: (a) P478, (b) EWPP, (c) P603, (d) P225, (e) WINT, and (f) P121.

The mean RMS errors of the DD tropospheric delay obtained by the two methods for
all satellites are listed in Table 1. The statistical analysis showed that the RMS of the TLIM
reached tens of centimeters, while the RMS of the interpolation using the proposed method
was only several millimeters. The improvement reached 87.5%, 87.9%, 89.5%, 85.4%, 87.9%,
and 66.7%, respectively. This indicated that the modified algorithm performed better than
the traditional algorithm, especially for satellites with lower elevation angles.

Table 1. The mean RMS and improvement percentage of the interpolated DD tropospheric delay
using the TLIM and MLIM at each rover station in Dataset One.

Station ID P478 EWPP P603 P225 WINT P121

TLIM RMS (m) 0.024 0.033 0.076 0.041 0.058 0.012
MLIM RMS (m) 0.003 0.004 0.008 0.006 0.007 0.004

Improvement (%) 87.5 87.9 89.5 85.4 87.9 66.7

3.3. Analysis of the Tropospheric Delay Interpolation Results with Dataset Two

Dataset Two only had one triangle unit, but it contained four rovers with different
elevations. We also compared and analyzed the performance of the TLIM and MLIM at
these stations.

We selected three identical satellites, G10, G18, and G27, at these four rovers to analyze
the effect tropospheric interpolation during the same period. The results are illustrated in
Figure 13.
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Figure 13. Elevation angles (upper row) for the reference satellites G10, G18, and G27. The DD tropospheric delay obtained
using the TLIM and the PPP method (three lower rows) at different rover stations: (a) P532, (b) P539, (c) P602, and (d) MASW.

As shown in Figure 13, the interpolated DD tropospheric delay by the MLIM was
highly consistent with the true value for G10 at the highest elevation. For G18, which had an
elevation angle on a downward trend, although there were still some deviations compared
to the true value, the MLIM results were also closer to the true value. Analyzing the satellite
G27, although its elevation angle was increasing, it had the lowest elevation angle among
the three satellites. Its TLIM results showed that the effect of directly interpolating the
tropospheric delay was not satisfactory. However, after adopting the MLIM, the value of
the DD tropospheric delay interpolation was consistent with the true value. Therefore,
the modified interpolation method had a better correction effect, even for low-elevation
satellites.

The RMS of the DD tropospheric delays obtained using the TLIM and MLIM for each
rover during the selected period are shown in Figure 14. The maximum improvement
values of the MLIM at the four rovers compared to the TLIM were 93.0%, 83.4%, 78.3%,
and 79.3%, respectively.

Further, troposphere modeling errors for all of the satellites over the selected observa-
tion period are shown in Figure 15. The mean errors of the TLIM were 0.011 m, 0.027 m,
0.029 m, and 0.021 m, and the corresponding STDs were 0.010 m, 0.027 m, 0.029 m, and
0.020 m, respectively. The accuracy of the MLIM was dramatically improved, with mean
errors of −0.002 m, −0.006 m, 0.009 m, and 0.006 m, and the corresponding STDs were
0.007 m, 0.007 m, 0.008 m, and 0.006 m, respectively.

The mean RMS of the DD tropospheric delay using the traditional and the modified
methods for all of satellites in Dataset Two is shown in Table 2. It can be seen that the
mean RMS error of the TLIM of each station, P532, P539, P602, and MASW, were 0.012 m,
0.033 m, 0.035 m, and 0.026 m, respectively. However, the mean RMS error of the MLIM
were 0.005 m, 0.008 m, 0.010 m, and 0.007 m. These values represent improvements of
58.3%, 75.6%, 71.4%, and 73.1%, respectively, which are consistent with the requirements
of the accuracy of DD tropospheric delay interpolation that need to be met in order to
generate VRS observations in the NRTK.
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Figure 14. RMS errors of the DD tropospheric delay using modified and traditional methods for all
non-reference satellites at all rover stations. The percentages on each bar are the improvements of the
MILM with respect to the TLIM.

Figure 15. DD tropospheric delay interpolation errors obtained by the TLIM and MLIM (left and right) with different
satellite elevation angles at different rover stations (from top to bottom): P532, P539, P602, and MASW.
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Table 2. The mean RMS errors and improvement percentage of the interpolated DD tropospheric
delay using the TLIM and MLIM at each rover station in Dataset Two.

Station ID P532 P539 P602 MASW

TLIM RMS (m) 0.012 0.033 0.035 0.026
MLIM RMS (m) 0.005 0.008 0.010 0.007

Improvement (%) 58.3 75.6 71.4 73.1

3.4. Comparison of the Positioning Results of Dataset One and Dataset Two

According to the proposed and traditional tropospheric interpolation delay results,
the positioning performance of these rovers using the VRS was investigated in this section.
The DD tropospheric delay was obtained through both the TLIM and MLIM. We then used
these interpolated atmospheric delays to generate virtual carrier phase and pseudorange
observations, which were applied to the final rover positioning. The RMS errors of the
positioning results were analyzed in this paper. We expected that the proposed method
would show a better positioning performance, especially in the up component and under
significant height differences.

3.4.1. Dataset One

The positioning error of the TLIM and MLIM is shown in Figure 16, using station P225
as an example. It can be seen that the positioning error of the MLIM showed a significant
improvement in the up component. However, there was little difference between the TLIM
and MLIM in the horizontal direction. Only the results of the fixed solutions were counted
here, and the MLIM had more fixed solutions than the TLIM. The positioning results of
each rover in Dataset One are given in Table 3. In terms of the RMS, the accuracy in the
three directions for all of the rovers was improved after using the MLIM. There were slight
improvements in the horizontal direction, but remarkable improvements were achieved
in the up component. All the RMS errors of the up component obtained using the MLIM
were within 5 cm. The most obvious improvement occurred at P603, in which the accuracy
of the RMS, changing from 24.95 cm to 4.24 cm, improved by 83%. It can be seen from
Figure 16 that the positioning result became more stable after the proposed method was
applied.

Figure 16. The TLIM (a) and MLIM (b) positioning errors with respect to the epoch during the selected data period at rover
P225.

85



Remote Sens. 2021, 13, 2994

Table 3. Positioning RMS statistical results of each rover station in Dataset One.

Accuracy (cm)
Station ID E N U

P478 RMS
TLIM 0.74 0.93 11.59
MLIM 0.63 0.76 3.42

EWPP RMS
TLIM 0.91 1.05 12.91
MLIM 0.79 0.89 2.67

P603 RMS
TLIM 1.35 1.76 24.95
MLIM 0.94 1.05 4.24

P225 RMS
TLIM 0.85 1.08 12.34
MLIM 0.75 0.79 1.96

WINT RMS
TLIM 0.96 1.21 13.36
MLIM 0.87 0.72 4.32

P121 RMS
TLIM 0.76 1.07 4.42
MLIM 0.78 1.07 2.65

3.4.2. Dataset Two

Similarly, taking MASW as an example, it can be seen from Figure 17 that the accuracy
improvement in the up direction was obvious. Table 4 shows the statistical positioning
results of all of the rovers in Dataset Two. Analyzing the RMS results of the four rover
stations, the accuracy of the TLIM was within 2 cm in the east and north directions. The
accuracy of the up component was about 17 cm. After applying the MLIM, the positioning
accuracy of all rovers was within 1 cm in the east and north directions. The accuracy in the
up direction was within 5 cm, reaching the general accuracy level of the NRTK positioning.
Figure 17 and Table 4 showed that in the case of the height distribution of Dataset Two,
the positioning results using the modified interpolation methods were reliable and stable.
%clearpage

Figure 17. TLIM (a) and MLIM (b) positioning errors with respect to the epoch during the selected data period at rover
MASW.
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Table 4. Positioning RMS statistical results of each rover station in Dataset Two.

Accuracy (cm)
Station ID E N U

P532 RMS
TLIM 0.74 0.74 6.91
MLIM 0.77 0.64 1.44

P539 RMS
TLIM 0.93 1.13 16.05
MLIM 0.83 0.84 3.28

P602 RMS
TLIM 0.77 1.03 17.22
MLIM 0.67 0.77 4.01

MASW RMS
TLIM 0.80 0.85 14.04
MLIM 0.67 0.76 2.48

The results of these experiments demonstrate that the accuracy of the traditional
LIM DD tropospheric delay at the VRS deteriorates when a relatively significant height
difference exists between the rover and the reference stations. The results also confirm that
as the satellite elevation angle drops, the delay of the satellite signal passing through the
troposphere increases, and the effect of interpolating the tropospheric delay will worsen.

It can be seen from these results that the more significant the height difference between
the rover and the reference station, the worse the tropospheric accuracy obtained by using
TLIM is, and the better the correction effect by using MLIM is. The average RMS error of
the conventional method was 0.035 m. The MLIM’s average RMS was only 0.006 m.

According to the results when using VRS observations for rover positioning, the
modified method showed a slight improvement in the horizontal direction compared to
the traditional method. However, the accuracy of the proposed method was significantly
improved in the vertical direction. Therefore, when building or selecting reference station
sites, one should thoroughly consider whether the height distribution of the reference
station is approximately consistent. In addition, the height difference between the potential
users and the reference stations should be as small as possible. Otherwise, a method similar
to the MLIM should be used to solve the impact of the height difference in the NRTK.

It should be noted that this experiment only verified that a considerable height dif-
ference between the reference station and the rover would cause systematic errors when
modeling the DD tropospheric delay in the NRTK. The heights of the reference stations
and the rovers were quite different: Dataset One was from −29 m to about 1900 m, and
Dataset Two was from 34 m to 713 m. The maximum height difference between the rover
and reference stations of each triangle unit is from 245 m to 1158 m in Dataset One, and the
maximum height difference is from 499 m to 679 m in Dataset Two. In addition, when the
LIM is used to interpolate the atmospheric delay, the spatial distance and height difference
between the rover and each reference station should be treated as the weighting factor for
interpolating the DD tropospheric delay in each triangle unit. This perspective should be
studied through further experiments in the future.

4. Conclusions

This study confirmed that a height difference between reference stations and rovers
leads to a decrease of interpolation DD tropospheric delay accuracy. Therefore, based
on the tropospheric delay correction model and traditional LIM, we proposed the MLIM
correction method for the triangular VRS mode. This method corrects the systematic error
of the tropospheric delay caused by height differences in advance. It then applies the LIM
to interpolate the corrected value to obtain the DD tropospheric delay between the rover
and the master stations. We compared the accuracy of TLIM and MLIM by modeling the
DD tropospheric delay by using two datasets of triangular units in VRS mode. Finally, the
positioning performance of the two methods was evaluated.

In the first experiment, we selected six independent triangular units in different areas.
The accuracy of the DD tropospheric delay modeling, which used traditional LIM, was
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inferior. This phenomenon is evident for satellites with low elevation angles. Compared
to traditional LIM, the accuracy of interpolated DD tropospheric delay was significantly
improved after using the modified method, especially for the satellites with lower elevation
angles. The second experiment considered only one triangular unit, but it included rover
stations with different elevation distributions. From the perspective of the tropospheric
interpolation results, as the height of each rover increased, the accuracy of the tropospheric
interpolation using the conventional method deteriorated. After adopting the MLIM, the
RMS error was significantly improved.

In terms of positioning performance, the up component accuracy obtained by the TLIM
showed a noticeable systematic deviation, and the worst results in the two datasets could
still reach the decimeter level. However, this situation improved significantly after using
the MLIM, and the positioning results of all of stations in the up direction reached just a few
centimeters. In the horizontal direction, although the accuracy of the proposed algorithm
was similar to that of the traditional algorithm, there was still a slight improvement. In
addition, the positioning result of the proposed method is more stable than that of the
conventional method.

In summary, the proposed method significantly improved the tropospheric delay
interpolation and the positioning performance in the NRTK triangulation network. It
should be noted that this paper only analyzed the influence of the DD tropospheric delay
interpolation in the NRTK where the height distribution of the reference stations and the
rover stations were quite different, and further research should be devoted to investigating
how the height difference of the reference stations and the spatial distance between the
rover and reference stations can affect the DD tropospheric interpolation accuracy in
the NRTK.
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Abstract: Pressure, water vapor pressure, temperature, and weighted mean temperature (Tm) are
tropospheric parameters that play an important role in high-precision global navigation satellite
system navigation (GNSS). As accurate tropospheric parameters are obligatory in GNSS navigation
and GNSS water vapor detection, high-precision modeling of tropospheric parameters has gained
widespread attention in recent years. A new approach is introduced to develop an empirical tro-
pospheric delay model named the China Tropospheric (CTrop) model, providing meteorological
parameters based on the sliding window algorithm. The radiosonde data in 2017 are treated as
reference values to validate the performance of the CTrop model, which is compared to the canonical
Global Pressure and Temperature 3 (GPT3) model. The accuracy of the CTrop model in regards to
pressure, water vapor pressure, temperature, and weighted mean temperature are 5.51 hPa, 2.60 hPa,
3.09 K, and 3.35 K, respectively, achieving an improvement of 6%, 9%, 10%, and 13%, respectively,
when compared to the GPT3 model. Moreover, three different resolutions of the CTrop model based
on the sliding window algorithm are also developed to reduce the amount of gridded data provided
to the users, as well as to speed up the troposphere delay computation process, for which users can
access model parameters of different resolutions for their requirements. With better accuracy of esti-
mating the tropospheric parameters than that of the GPT3 model, the CTrop model is recommended
to improve the performance of GNSS positioning and navigation.

Keywords: GNSS positioning; GNSS meteorology; MERRA-2; sliding window algorithm; tropo-
spheric parameters; GNSS

1. Introduction

Tropospheric delay is one of the major factors affecting global navigation satellite
system (GNSS) positioning. The vertical distribution of tropospheric parameters is strongly
affected by Earth’s gravity. It is difficult to accurately monitor and invert the description
and modeling of tropospheric parameters under the influence of many factors. In the geode-
tic analysis of GNSS and Very Long Baseline Interferometry (VLBI) observations, the slant
tropospheric delays are generally mapped into the zenith direction (zenith tropospheric
delay, ZTD) through mapping functions. The ZTD is separated into two parts, namely,
the zenith hydrostatic delay (ZHD) and the zenith wet delay (ZWD). The ZHD is usually
calculated by the Saastamoinen model [1] from surface pressure measurements. The ZWD
is estimated in the data analysis or approximated by models such as the Saastamoinen
model, which uses parameters such as the temperature and water vapor pressure as input.
Furthermore, the weighted mean temperature (Tm) is also an essential parameter that
is indispensable in obtaining precipitable water vapor (PWV) from the zenith wet delay.
Therefore, pressure, water vapor pressure, temperature, and Tm are key parameters that
are used as input data to obtain tropospheric delay information. It is of great significance to
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monitor temperature, pressure, water vapor pressure, Tm, and other tropospheric parame-
ters for high-precision GNSS positioning and navigation, as well as GNSS meteorologic
applications [2,3].

In addition, floods and droughts have been caused by extreme weather frequently.
Severe weather, such as strong regional convection, and large-scale climate anomalies have
brought on heavy economic losses and casualties in recent years [4–6]. With increasing
requirements for high-precision GNSS positioning, and in-depth research in fields such as
climate change and extreme weather generation mechanisms, the demand for real-time
and high-spatiotemporal-resolution tropospheric parameters is increasing.

There are two main types of tropospheric parameter models according to the methods
used for modeling. The Hopfield model [7], Saastamoinen model, and Black model [8] are
the classic tropospheric delay models which are based on in situ meteorological parameters.
Since conventional GNSS receivers are unavailable for measurements, the use of the
aforementioned classic tropospheric delay models is restricted to a certain extent. As space
technologies such as GNSS and VLBI are widely used in the navigation and guidance of
various space vehicles as well as for the needs of climate change and weather forecasting,
the real-time and high spatial resolution of meteorological parameters are particularly
important [9].

Therefore, developing regional or global empirical tropospheric delay models based
on atmosphere analysis data has attracted widespread attention [10–16]. Empirical mete-
orological models, such as the University of New Brunswick (UNB) models [17,18], the
European Geo-stationary Navigation Overlay System (EGNOS) model [19], the TropGrid
model [20,21], and the GPT models [22–25] have been developed, aimed at directly ob-
taining high-precision tropospheric parameters through the model without measured
meteorological parameters. The UNB3 model was stored by tabulated meteorological
data, which divides the latitude into five intervals. The EGNOS model was established by
simplifying the UNB3 model, and the formula is different from that of the UNB3 model.
Only the day of the year (DOY) and the location of the station are needed when applying
this model, which is used in GNSS satellite navigation enhancement systems. The authors
of [20] developed the TropGrid model considering the diurnal variations of parameters,
but neglect the semiannual variations. The GPT model was established based on the
ERA-40 reanalysis data. However, the GPT model only considers the annual variations
of the parameters. The authors of [23] developed the GPT2 model, which considers the
semiannual variations of parameters, by analyzing 10-year ECMWF ERA-Interim data
with resolutions of 5◦ × 5◦ and 1◦ × 1◦. Considered to be the tropospheric model with
the highest precision for quite a long time, two meteorological parameters were added to
the GPT2w model based on GPT2. GPT3 is the latest generation model for an upgraded
version of GPT2w. Two parameters of gradients in the east and north direction were added
to the GPT3 model [26,27].

The aforementioned tropospheric delay models have performed well in GNSS meteo-
rology. In this work, a new approach is introduced to develop an empirical tropospheric
delay model providing meteorological parameters based on the second modern-era retro-
spective analysis for research and applications (MERRA-2) data. The new empirical model
could be used to serve real-time GNSS positioning and navigation.

2. Data and Methods
2.1. Radiosonde Data

The radiosonde data provide measured meteorological parameters from the ground
to a height of about 30 km at more than 1500 stations around the world. There are
89 radiosonde stations over China as shown in Figure 1. The radiosonde data are obtained
based on the actual measurements of meteorological sensors on the sounding balloon,
which has high accuracy and credibility. However, radiosonde balloons are extremely
susceptible to other disturbance factors, such as weather factors and clouds, during the
ascent. Different types of sounding sensors show their own system deviations, as well as
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equipment failures, which lead to phenomena such as missing data. Although radiosonde
data shows some disadvantages, they are still widely used to validate measurement
results [27,28].
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2.2. MERRA-2 Reanalysis Product Data

MERRA-2 is the latest atmospheric reanalysis product comprising of data beginning in
1980. It is provided by the National Aeronautics and Space Administration (NASA) [29,30]
with a spatial resolution of 0.625◦ × 0.5◦ (lon. × lat.) and a temporal resolution of 6 h.
MERRA-2 replaces the original MERRA reanalysis dataset using an upgraded version of the
Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system [31],
and the Gridpoint Statistical Interpolation (GSI) analysis scheme [32–34]. It is also the first
long-term global reanalysis product that assimilates space-based observations of aerosols
in the climate system and represents their interactions with physical processes [34]. In
addition, MERRA-2 tends to minimize the spurious variations related to inhomogeneity
in the observational records and achieves a global balance between evaporation and
precipitation through the mass conservation constraint [35]. Temperature, pressure, and
specific humidity can be obtained by MERRA-2 data. The water vapor pressure and Tm
can be calculated by the following equations:

e = sh·P/0.622 (1)

Tm =

∫ ∞
h

e
T dh∫ ∞

h
e

T2 dh
(2)

where sh denotes the specific humidity, P is the pressure, h is the height, e is the water
vapor pressure, and T is the temperature.
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2.3. Analysis of Model Parameters
2.3.1. Analysis of Tropospheric Parameters

Analysis of the spatiotemporal characteristics of tropospheric parameters plays an
important part in modeling. Some reports have suggested that Tm or temperature are
related to height [36,37]. Four representative grid points over China shown in Figure 1
are chosen to determine the daily mean temperature in 2016 for analyzing the correlations
between temperature and height. The temperature in each standard pressure level of
MERRA-2 is interpolated upon a number of the same heights, and the result is shown
in Figure 2. When geopotential height increases, the temperature decreases. There is a
correlation between the temperature and the geopotential height of the four grid points
over China, which can be expressed as follows:

T = γ·δh + k (3)

where γ denotes the temperature lapse rate, δh is the height, and k is a constant.
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Figure 2. Relationships between temperature and geopotential height at four MERRA-2 grid points
over China in 2016: (a) 42◦N, 90◦E; (b) 42◦N, 120◦E; (c) 30◦N, 90◦E; (d) 30◦N, 120◦E. Blue dots are
the temperature of MERRA-2 in each height, and red lines are the linear fit to them.

The Bevis formula [38,39] shows the relationship between the surface temperature
and Tm, which can be expressed as Tm = 70.2 + 0.72Ts; thus, the spatial and temporal
characteristics of Tm are similar to those of Ts. However, the Bevis formula is only an
approximate relationship, and separate models for Tm and temperature are developed in
this paper.

Tm, temperature, pressure, and water vapor pressure data provided by the MERRA-2
reanalysis data from 2012 to 2016 are divided into three intervals (15◦N–30◦N, 30◦N–40◦N,
and 40◦N–55◦N) according to latitude in order to calculate the time series and to analyze
the correlations between the parameters and latitude; the result is shown in Figure 3. All the
tropospheric parameters show obvious characteristics of annual and semiannual variations.
The peak value of the Tm, temperature, and water vapor pressure in one year appears in the
middle of the year, showing symmetrical distribution. In addition, as the latitude increases,

94



Remote Sens. 2021, 13, 3546

the aforementioned values gradually decrease, which indicates the correlation to latitude.
The Tm ranges from 245 K to 280 K in the high latitude and middle latitude regions, while it
ranges from 280 K to 285 K in the low latitude regions. The temperature ranges from 250 K
to 295 K in the high latitude regions and middle latitude areas, while it ranges from 290 K
to 300 K in the low latitude regions, which displays more stable temperatures. Pressure
shows the largest value in the low latitude regions, while it appears smallest in the middle
latitude regions. The water vapor pressure value ranges from 0 hPa to 20 hPa in the high
latitude regions and middle latitude areas, while it ranges from 10 hPa to 30 hPa in the low
latitude areas, which appears more stable.
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MERRA-2 reanalysis data are used to analyze the spatial and temporal characteristics
of meteorological parameters. It can be found that these tropospheric parameters are related
to latitude and height, and they all have the characteristics of annual and semiannual
changes. To further analyze the influence of spatial factors on the tropospheric parameters,
the annual mean of the tropospheric parameters at each MERRA-2 grid point over China
are determined, and the result is shown in Figure 4. The annual mean values of the
tropospheric parameters in the western region are lower than those in other regions over
China due to the high altitude in this area. It also has obvious characteristics indicating
that the annual average values of the tropospheric parameters in high latitude areas are
lower than those in the low- and middle-latitude areas. Furthermore, all the parameters
show significant correlations for latitude and longitude.
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Figure 4. Distribution of the annual mean of the tropospheric parameters for pressure (a), parameters
for water vapor pressure (b), parameters for temperature (c), and parameters for Tm (d) calculated
from MERRA-2 data.

2.3.2. Analysis of the Characteristics of the Lapse Rate

Analysis of the spatiotemporal characteristics of the lapse rate parameters also plays
an important part in modeling. When ruling out the differences in elevation data between
the different data sources, such as the ellipsoidal height and the geopotential height, the
elevation of GNSS and radiosonde stations is inconsistent with the height of the grid point.
It must be considered that height correction in the vertical dimension plays an important
role in modeling, because these tropospheric parameters are sensitive to height, showing
notable changes in the vertical direction. If their vertical changes are properly considered,
the model will be able to have better performance at different heights.

The changes in temperature and Tm along the vertical direction are usually adopted
to be expressed by the linear function [20,40]. The exponential function is usually adopted
to express the changes in pressure [24,25] and water vapor pressure along the vertical
direction [21]. In this paper, conventional methods are used to carry out height correction,
and they have been adopted in the GPT3 model and other tropospheric delay models.
Equations (4)–(7) are for Tm, temperature, pressure, water vapor pressure, and pressure:

TU
m = TG

m − γ·(HU − HG) (4)

TU = TG − β·(HU − HG) (5)

eU = eG·
(

PU/PG
)λ+1

(6)

PU = PG
[

1− β

TG (HU − HG)

] g·M
R·β

(7)
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where TU
m , TU , eU , and PU refer to the meteorological values at the station; TG

m , TG, eG, and
PG represent the meteorological values at the grid point; HU and HG denote the height
at the station and the grid point, respectively; and γ, β, and λ are the lapse rates. M
refers to the molar mass of dry air (28.965·10−3 kg/mol), R represents the universal gas
constant (8.31432 J/K·mol), and g denotes the gravitational coefficient. A new parameter τ
is introduced to show the proportion of temperature and temperature lapse rate, which
can be expressed as:

PU = PG[1− τ(HU − HG)]
g·M
R·β (8)

λ can be obtained by Equation (6) or (9). In this work, λ is obtained by fitting Equation (9):

ZWD = 10−6(k′2 + k3/Tm
) Rd

(λ + 1)g
es (9)

where k′2 and k3 denote the refractive index constants. Rd refers to the specific gas constant
for the dry constituents [41].

To further analyze the distribution of the annual mean of the lapse rate parameters,
the data over China are determined from 2012 to 2016, and the result is shown in Figure 5.
The annual mean value of the pressure lapse rate, temperature lapse rate, and Tm lapse
rate shows obvious geographical characteristics over China. The values are smaller in the
west of China than in other regions, which is due to the higher elevation in the western
region. The distribution of the water vapor decrease factor is different from the others,
which shows that the values in the northeast and southwest areas are larger than that in
the other regions. Furthermore, all the parameters show significant correlations for latitude
and longitude.
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3. Development of the CTrop Model

Some shortcomings still exist in tropospheric models that have been developed, such
as only single gridded data used for modeling. In this work, a sliding window algorithm
is introduced to develop the tropospheric delay model, as shown in Figure 6. The new
approach is instituted to divide the area of China into regular windows of the same size.
Model parameters are estimated based on the data in each window to be taken as results
of the center point of the sliding window. The realization process of the sliding window
algorithm has been described in previous works [36,42].
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Figure 6. Realization process of the sliding window algorithm over China. The red rectangles denote
the size of the sliding windows, and the red dots denote the center point of each window. The new
grid over China consists of red dots and blue dashed lines.

As mentioned above, temperature, Tm, pressure, and water vapor pressure exhibit
evident seasonal, latitudinal, and longitudinal characteristics over China, which should
be taken into account to obtain a high-precision model. The equation in each window is
expressed as follows:

MP(ϕ, θ, DOY) = α1 + α2·ϕ + α3·θ + α4· cos
(

2π
DOY

365.25

)
+ α5· sin

(
2π

DOY
365.25

)
+ α6· cos

(
4π

DOY
365.25

)
+ α7· sin

(
4π

DOY
365.25

)
(10)

where MP is the meteorological parameters, such as temperature, Tm, pressure, and water
vapor pressure; ϕ is the latitude; θ is the longitude; α1 is the annual average value of the
meteorological parameters; α2 is the latitude correction; α3 is the longitude correction; α4
and α5 are the annual amplitude coefficients of the meteorological parameters; α6 and α7
are the semiannual amplitude coefficients of the meteorological parameters, and DOY is
the day of the year.

The elevation of the grid points in the atmospheric reanalysis data is inconsistent with
the elevation of GNSS stations. The height correction plays an important role in modeling,
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for which the lapse rates of meteorological parameters should be considered for height
correction in the vertical dimension. The equation is written as follows:

LR(ϕ, θ, DOY) = δ1 + δ2·ϕ + δ3·θ + δ4· cos
(

2π
DOY

365.25

)
+ δ5· sin

(
2π

DOY
365.25

)
+ δ6· cos

(
4π

DOY
365.25

)
+ δ7· sin

(
4π

DOY
365.25

)
(11)

where LR is the lapse rates of parameters in the vertical dimension, such as γ, β, λ, and
τ; δ1 is the annual mean value of the lapse rate of parameters; δ2 is the latitude correction;
δ3 is the longitude correction; δ4 and δ5 are the annual amplitude coefficients of the lapse
rate parameters; δ6 and δ7 are the semiannual amplitude coefficients of the meteorological
parameters.

The coefficients are calculated by least-squares adjustment in each window over China
from 2012 to 2016, and a grid model calculating tropospheric key parameters over China
named the CTrop model is established with a spatial resolution of 1.25

◦ × 1
◦
.

For horizontal interpolation, the inverse distance weighted and bilinear methods are
commonly used. Considering the fact that changes in latitude have an impact on tropo-
spheric parameters when developing the model, the inverse distance weighted method
can reduce the impact on the interpolation results in the latitude direction, and grid points
farther from the user have less of an impact on the interpolation, so the inverse distance
weighted method is used for horizontal interpolation.

Only the day of the year (DOY) and the location of the station are needed when
applying this model, which makes it very convenient. First, the four grid points nearest
to the location are identified. The parameters of these four points at the height are then
calculated. Finally, inverse distance weighted interpolation is employed to interpolate the
required parameters at the given location.

4. Results and Discussion
4.1. Analysis of the Accuracy of the CTrop Model

The performance of the CTrop model is validated by radiosonde data over China in
2017 compared with the GPT3 model at a resolution of 1◦ × 1◦. The results are summarized
in Table 1.

Table 1. Accuracy statistics of the meteorological parameters at each radiosonde site by the CTrop
and GPT3 models.

Model CTrop/GPT3

Parameters e (hPa) P (hPa) T (K) Tm (K)

bias

mean 0.01/0.34 –2.35/–2.12 –0.11/–1.25 0.19/1.46

min –2.08/–3.83 –31.67/–31.72 –2.43/–5.03 –0.94/–1.89

max 1.59/3.19 2.14/2.73 4.15/1.16 2.31/6.75

RMS

mean 2.60/2.86 5.51/5.83 3.09/3.44 3.35/3.87

min 1.04/1.09 1.86/2.04 1.12/1.00 2.04/1.88

max 4.83/5.06 32.07/42.71 5.15/6.01 5.02/7.27

Table 1 lists the accuracy of the CTrop model for meteorological parameters in com-
parison with the GPT3 model. In terms of water vapor pressure, the RMS of the CTrop
model is 2.60 hPa and is smaller than that of the GPT3 model, which decreases by 9%.
As for pressure, both models reveal a negative bias. Although the CTrop model shows
a larger bias than that of the GPT3 model, it attains a smaller RMS, which decreases by
6%. In terms of temperature, it also reveals a negative bias, which indicates that the value
calculated by the CTrop and GPT3 model is smaller than that of the radiosonde data. The
bias of the CTrop model is –0.11 K, which decreases by 91% compared to the GPT3 model.
The performance of the CTrop model is superior to that of the GPT3 model, attaining an
improvement of 10%. In terms of Tm, the CTrop model exhibits a smaller error than that

99



Remote Sens. 2021, 13, 3546

of the GPT3 model. The bias of the CTrop model is 0.19 K and the RMS of the CTrop
model is 3.35 K, with reductions of 87% and 13% compared with that of the GPT3 model,
respectively.

To analyze the spatial characteristics of the performance of the CTrop and GPT3
models over China, the accuracy of the tropospheric parameters at each radiosonde site are
calculated, and the results are shown in Figures 7–10.

As can be observed in Figure 7, the overall distribution of performance of the pressure
of the CTrop model is consistent with that of the GPT3 model over China, and the accuracy
of both models is high in most radiosonde sites. The largest error of radiosonde sites for
the CTrop model is the same as that of the GPT3 model. Furthermore, the performance
of the CTrop model in the Taibei radiosonde site (25.03◦N, 121.51◦E) is better than that
of the GPT3 model. Figure 8 shows that the GPT3 model attains the largest positive and
negative bias in terms of water vapor pressure. The CTrop model shows a smaller RMS in
the western area than in the eastern area. The performance of the CTrop and GPT3 models
in the coastal areas is relatively low, the reason for which may be that the rainfall in the
coastal areas is high, affected by the ocean climate. Figure 9 shows that both the GPT3 and
CTrop models perform well in the southeast area for Tm over China while displaying large
errors in the northeast region. The CTrop model attains a smaller error than that of the
GPT3 model in the west area over China. Figure 10 shows that most stations show positive
bias in the southeast area and negative bias in the northwest area. As the latitude increases,
the RMS accuracy shows a downward trend. The CTrop model performs better in high
latitude than does the GPT3 model. In short, the CTrop model shows better accuracy in
estimating the tropospheric parameters than that of the GPT3 model.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

min 1.04/1.09 1.86/2.04 1.12/1.00 2.04/1.88 
max 4.83/5.06 32.07/42.71 5.15/6.01 5.02/7.27 

To analyze the spatial characteristics of the performance of the CTrop and GPT3 
models over China, the accuracy of the tropospheric parameters at each radiosonde site 
are calculated, and the results are shown in Figures 7–10.  

As can be observed in Figure 7, the overall distribution of performance of the 
pressure of the CTrop model is consistent with that of the GPT3 model over China, and 
the accuracy of both models is high in most radiosonde sites. The largest error of 
radiosonde sites for the CTrop model is the same as that of the GPT3 model. Furthermore, 
the performance of the CTrop model in the Taibei radiosonde site (25.03°N, 121.51°E) is 
better than that of the GPT3 model. Figure 8 shows that the GPT3 model attains the largest 
positive and negative bias in terms of water vapor pressure. The CTrop model shows a 
smaller RMS in the western area than in the eastern area. The performance of the CTrop 
and GPT3 models in the coastal areas is relatively low, the reason for which may be that 
the rainfall in the coastal areas is high, affected by the ocean climate. Figure 9 shows that 
both the GPT3 and CTrop models perform well in the southeast area for Tm over China 
while displaying large errors in the northeast region. The CTrop model attains a smaller 
error than that of the GPT3 model in the west area over China. Figure 10 shows that most 
stations show positive bias in the southeast area and negative bias in the northwest area. 
As the latitude increases, the RMS accuracy shows a downward trend. The CTrop model 
performs better in high latitude than does the GPT3 model. In short, the CTrop model 
shows better accuracy in estimating the tropospheric parameters than that of the GPT3 
model. 

 
Figure 7. Distribution of the performance of pressure at each radiosonde site in 2017 by the CTrop and GPT3 models: (a) 
Bias of GPT3; (b) Bias of CTrop; (c) RMS of GPT3; (d) RMS of CTrop. The positive bias means the model outputs are larger 
than the reference values, while the negative bias means they are smaller than the reference values. 
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means they are smaller than the reference values.
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Figure 10. Distribution of the performance of temperature at each radiosonde site in 2017 by the
CTrop and GPT3 models: (a) Bias of GPT3; (b) Bias of CTrop; (c) RMS of GPT3; (d) RMS of CTrop.

The height of the radiosonde site is divided into three bands, and the performance at
different heights of the CTrop and GPT3 models are calculated. The results are listed in
Table 2. The precision of the two models is related to height. With the increase in height,
the performance of pressure and water vapor pressure is improved, but the temperature
decreases. The accuracy of the Tm of the CTrop model is improved with the increase in
height, which is contrary to that of the GPT3 model.

Table 2. Statistics of performance at different heights of the CTrop and GPT3 models validated by
radiosonde data.

Model CTrop/GPT3

Height (m) e (hPa) P (hPa) T (K) Tm (K)

bias

<500 0.07/0.47 –2.18/–2.05 –0.11/–0.88 0.53/0.88

500~2000 0.04/0.45 –3.57/2.50 –0.37/–1.94 0.19/1.99

>2000 –0.38/–0.57 –0.91/–1.21 0.81/–0.80 0.13/2.45

RMS

<500 3.20/3.29 5.69/6.55 2.84/3.15 3.48/3.61

500~2000 2.09/2.47 5.96/5.51 3.32/3.91 3.37/4.13

>2000 1.50/2.02 3.14/3.46 3.43/3.32 2.67/4.32

4.2. Analysis of the Accuracy of Different Resolutions of the CTrop Model

From the performance of the CTrop model compared with the GPT3 model, it can be
observed that the CTrop model based on the sliding window algorithm performs superiorly
to the GPT3 model. Since the resolutions of the GPT3 model are 1◦ × 1◦ and 5◦ × 5◦,
the applicability of the model is not sufficiently abundant. Based on the sliding window
algorithm, users can access model parameters of different resolutions for their requirements,
which represents one of its advantages. The goal behind the development of a lower horizontal
resolution version of the CTrop model is the reduction in the amount of gridded data provided
to users, as well as speeding up the troposphere delay computation process.
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To analyze the influence of different resolutions of the CTrop model, window sizes of
2.5◦ × 2◦ and 5◦ × 4◦ (lon. × lat.) are proposed for the development of models, named
CTrop-2 and CTrop-5, respectively. The CTrop model with sparser grids is compared to the
5-degree horizontal resolution version of the GPT3 model, named the GPT3-5 model. In
view of the high resolution of the CTrop-2 model, the discussion is limited to the CTrop-5
versus the GPT3-5 model, and the result of the CTrop-2 model is only displayed without
discussion. The results are shown in Tables 3 and 4 and Figures 11–14.

Table 3. Statistics of the bias of different resolutions of the CTrop model compared with the GPT3-5
model.

Models
e (hPa) P (hPa) T (K) Tm (K)

Mean [Min, Max]

CTrop-2 –0.03
[–1.87, 2.01]

–2.83
[–32.94, 2.79]

–0.05
[–2.85, 5.04]

0.27
[–1.32, 2.39]

CTrop-5 0.32
[–1.69, 2.53]

–2.78
[–33.17, 2.38]

–0.15
[–3.25, 5.86]

0.30
[–2.32, 2.46]

GPT3-5 0.16
[–3.45, 2.84]

–0.46
[–29.90, 6.44]

1.76
[–2.22, 13.77]

–1.19
[–6.14, 3.77]

Table 4. Statistic of the RMS of different resolutions of the CTrop model compared with the GPT3-5
model.

Models
e (hPa) P (hPa) T (K) Tm (K)

Mean [Min, Max]

CTrop-2 2.64
[1.08, 5.02]

5.59
[2.00, 33.15]

3.16
[1.17, 5.72]

3.37
[1.82, 5.11]

CTrop-5 2.71
[1.13, 5.34]

5.61
[2.00, 33.36]

3.26
[1.24, 6.41]

3.43
[1.87, 5.28]

GPT3-5 2.84
[1.05, 5.10]

6.18
[1.77, 42.89]

4.20
[2.15, 14.18]

3.52
[1.03, 7.37]
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Figure 14. Distribution of the performance of temperature in different resolutions of the CTrop and GPT3 models validated
by radiosonde sites in 2017: (a) Bias of GPT3-5; (b) Bias of CTrop-5; (c) Bias of CTrop-2; (d) RMS of GPT3-5; (e) RMS of
CTrop-5; (f) RMS of CTrop-2.

Tables 3 and 4 indicate that as the spatial resolution of the CTrop model decreases, the
accuracy gradually decreases. The Ctrop model also has better accuracy than the GPT3-5
model in lower spatial resolution. Regarding the water vapor pressure, the RMS of the
Ctrop-5 model is 2.71 hPa, showing an improvement of 5% compared with the GPT3-5
model. Considering the pressure, the CTrop-5 model achieves accuracy improvements of
10% when compared to the GPT3-5 model. Regarding temperature, the bias of the CTrop-5
model appears as a negative value, while the GPT3-5 model displays a positive value. The
RMS of the CTrop-5 model is 3.26 K, showing an improvement of 22% when compared
with the GPT3-5 model. In terms of Tm, the precision of the CTrop-5 model is 3.43 K, also
presenting a slight improvement when compared with the GPT3-5 model.

Figure 11 shows that all models display a large RMS of water vapor pressure in the
southeast of China. The CTrop-5 model shows an accuracy improvement in the northeast
of China when compared with the GPT3-5 model. Both models show large errors in the
southeast of China, which is subject to subtropical monsoons. Water vapor is transported
by monsoons from the sea to these areas, resulting in a higher error for modeling [12].
Figure 12 shows that the CTrop-5 model and the GPT3-5 model present positive and
negative biases of pressure in the majority of China. The CTrop-5 model presents a slight
improvement at a few stations in the northeast of China when compared with the GPT3-5
model. Figure 13 shows that all models have better accuracy of Tm in the south of China
than in the north of China. The CTrop-5 model presents an improvement in the west of
China when compared with the GPT3-5 model. Figure 14 shows that the CTrop-5 model
has better accuracy in the west of China than that of the GPT3-5 model. Consequently, the
lower horizontal resolution version of the CTrop model shows better accuracy in estimating
the tropospheric parameters than that of the GPT3 model.

5. Conclusions

In this work, the distribution characteristics of meteorological parameters are analyzed,
and it is observed that the meteorological parameters exhibit major annual and semiannual
periodic variations that are also related to latitude and longitude. Considering the spatial
distribution and time-varying characteristics of the meteorological parameters, a refined
regional empirical model (CTrop) based on the sliding window algorithm is developed for
the estimation of tropospheric key parameters over China. Only the day of the year (DOY)
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and the location of the station are needed when applying this model, which makes it very
convenient. The performance of the CTrop and GPT3 models are validated by radiosonde
data. Validation results demonstrate that the CTrop model shows higher precision than that
of the GPT3 model in all meteorological parameters. The improvements are 6%, 10%, 9%,
and 13% for pressure, temperature, water vapor pressure, and weighted mean temperature,
respectively. Three different resolutions of the CTrop model are also developed based on
the sliding window algorithm, for which users can access model parameters of different
resolutions for their requirements to reduce the amount of gridded data provided to the
users, as well as to speed up the troposphere delay computation process. The results
demonstrate that the CTrop model realizes better performance than that of the GPT3
model over China, which can meet the needs for GNSS meteorology and GNSS positioning.
Although the CTrop model is only developed in regions over China with the aim of meeting
the needs for GNSS positioning in China, we intend to expand the model to a global model
in future work.
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Abstract: The Haiyang 2B (HY-2B) satellite requires precise orbit determination (POD) products
for geodetic remote sensing techniques. An improved set of reduced-dynamic (RD) orbit solutions
was generated from the onboard Global Positioning System (GPS) measurements over a 14-month
period using refined strategies and processing techniques. The key POD strategies include a refined
empirical acceleration model, in-flight calibration of the GPS antenna, and the resolution of single-
receiver carrier-phase ambiguities. In this study, the potential periodicity of empirical acceleration
in the HY-2B POD was identified by spectral analysis. In the along-track direction, a noticeable
signal with four cycles per revolution (CPR) was significant. A mixed spectrum was observed for
the cross-track direction. To better understand the real in-flight environment, a refined empirical
acceleration model was used to cope with the time variability of empirical accelerations in HY-2B
POD. Three POD strategies were used for the reprocessing for superior orbit quality. Validation using
over one year of satellite laser ranging (SLR) measurements demonstrated a 5.2% improvement in the
orbit solution of the refined model. Reliable correction for the GPS antenna phase center was obtained
from an over-420-day dataset, and a trend in radial offset change was observed. After application of
the in-flight calibration of the GPS antenna, a 26% reduction in the RMS SLR residuals was achieved
for the RD orbit solution, and the carrier phase residuals were clearly reduced. The integer ambiguity
resolution of HY-2B led to strong geometric constraints for the estimated parameters, and a 15%
improvement in the SLR residuals could be inferred compared with the float solution.

Keywords: HY-2B; precise orbit determination; empirical accelerations model; satellite laser ranging;
GPS antenna phase center; single-receiver ambiguity resolution

1. Introduction

HaiYang-2B (HY-2B) is the second marine dynamic environment satellite of China [1].
It was launched on 25 October 2018, with an altitude and inclination of about 973 km and
99.3◦, respectively. The major objective of the HY-2B is to monitor and investigate the
marine environment. It carries various instruments, including a dual-frequency altimeter
in the Ku and C-bands, a scatterometer, and a microwave imager. The HY-2B mission
undertakes routine measurements of sea surface height. Its precise orbit provides a good
reference for an altimetry satellite, which is very important for long-term Earth obser-
vation missions [2–4]. Moreover, the precise orbit determination (POD) function of the
altimetry satellite is the basis of various oceanographic applications based on altimetry
technology [5,6], such as the determination of global and regional mean sea level changes,
the modeling of the mean sea height, ocean tide simulations, etc. [7–9].

To support this mission, the HY-2B spacecraft hosts a POD package, including an
onboard Global Positioning System (GPS) receiver and a laser retroreflector (LRR) for
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satellite laser ranging (SLR). Based on Global Navigation Satellite System (GNSS) measure-
ments and dynamical models of satellites, three different orbit determination methods were
developed, which are known as kinematic, dynamic, and reduced-dynamic. To optimize
the advantages of purely geometric observations and dynamic methods, pseudo-stochastic
parameters are employed to compensate for potential deficiencies of dynamic models
based on reduced-dynamic concepts [5,10]. At present, the reduced-dynamic POD based
on onboard GNSS observations has been widely used for most low-Earth orbit (LEO)
geodetic [11–13] and remote sensing missions [14–16]. The precise orbits of GRACE [17],
with an uncertainty of less than 3 cm in SLR residuals, are supported using onboard GPS
data. Overall SLR validation better than 2 cm for GOCE missions can be obtained for
GPS-based orbits [18]. The reduced-dynamic Swarm Precise Science Orbits (PSO) showed
an accuracy of better than 2 cm by independent SLR validation [19,20]. However, the
dynamic background models of the satellites involved and their data processing strategies
differ slightly, and there is no unified POD strategy.

Empirical accelerations have been successfully used in LEO POD as an inherent
strategy. Along with the initial state vector of LEO satellites and the scaling factors for
individual force model constituents, empirical acceleration parameters are estimated in
reduced-dynamic POD. The performance of this technique in high-precision orbit deter-
mination has been widely investigated by the LEO POD community [21–23]. A refined
non-gravitational force model of a LEO satellite will reduce the amount of empirical ac-
celeration [13,23,24], and many scholars have set their sights on model refinement. Some
analysis has indicated the direction and the time variability of the remaining deficit [18,22].
From the perspective of spectral analysis, the potential perturbation frequency of unmod-
eled acceleration information can be extracted and analyzed. Better orbit determination
results may be obtained when the empirical acceleration is consistent with the spectral
analysis. Therefore, spectral analysis of the remaining empirical acceleration of POD was
performed, and an optimized piece-wise empirical acceleration (PEA) model is proposed
in this article.

The accurate known location of the GPS receiver antenna relative to the center of
mass (CoM) is the premise of precise orbit determination [25,26]. This location is typically
provided by the spacecraft manufacturer, with a nominal accuracy of millimeters or better,
but the experience of past geodetic missions has shown that there may be inconsistencies at
the level of 2–3 cm [16,27,28]. Therefore, offset calibration of the GPS antenna phase center
and empirical phase center variations (PCV) corrections were performed to eliminate the
systematic errors in the HY-2B POD. Single-receiver integer ambiguity resolution (IAR)
has often been implemented in numerous LEO missions, and improved precision can be
inferred from SLR validation [13,16,20]. Unlike the fixed double-difference ambiguity of
terrestrial stations, a single-receiver IAR depends on the dedicated GNSS orbit, clocks,
and wide-lane bias products [16,29,30], which were implemented in this study to improve
orbit solutions. The single-receiver IAR of the Sentinel-3 and Swarm missions based
on the GRG (Groupe de Recherche de Géodésie Spatiale) products of the CNES/CLS
(Centre National d’Études Spatiales/Collecte Localisation Satellites) [31] analysis center
is supported by previous studies [16,20]. Furthermore, GNSS orbits and an IAR-enabled
clock with the accompanying Observation-Specific Bias (OSB) provided by the Center for
Orbit Determination in Europe (CODE) [30] was used to implement the single-receiver
IAR of LEO missions [13]. For improved orbit solutions for the HY-2B, a single-receiver
IAR was implemented in this study.

This manuscript is organized as follows. Section 2 provides a brief introduction to
the background dynamic model and the data process strategy used in HY-2B POD. An
assessment and a discussion of the different orbit solutions are presented in Section 3. A
discussion about the results is provided in in Section 4. Finally, Section 5 concludes the
study and provides a general outlook.
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2. Spectral Analysis of HY-2B Empirical Accelerations

The process models and strategies used for the determination of the HY-2B orbit are
elaborated in this section. The GNSS Research Center of Wuhan University undertakes
routine POD for the associated Haiyang-2 satellites, and the preliminary motivation of this
work was to improve the accuracy of the HY-2B satellite POD. The improvements were
driven primarily by offset calibration of the GPS antenna, implementation of ambiguity
resolution, and a refined PEA model.

2.1. POD Processing and Models

The reduced dynamic POD method makes use of GPS observations and well-established
models for computing the acceleration acting on satellites. An overview of the supporting
models and data processing strategies is presented in Table 1. The undifferenced processing
was adopted, and dual-frequency ionosphere-free combinations of the GPS data were used
as the basic observations for the HY-2B POD. The precise GNSS orbits, clock, and wide-lane
bias products provided by the CNES/CLS were used to implement a single-receiver IAR
for the HY-2B satellite. In order to be consistent with the standard IGS clock product, GPS
observations with a measurement interval of 30 seconds were used. For processing GPS
data with a sampling interval of below 30 seconds, the high-rate GRG clock offsets based
on the CODE clock product is available for single-receiver IAR. Details of this concept and
its implementation are described [20]. The GPS transmitter antenna phase center offsets
(PCO) and PCV of the IGS model [32,33] were taken into account. The GPS antenna offset
calibration of the HY-2B and the empirical PCV corrections were considered in POD.

Table 1. Force models and datasets for HY-2B precise orbit determination and SLR validation.

Model Description

Observation model

Observation Undifferenced ionosphere-free code and carrier phase
combinations

Interval and arc length 30 s and 30 h
GPS orbit and clocks CNES-CLS ‘GRG’ products; 30 s sampling
GPS satellite biases CNES-CLS wide-lane satellite biases

GPS satellite PCO and PCV IGS ATX models [33]
HY-2B attitude Nominal

HY-2B PCO and PCV Corrected using calibrated values

Dynamic model

Earth gravity EIGEN6C (120 × 120) [34]
Solid Earth and pole tides IERS 2010 conventions [35]

Ocean tides FES 2004 (30 × 30) [36]
N-body disturbance JPL DE405 [37]

Relativity IERS 2003 [38]

Solar radiation 13-plate macro-model, radiation pressure coefficients
(VIS and IR) [39]

Atmospheric drag 13-plate macro-model, atmospheric density model
adopting DTM-2013 [40]

Empirical acceleration Piecewise periodic acceleration

Estimated parameters

Initial state Position and velocity at the initial epoch
Receiver clock offset Each epoch as white noise
Phase ambiguities Each continuous tracking arc as a float

Solar radiation coefficients One per 30 h arc
Drag coefficients One per 180 min

Empirical coefficients One per 180 min, amplitudes of periodic accelerations
acting on the along- and cross-track directions
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Table 1. Cont.

Model Description

SLR validation

Station coordinates SLRF2014 [41]
Ocean tide loading FES 2004 [36]
Tropospheric delay Mendes and Pavlis [42]

Relativity Space-time curvature correction

The flat-plate macro-model is widely adopted for the LEO mission and provides a
proper tool to describe the non-gravitational force on the surfaces of a satellite [5,23,43].
The 13-plate macro-model obtained from [1] was used for HY-2B POD. The scale factors
were taken into account for solar radiation pressure (SRP) and atmospheric drag force. The
extended analytical SRP model developed by [39] was used, and photons in the visual
(VIS) and infrared (IR) were considered in SRP. We assumed that 50% of the total solar
radiation pressure is caused by shortwave and longwave radiations, and indicated this
contribution as 1/2. The temporal variation in the solar radiation pressure can be ignored
as it causes a very small effect [44]. The density values and composition data of the Earth’s
thermosphere obtained from DTM-2013 [40] were employed for a precise modeling of
atmospheric forces. Moreover, empirical accelerations were introduced in POD solution to
compensate for deficiencies of the modeled forces.

2.2. Frequency Characteristics

Non-gravitational modeling is challenging because it does not perfectly describe the
real in-flight environment encountered by a spacecraft and often relies on a variety of
external products [23,24,45]. In addition to the scaling parameter, a pre-defined number of
empirical accelerations, such as piecewise periodic or constant accelerations, were applied
to cope with the remaining deficiencies of the satellite’s prior model [21,22]. Accordingly,
the piecewise constant and periodic empirical accelerations can be obtained by:

..
r = a0 + a1 cos(k·v) + a2 sin(k·v), k = 1, 2 · · · (1)

where
..
r is the empirical acceleration used in POD, a0 is the constant acceleration, a1 and a2

are the coefficients of periodic acceleration, and k is the frequency of periodic acceleration.
Based on a high-precision force model, the unmodeled dynamic model generally occurs at
a frequency of one cycle per revolution (CPR) (i.e., 1 CPR empirical acceleration), which
causes empirical acceleration, which is in the form of the orbital period [45]. For a refined
PEA model, the fast Fourier transform (FFT) was used in this study to identify the potential
periodicity of the satellite’s empirical acceleration, and the frequency of PEA was reset for
orbit determination and analysis.

To fulfill our aims, an optimized periodic PEA model was proposed and implemented
for the HY-2B mission. The processing flow was roughly divided into two steps. First, the
piecewise constant acceleration strategy (i.e., only a constant PEA is used in Formula (1))
was used in POD to obtain a priori information for the residual acceleration and an analysis
of their spectra was performed to detect the potential periodic signals. Second, a frequency
test was carried out for comparison and verification. The piecewise constant accelerations
of HY-2B POD on Day 8 of the year 2019 are depicted in Figure 1, clearly indicating the
time variability of the remaining accelerations. Note that the periodic signals of the PEA
for three directions are generally difficult to identify (see Figure 1), and thus the FFT was
used in this study.
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As a starting point, estimated constant accelerations as well as reduced dynamic orbit 
solutions were obtained for a 14-day period, in which the acceleration value was used for 
spectral analysis. A power spectrum analysis of the residual accelerations in three direc-
tions is shown in Figure 2. The along-track direction and orbital radial direction show a 
clear periodic signal, while the results of the cross-track direction are complicated. For the 
along-track direction, 4 CPR is the dominant periodic signal. There is a noticeable signal 
of 2 CPR in the radial direction. However, a mixed spectrum is observed in the cross-track 
direction, and it is hard to identify the periodicity of the acceleration.  

Figure 1. Piecewise constant accelerations of the reduced-dynamic orbit determination on 8 January
2019 (day of year DOY 8). These accelerations are described as constant values in the along-track
(top), cross-track (middle), and radial (bottom) directions at consecutive intervals of 5 min.

As a starting point, estimated constant accelerations as well as reduced dynamic orbit
solutions were obtained for a 14-day period, in which the acceleration value was used
for spectral analysis. A power spectrum analysis of the residual accelerations in three
directions is shown in Figure 2. The along-track direction and orbital radial direction show
a clear periodic signal, while the results of the cross-track direction are complicated. For the
along-track direction, 4 CPR is the dominant periodic signal. There is a noticeable signal of
2 CPR in the radial direction. However, a mixed spectrum is observed in the cross-track
direction, and it is hard to identify the periodicity of the acceleration.
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2.3. Refined PEA Model of HY-2B

Figure 2 shows the presence of a low-frequency signal and a 5.5 CPR signal, and the
power spectrum magnitudes of the two signals are almost equivalent. Due to the existence
of high- and low-frequency signals, it may be necessary to make the empirical acceleration
in the cross-track direction in the form of a combination of constant and periodic signals.
Moreover, the conventional 1 CPR signal in the cross-track direction can be considered
as a comprehensive scheme. Based on these results, the PEA models of the empirical
acceleration in the along-track and normal directions can be obtained as:

..
rA = a1 cos(k·v) + a2 sin(k·v), k = 4

..
rc = a0 + a1 cos(k·v) + a2 sin(k·v), k = 5.5

(2)

and: ..
rA = a1 cos(k·v) + a2 sin(k·v), k = 4
..
rC = a1 cos(k·v) + a2 sin(k·v), k = 1

(3)

Likewise, the individual empirical accelerations in three directions can be expressed
as: ..

rA = a1 cos(k·v) + a2 sin(k·v), k = 4
..
rc = a0 + a1 cos(k·v) + a2 sin(k·v), k = 5.5

..
rR = a1 cos(k·v) + a2 sin(k·v), k = 2

(4)

and ..
rA = a1 cos(k·v) + a2 sin(k·v), k = 4
..
rC = a1 cos(k·v) + a2 sin(k·v), k = 1
..
rR = a1 cos(k·v) + a2 sin(k·v), k = 2

(5)

The periodic term of the empirical acceleration in three directions defined by the local
orbital reference frame has been revealed, and the power spectrum of the cross-track direc-
tion is worth discussing. The spectrum results show that there are two differences between
the normal direction and the other two directions. The power spectrum’s amplitude of
acceleration in the normal direction is smaller than that in the along-track and radial direc-
tions, which is related to the magnitude of acceleration and the intensity of the signal. On
the other hand, there is no obvious dominant signal in the normal direction, and there are
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coexisting high- and low-frequency signals. The optimal frequency combination for PEA is
discussed in the following section, and a refined PEA combination can independently be
inferred from the SLR validation.

3. Improvements in HY-2B POD

Based on the processing standards described in Section 2.3, assessments of each
processing chain are described in this section. In addition to satellite dynamics, improving
the geometric strength is a powerful means of improving the orbital accuracy of LEO
satellites. GPS antenna offset calibration and an assessment of single-receiver ambiguity
resolution were performed for the HY-2B satellites, as we describe in this section. An
internal consistency analysis and external validations are provided for different orbit
solutions. The GPS data covering the period since the initial GPS receiver operation
(November 2018) to the end of 2019 were used.

3.1. Performance Analysis of the Refined PEA Model

For a clear identification, a unique identifier (ID) was introduced based on the pro-
cessing strategy described in Section 2.3. The solution IDs consider the differences in the
direction and frequency of PEA (see Table 2). The first digit in the code represents the
along-track direction, the second digit represents the cross-track direction, and the third
digit is the radial direction. The number represents the frequency of empirical acceleration
in that direction. For example, the 111 solution means that the empirical acceleration is
set at 1 CPR in all three directions, whereas the 110 solution means that the empirical
acceleration is set at 1 CPR in the along-track and cross-track directions. The letter “C” in
110 + C represents the addition of constant acceleration in the cross-track direction to the
110 solution. To facilitate the identification, the 5.5 CPR signal is referred to as a 6 CPR
signal (see Table 2). In addition to the strategies mentioned in Section 2.2, the 110 and
111 solutions were used as regular strategies for comparison.

Table 2. Three-digit codes for different PEA solutions in POD. The number represents the frequency
of periodic acceleration, and the letter ‘C’ represents the addition of constant acceleration in the
cross-track direction.

Solution
Type

Along-Track Cross-Track Radial

Periodic
Acc.

Constant
Acc.

Periodic
Acc.

Constant
Acc.

Periodic
Acc.

Constant
Acc.

110 1 CPR No 1 CPR No No No

410 4 CPR No 1 CPR No No No

460 + C 4 CPR No 5.5 CPR Yes No No

111 1 CPR No 1 CPR No 1 CPR No

412 4 CPR No 1 CPR No 2 CPR No

462 + C 4 CPR No 5.5 CPR Yes 2 CPR No

Spectral analysis of the unmodeled acceleration provides effective prior informa-
tion for setting the frequency of the periodic PEA. The approach taken to optimize the
PEA model was to change the perturbation frequency to improve the orbit’s accuracy. A
frequency test based on spectral analysis was used to verify whether better orbit deter-
mination results could be obtained when the empirical acceleration was consistent with
the characteristic signal of the spectrum results. The SLR technique is a powerful means
of evaluating a GPS-based orbit [46] and it was used to evaluate the orbit accuracy of the
PEA model with different solutions. The fitting curve of the SLR residual with elevation
angle and azimuth angle was used [47,48]. Eleven high-performance International Laser
Ranging Service (ILRS) stations (i.e., Yarragadee (7090), Greenbelt (7105), Haleakala (7119),
Hartebeest (7501), Zimmerwald (7810), Mt. Stromlo (7825), Graz (7839), Herstmonceux

115



Remote Sens. 2021, 13, 3702

(7840), Potsdam (7841), Matera (7941), and Wettzel (8834)) [46] were used for SLR validation.
The relevant models used in processing are listed in Table 1.

The trend line for all stations’ SLR residuals with respect to the elevation angle (see
Figure 3) showed an overall dependency on the orbit solutions. The SLR residuals from
the 110 orbit solution showed high dependency; much lower mean residuals were found
for Solutions 410 and 460 + C. The 410 or 460 + C solutions probably represent reality
well. It is worth mentioning that the empirical accelerations in the along-track direction
compensated for the effect of the unmodeled part of the atmospheric drag. Both models
deal with non-conservative forces in the along-track direction, and thus there is a process
of mutual influence. The dependency between the SLR residuals and the azimuth angles
from the stations to the satellite is shown in Figure 4. A large mean bias occurred for the
111 and 412 solutions, and a slight improvement was observed for the 462 + C solution.
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An overview of SLR validation of the different PEA solutions over a 14-day dataset is
shown in Table 3. In general, the 410 orbit solution was the best for SLR validation, and
the 460 + C solution closely agreed with the spectral characteristics of acceleration. The
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SLR validation of this strategy was slightly worse than that of the 410 solution but it still
achieved good accuracy. The SLR validation (see Table 3) showed that the 110 solution,
which only estimated the acceleration in the along-track and cross-track directions, achieved
the expected orbit determination accuracy. The radial direction of LEO satellites is mainly
affected by conservative forces such as the gravitational field and tidal perturbation of the
Earth; it is also affected by Earth radiation pressure, which results in a slight and constant
acceleration. Considering the weak performance of the solutions with estimation of the
radial acceleration, the related solutions (i.e., 111, 412, and 462 + C) were not used in the
reprocessing of HY-2B POD.

Table 3. SLR residuals of different PEA strategies in POD. The SLR measurements were obtained
from 11 individual ILRS stations and used in validations of the HY-2B orbit.

PEA Solution Mean
(mm)

RMS
(mm) Note

110 2.6 16.6 r

410 −1.5 15.7 r

460 + C −2.0 16.5 r

111 −4.4 18.1

412 −5.4 18.5

462 + C −2.1 17.5
Note: “r” means that the PEA solution was used in the reprocessing of HY-2B POD.

Based on the spectral analysis of HY-2B empirical accelerations and orbit validation,
the reprocessing arc was extended from 1 November 2018 to 1 January 2020, and three
different PEA strategies were used in reprocessing (see Table 3). The SLR validation of
the reprocessing of HY-2B POD is shown in Figure 5. The 110 solution participated in
reprocessing as a routine strategy, while the remaining two strategies, i.e., the 410 and
460 + C solutions, performed well in the frequency test. Compared with the 110 solution,
the 410 solution provided better SLR validation after changing the frequency of the along-
track direction. The SLR residuals of the 11 high-performance SLR stations were improved
to some extent.
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According to the SLR validation for the different PEA solutions over 14 months of the
HY-2B mission, an optimized PEA strategy can be suggested. The 410 solution appeared
to be the best among the three strategies in terms of SLR validation: the RMS of the SLR
residuals of the 410 solution was 5.23% better than that of the 110 solution. When the
frequency of the along-track direction was kept at 4 CPR, the result of the 460 + C solution
with constant and periodic signals in the normal direction was slightly worse than that
of the 110 solution. The 460 + C solution was the worst among those analyzed, but the
average value of the SLR validation was slightly improved. For the mixed spectrum of
the cross-track direction, 1 CPR as a comprehensive solution could deal with this situation
well, and the validation using SLR observations proved this point.

3.2. GPS Antenna Offset Calibration

For a high-quality determination of the LEO orbit, the additional in-flight calibration
of the LEO GPS antenna is essential [25,49]; the impact of unmodeled systematic errors
on the HY-2B orbit is discussed. The validity of the GPS receiver antenna phase center
for the HY-2B and a correction value are assessed in this section. The generation of the
HY-2B GPS antenna phase center’s location was based on the PCO vectors, (e.g., from the
ground calibration), and no additional PCO was provided. As a starting point, the reduced-
dynamic POD as well as an estimation of the PCO’s z-component (i.e., the direction of
the upward-facing antenna’s boresight) were obtained for a 420-day period. A 20 mm
systematic discrepancy in the modeled antenna phase center could be observed for the
HY-2B (see Table 4). A 20 mm correction in the PCO z-component was adopted for further
study, and the phase residual from POD was obviously improved, as shown in Figure 6.
The negative residuals in the low-elevation area near the azimuth (0◦and 180◦) were
significantly reduced; Figure 6 shows a typical example for this situation.

Table 4. Coordinates for the GPS receiver and CoM in the body-fixed coordinate system.

Item Reference (x, y, z) (mm) Notes

CoM location (+1332.000, −8.600, +3.400) Nov. 2018

GPS antenna location (+347.290, −175.140, −1372.680) Main antenna (GPS a)

GPS antenna PCO (+0.0, +0.0, +20.0) Estimated PCO-offset valid for ionosphere-free L1/L2
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The residual approach [25,50] was used to obtain the phase map (see Figure 7) from the
ionosphere-free carrier phase residuals over a 420-day data span. The PCV map describes
the empirical phase pattern corrections around the given phase center. The static multipath
or other near-field effects caused by satellite components near the GPS antenna are potential
sources of these variations. Similar to other missions, flight calibration for the GPS antenna
and estimation of the PCV map from actual observations have been a standard practice for
POD [16,26,49].
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Considering fuel loss and deformation caused by in-flight temperature variations,
a long-term analysis of the locations of the GPS antenna phase center was carried out.
Table 4 shows the average value of the PCO z-component estimation, and the change in
daily estimation is discussed (see Figure 8). The offset deviation of the PCO z-component
fluctuated by about 21 mm since the start of the mission, while its offset changed by around
18 mm one year after the launch. The trend of 2–3 mm in the z-direction can be observed
in Figure 8. Regular updates of the PCO of onboard receivers are indispensable to ensure
high-precision orbit determination.
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For an assessment of the HY-2B POD solutions with PCO/PCV correction, the uncor-
rected and newly corrected orbits were compared against the SLR observations. Figure 9
shows the SLR residuals of the two orbit solutions from 11 high-performance stations. It
is clear that the PCO/PCV correction improved the overall accuracy of the POD solution
for HY-2B. SLR validation demonstrated a 26% improvement for the orbit solution with
PCO/PCV correction, and a 1.57 cm RMS of SLR residuals for the reduced-dynamic or-
bits was obtained. This means that the HY-2B POD product is of high quality, which is
extremely important for an altimetry satellite.
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3.3. Single-Receiver Ambiguity Resolution

Reprocessing of the raw GPS data from the HY-2B satellite covering the period from
the launch (11 November 2018) to end of 2019 was performed for this study to support
single-receiver ambiguity resolution. The CNES-CLS wide-lane satellite bias (WSB) product,
complementary to these biases, and the CNES-CLS clock product were used in the GPS-
based precise orbit determination. Details of this process and successful implementation of
the Swarm GPS receiver and the Sentinel-3 GPS receiver are described in [16,29].

Over the 1-year timeframe displayed in Figure 10, average fixed rates of 92.19%
for wide-lane ambiguities and 73.93% for narrow-lane ambiguities were obtained for
HY-2B. Simple integer rounding is sufficient in practice to solve the mixed-integer prob-
lem [16,20], and the acceptance criterion of 0.24 and 0.12 cycles, respectively, was used. No
notable variations in the success rate for wide-lane and narrow-lane ambiguity fixing could
be recognized.
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SLR measurements are used as a totally independent technique to evaluate the accu-
racy of GPS-based orbits for the HY-2B satellite. RMS SLR residuals of 15.7 and 13.3 mm
were obtained for the float ambiguity (FA) solution and the ambiguity-fixed (AF) solution,
respectively (see Table 5). The overall reduction of 15.3% in the RMS SLR residuals proved
that AF POD solutions are a powerful strategy for improving orbit accuracy. A well-
established SLR validation depends heavily on the station coordinates and station-specific
ranging biases [7,51]. For a better interpretation, the mean and standard deviation of the
SLR residuals for each ILRS station are presented in Table 5. An overall mean bias of about
2 mm was found in the SLR validation. In all computations, observations above the 8◦

elevation were employed, and an outlier threshold of 15 cm (only 0.88% of the SLR data
were rejected) was applied.

Table 5. SLR residuals and number of normal points for 11 high-performance ILRS stations used for
the validation of the HY-2B orbit.

Station (ID) Nnp

Float Amb. Amb. Fixed

Mean
(mm)

STD
(mm)

Mean
(mm)

STD
(mm)

Yarragadee (7090) 10,496 −3.3 16.0 −3.3 13.7

Greenbelt (7105) 3102 −4.2 17.3 −4.0 14.8

Haleakala (7119) 1010 3.2 11.8 3.3 10.2

Hartebeest (7501) 2265 3.4 15.6 1.9 11.3

Zimmerwald (7810) 3990 −0.4 12.4 −1.1 10.2

Mt. Stromlo (7825) 5447 −5.1 13.3 −5.5 9.9

Graz (7839) 2224 7.2 16.2 6.2 13.7

Herstmonceux (7840) 2726 −0.2 13.8 −1.4 12.2

Potsdam (7841) 1212 −8.8 13.6 −9.3 11.7

Matera (7941) 2024 −9.8 13.8 −9.7 11.4

Wettzel (8834) 1730 −8.2 17.5 −8.8 13.7

Total 36,226 −2.3 15.7 −2.7 13.3

4. Discussion

In this paper, the refined PEA strategy is proposed for superior orbital accuracy of the
HY-2B satellite. A spectral analysis was performed to identify the potential periodicity of
empirical acceleration in HY-2B POD. Noticeable signals were identified in the along-track
and radial directions, and a mixed spectrum was observed for the cross-track direction. Ac-
cording to the spectral analysis of HY-2B empirical accelerations, six sets of PEA strategies
were employed to assess the impact of the PEA model on the POD performance. SLR, as a
completely independent space-geodetic technology, was used to evaluate the accuracy of
GPS-based orbit solutions [46,52]. In order to deal with the complexity of the cross-track
direction, two comprehensive PEA strategies were adopted for HY2B POD. Moreover, we
found that the PEA model with empirical parameters in the along-track and cross-track
directions provided satisfying orbit determination accuracy. This indicates that the forces
in the radial direction of the satellite were well described by the background model. The
14 months of GPS observations are used for the reprocessing to evaluate different PEA
solutions. It is worth mentioning that the optimized PEA strategy in this article is only
applicable to HY2B satellites. Future work can consider investigating the POD performance
of the refined PEA model for other LEO satellites and can also focus on the refinement
of non-gravitational force modeling that might further reduce the uncertainty in LEO
POD [13,20,24].
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Similar to other LEO missions, inconsistencies at a level of 2 cm were confirmed for
the HY-2B GPS antenna phase center [16,25,26]. More than one year’s data were used
for PCO estimation, and the change trend in the PCO z-component could be inferred
from the time series of the results. The GRG provided by the CNES/CLS analysis center
was used to support the implementation of HY-2B ambiguity-fixed POD solutions, which
resulted in a 15% improvement of SLR residuals compared to the float solution. Similar
results based on OBS-based products provided by CODE were also obtained by other LEO
satellite missions [13,30]. The improvement of these GNSS products will benefit the LEO
POD community.

5. Conclusions

A set of improved orbit solutions covering a period of more than a year was generated
for the HY-2B satellite using a refined dynamic modeling and processing strategy. Key
enhancements focused on a refined PEA strategy, GPS receiver offset calibration, and
the implementation of integer ambiguity resolution. Updates to each processing strategy
resulted in varying degrees of improvement for the orbit. Normally, PEA is used to absorb
the uncertainties of physical modelling. To better understand the time-varying residual
acceleration of spacecraft, here, we presented a refined PEA model. A spectral analysis was
conducted to identify the potential periodicity of empirical acceleration in the HY-2B POD,
and the main signals existing in the three dimensions (along-track, cross-track, and radial
direction) were extracted and analyzed. The 4 CPR signal in the along-track direction and
the 2 CPR in the radial direction were identified, and a mixed spectrum was observed for
the cross-track direction. The three reprocessing strategies were applied to select an orbit
solution of high quality. In the SLR validation, the refined PEA model with 4 CPR periodic
acceleration in the along-track direction and 1 CPR periodic acceleration in the cross-track
direction allowed a comprehensive strategy that could deal well with the mixed spectrum
in the cross-track direction. Compared with regular strategies, a noticeable improvement in
the SLR residuals for high-grade SLR stations was possible for orbits using the refined PEA
strategy, which is still suggested as an ideal strategy for empirical acceleration modeling.

Estimation of the PCO and modeling of the PCV can effectively eliminate the system-
atic deviation related to signal incidence and significantly reduce the phase residuals. A
systematic bias of 20 mm for the HY-2B GPS antenna phase center could be observed. Based
on the PCO’s z-component time series of more than 1 year, a decreasing trend appeared in
this direction. For 11 high-performance SLR sites, SLR residuals with a standard deviation
as low as 15.7 mm were obtained for the HY-2B POD, which produced a 25% improvement
compared with the solution without PCO/PCV. Ambiguity resolution added a strong
constrained geometry for other estimation parameters in POD, and better orbit precision
(13.3 mm RMS) was confirmed by independent SLR measurements. Some studies related
to ours are available [13,16,53]. The lean set of auxiliary data from the CNES/CLS products
will be attractive for the wider LEO POD community.
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Abstract: Precise knowledge of the phase center location of the global navigation satellite system
(GNSS) antenna is a prerequisite for precise orbit determination (POD) of the low Earth orbit (LEO)
satellite. The phase center offset (PCO) and phase center variation (PCV) values for the LEO antenna
obtained from ground calibration cannot reflect the error sources encountered in the actual spacecraft
environment. PCV corrections are estimated by ionosphere free (IF) carrier phase post-fit residuals of
reduced dynamic orbit determination. Ambiguity resolution (AR) plays a crucial role in achieving the
best orbit accuracy. The single receiver AR concept is realized using wide-lane (WL) and narrow-lane
(NL) bias products. Single difference (SD) observations between satellites are applied to remove
the receiver dependent phase bias. SD AR and traditional double difference (DD) AR methods
are applied to fix the ambiguities. The recovered SD and DD IF ambiguities are taken as pseudo-
observations to constrain the undifferenced IF ambiguity parameters in the POD process. The LEO
orbits based on float ambiguity (FA), SD, AR, and DD AR are investigated. One year’s data collected
by the Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) mission and GPS precise
products provided by the Center for Orbit Determination in Europe (CODE) were analyzed. Precise
orbit generated by the Jet Propulsion Laboratory (JPL), independent satellite laser ranging (SLR),
and K-band ranging (KBR) measurements were utilized to assess the orbit accuracy. More than 98%
of SD WL and 95% of SD NL ambiguities are fixed, which confirms the good quality of the bias
products and correctness of the SD AR method. With PCV corrections, the average phase residuals
of DD and SD AR solutions are 0.13 and 0.41 mm, which indicates improved consistency between
applied models and observations. Compared with JPL’s orbit, the SD AR orbits achieve the accuracy
of 6.0, 6.2, and 5.1 mm in along-track, cross-track, and radial directions. The SD AR solutions show
an average improvement of 18.3% related to the FA orbits while 6.3% is gained by the DD AR
approach. The root mean squares (RMSs) of SLR residuals for FA, DD AR, and SD AR solutions are
11.5, 10.2, and 9.6 mm, which validate the positive effect of AR on POD. Standard deviation (STD)
of KBR residuals for SD AR orbits is 1.8 mm while 0.9 mm is achieved by the DD AR method. The
explanation is that the phase bias products used for SD AR are not free of errors and the errors may
degrade the KBR validation. In-flight PCV calibration and ambiguity resolution improve the LEO
orbit accuracy effectively.

Keywords: single receiver ambiguity resolution; phase center variation (PCV) calibration; precise
orbit determination; GRACE-FO satellites

1. Introduction

Low Earth orbit (LEO) satellites are considered as key technologies for space missions
due to their advantages of flexibility, redundancy, efficiency, and low cost. To fulfill scientific
mission requirements, precise absolute or relative positions are required. The precise orbit
determination (POD) capability, based on spaceborne Global Positioning System (GPS)
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observations, has been successfully verified on the TOPEX/Poseidon satellite [1,2]. The
reduced dynamic POD technique [3,4] combined with the strength of GPS observations
has shown its advantages in sampling rate and accuracy. Since then, more GPS receivers
have been deployed on LEO satellites to meet the needs of various scientific missions for
high precision orbit.

The quality of global navigation satellite system (GNSS) derived LEO orbits has
steadily improved thanks to numerous improvements in the GNSS orbit and clock products
provided by the International GNSS Service (IGS) [5], in the dynamic background models,
and in modeling the carrier phase observations. LEO orbit accuracy of 1–3 cm can be
fulfilled with float ambiguity (FA) [6,7]. With GPS precise orbit and clock products provided
by IGS, CHAMP orbit calculated with ionosphere free (IF) observations achieves the
accuracy of centimeter level [8]. GRACE orbit determined using GPS has been proven
by independent satellite laser ranging (SLR) and K-band ranging (KBR) data, and 1 cm
radial orbit accuracy has been achieved [9]. JASON’s GPS derived orbit is evaluated based
on SLR residuals, dynamic orbit produced by SLR/DORIS data, and altimeter crossover
tests [10,11], and the sub-centimeter radial accuracy is verified. Similar results are also
obtained in other LEO satellite missions, such as GOCE [12,13], Sentinel [14,15], TerraSAR-
X [7], HY [16], and FY-3 [17,18] satellites. Ambiguity resolution (AR) and in-flight antenna
phase center variation (PCV) calibration are essential to fully exploit the precision of GPS
observations for POD.

In order to fix the carrier phase ambiguities, a Kalman filter modeling the relative
spacecraft dynamics has been developed for the GRACE mission and the double difference
(DD) ambiguities are resolved to fully exploit the inherent measurement accuracy. Finally,
the resulting GRACE orbit matches the KBR measurements with an accuracy of 1 mm [19].
A GRACE POD based on undifferenced and doubly differenced GPS data is studied [6].
Different baselines, including the space baseline between two GRACE satellites, the space-
ground baselines consisting of LEO satellites and ground stations, and both types of
baselines together, are processed. Results show that fixing of the GPS DD ambiguities has a
significant impact on the space baseline [6]. With the orbit solution constrained by resolved
DD ambiguities, a GRACE baseline accuracy of 2 mm is also achieved [20].

The double difference ambiguity resolution (DD AR) approach requires two satellites
to construct the baseline. Several methods have been developed to resolve the integer
ambiguity for the single receiver user. The idea of a single receiver integer ambiguity
resolution forms the basis of PPPRTK. Taking the ionospheric delay as the unknown pa-
rameter, the common clock model [21,22] and distinct clocks model [23,24] are proposed to
perform the single receiver ambiguity resolution. For IF formulation, the integer recovery
clock (IRC) model [25,26], decoupled satellite clock (DSC) model [27], and uncalibrated
phase delay (UPD) or fractional cycle bias (FCB) model [28,29] are presented. The S-system
theory is applied by Teunissen to establish the linkage among different PPP-RTK meth-
ods [30,31]. Their differences are shown to lie (a) in the choice of S-basis; (b) in the choice
of parameterization; (c) in the choice of whether or not to eliminate the ionospheric delay.

With wide-lane (WL) and phase biases provided by the Jet Propulsion Laboratory
(JPL), the single receiver AR of GRACE and JASON-2 satellites is realized [32]. GRACE
baseline accuracy is improved from 6 mm of float ambiguity solution to 2 mm of ambiguity
fixed solution. Based on GPS orbit, clock, and WL bias products provided by Centre
National d’Études Spatiales (CNES) [26], single receiver AR is also employed to generate
the orbit of Sentinel-3A satellite and the root mean square (RMS) of SLR residuals decreases
from 9 to 5 mm [15]. Using the observation specific bias (OSB) products provided by the
Center for Orbit Determination in Europe (CODE), AR is applied to the POD of GRACE
and Sentinel-3 satellites [33]. Ambiguity fixing improves the orbit quality with validation
of KBR and SLR residuals, as well as the internal consistency between the reduced dynamic
and kinematic orbits. With UPDs estimated via a global distributed network, kinematic
orbits of Sentinel-3A and Swarm-A satellites are determined with AR [34]. SLR residuals
show an improvement of 20% for AR solution when compared with the FA solution.
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Different AR solutions, including DD AR, single difference (SD) AR, and integrated SD
and DD AR solutions are investigated with GRACE data to access their effects on orbit
accuracy [35].

Another factor affecting the orbit accuracy of the LEO satellite is the phase center
position of the spaceborne GNSS antenna. Nominal antenna models obtained from ground
calibration have been made available for the antennas deployed on several space missions,
such as GRACE [36], GOCE [37], Swarm [38], and TerraSAR-X [39]. Such nominal antenna
models, however, do not reflect the influence of error sources, which are additionally
encountered in the actual spacecraft environment, e.g., the influence of near-field mul-
tipath [36]. In-flight calibration of the LEO antenna is necessary for the stringent orbit
accuracy requirement, especially for the altimeter mission. Two different approaches, the
residual approach and the direct approach, can be used to determine the empirical PCV
correction of the LEO antenna. Using the residual approach, the PCV map of JASON-1
satellite is created. The mean post-fit phase residual is decreased from 8 to 5 mm, and 1 cm
radial accuracy is demonstrated [40]. PCV correction of the GOCE satellite is determined
with 154 days of data and the consistency of reduced dynamic and kinematic orbits is
improved when applying the PCV map [37]. An error in the given phase center offset (PCO)
of Sentinel-1A antenna has been found by comparing different PCVs and different POD
approaches [14]. The influence of relative PCV on precise baseline determination (PBD) of
formation flying satellites is also studied [41]. With application of the generated relative
PCVs of GRACE and GRACE-FO satellites, the consistency of KBR measurements is im-
proved by 30%. The effects of antenna PCV on orbit determination and clock estimation
for CentiSpace-1 satellite, which served as a navigation satellite, were analyzed [42].

The twin GRACE-FO satellites (named GRCC and GRCD hereafter), designed as
a successor of GRACE, and jointly developed by the National Aeronautics and Space
Administration (NASA) and the German Research Centre for Geosciences (GFZ), were
launched from California, USA, on May 22, 2018 [43]. The main goals of GRACE-FO are
to continuously provide high resolution monthly solutions of the Earth’s gravity field,
surface mass change, and to measure the vertical temperature and humidity profiles of
the Earth’s atmosphere [44]. GRACE and GRACE-FO satellites adopt the same satellite
appearance design, and are equipped with the KBR system, GPS receiver, SLR retroreflector,
star camera assembly (SCA), and other scientific instruments [44,45]. The appearance and
instrument installation position of GRACE-FO satellites are illustrated in Figure 1 [46].

Figure 1. Appearance and instrument installation position of GRACE-FO satellites.

Effects of PCV correction on POD of GRACE-FO satellites have been explored [35,43].
However, impacts of different ambiguity resolution strategies and in-flight PCV calibration
on POD and PBD still need more investigation. In this analysis, antenna PCV models of
GRACE-FO satellites are developed to further exploit the POD accuracy. Single receiver
and double difference integer ambiguity resolution methods are investigated and realized.
With one year of data, GRACE-FO orbits based on different AR strategies, including FA, SD
AR, and DD AR, are studied and evaluated with JPL’s orbit, SLR, and KBR measurements.
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Section 2 provides details of the strategy and data adopted for GRACE-FO POD. The
antenna PCV estimation approach and related results are presented in Section 3. Section 4
introduces the GNSS observation model and focuses on the SD and DD AR. POD and PBD
results with PCV corrections and different AR methods were analyzed. The necessity of
in-flight antenna calibration and ambiguity resolution is verified. Finally, discussions are
made, followed by conclusions.

2. POD Strategy and Data Usage
2.1. POD Strategy

The reduced dynamic approach is employed to determine the orbits of GRACE-FO
satellites. The Position And Navigation Data Analyst (PANDA) software [47], developed at
the GNSS research center of Wuhan University, is modified and used for the POD process.
The POD strategy is listed in Table 1. The macro model of GRACE-FO satellites [44]
is applied to model the non-gravitational forces, which mainly result from atmospheric
drag, solar, and earth radiation pressure. The atmospheric density values required for
atmospheric drag modeling are obtained with the DTM94 model [48]. To account for
deficiencies in DTM94 and the macro model, drag coefficient is estimated freely once
per orbital revolution. Solar radiation pressure is calculated based on the satellite macro
model and a scale factor is estimated per orbit determination arc. Additionally, one cycle
per revolution (CPR) empirical accelerations in along-track and cross-track directions are
estimated to compensate for deficiencies in the adopted force models. Other estimated
parameters include receiver clock offsets and carrier phase ambiguities. The GRACE-FO
antenna PCOs are applied according to the VGN1B product [44]. PCV corrections for IF
carrier phase observations are calculated using the method described in Section 3.1.

Table 1. POD strategy of GRACE-FO satellites.

Parameter Description

Background force models

Static gravity field model EIGEN_06C (130 × 130) [49]

Solid earth and pole tides IERS Conventions 2010 [50]

Ocean tides FES2004 (30 × 30) [51]

Ocean pole tides Desai [52] (30 × 30)

Third body perturbations JPL’s DE405

General relativistic effects IERS Conventions 2010 [50]

Solar radiation pressure Macro model [44]

Atmospheric drag Macro model [44], DTM94 [48]

Input data and products

GPS Observations Undifferenced IF code and carrier phase

Sample interval 10 s

Elevation mask 0◦

GPS orbit CODE’s final GPS orbit

GPS clock and hardware bias CODE’s 5 s clock and OSB products

GPS antenna correction igs14.atx

GRACE-FO antenna correction PCO applied [44]

Phase wind-up Applied [53]
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Table 1. Cont.

Parameter Description

Gravitational bending IERS Conventions 2010 [50]

Relativistic correction IERS Conventions 2010 [50]

Estimated parameters

Initial state vector Position and velocity per satellite per arc

Atmospheric drag coefficient One per orbital resolution

Scale coefficient of solar radiation pressure One per satellite per arc

Empirical along- and cross-track accelerations 1-CPR accelerations per orbital resolution

Receiver clock errors Epoch wise

Carrier phase ambiguities One per satellite tracking pass

According to the ambiguity resolution methods, three kinds of orbits are calculated.
The first orbit is calculated with float ambiguities (donated as FA solution hereafter), the
second solution is constrained by integer DD ambiguities (DD AR solution), and the third
orbit is generated with the constraint of integer SD ambiguities (SD AR solution).

2.2. Data Usage

The twin GRACE-FO satellites fly a polar orbit with an altitude of 490 km. Over
the mission lifetime, the two satellites will remain in co-planar orbits and the along-track
separation is about 220 km. For POD, the GRACE-FO satellites are equipped with the new
generation of the GNSS space science receiver, the TriG receiver. The receiver upgrades the
capabilities offered by the BlackJack receiver, which was carried on the GRACE mission.
GPS C/A, P1, and P2 pseudoranges, and associated carrier phase observations, namely
LA, L1, and L2 can be provided by the receiver [54]. The GPS P1 and P2 pseudoranges and
L1 and L2 carrier phase observations are used in this research.

One year of data in 2019 is processed. The data can be obtained from the GRACE-FO
level 1B RL04 products, which are available at ftp://isdcftp.gfz-potsdam.de/grace-fo/
(accessed on 17 October 2021). The products also include the satellite attitude (SCA1B),
precise orbits provided by JPL (GNV1B), biased inter-satellite ranges measured by KBR
system (KBR1B), and the positions of the GPS antenna phase center (VGN1B). The GNV1B
and KBR1B data can be used to assess the orbit quality. PCOs of ionosphere free carrier
phase observations and SLR reflector positions in the science reference frame (SRF) are
listed in Table 2. CODE’s GPS final orbits and 5 s clock products are used, and the associated
OSB products are also applied to allow for SD AR [55,56].

Table 2. GPS antenna PCOs and SLR reflector Coordinates of GRACE-FO satellites.

Satellite
GPS Antenna PCO/m SLR Reflector/m

X Y Z X Y Z

GRCC 0.26023 −0.00128 −0.47697 0.60000 0.32750 0.22080

GRCD 0.26004 −0.00107 −0.47618 0.60000 0.32750 0.22080

3. Estimation of PCV Corrections
3.1. Mathematical Models

Modeling GNSS observation requires the computation of the geometric distance
between the antenna phase center location of the GNSS satellite at signal emission time and
the antenna phase center location of the receiving antenna at signal reception time. The
phase center location usually differs from the mechanical antenna reference point (ARP).
The difference vector is conventionally described by a set of phase center corrections. Such
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a set of corrections consists of a PCO vector, which defines the position of the mean antenna
phase center, with respect to the ARP and a consistent function, which models the azimuth
and zenith dependent PCVs [36].

Phase center corrections have some inherent degrees of freedom. One set of corrections
consisting of a PCO vector r0 and an azimuth and zenith dependent function φ(α, z) can be
transformed into a new set, consisting of r′0 and φ′(α, z), which gives the same result:

r′0 = r0 + ∆r
φ′(α, z) = φ(α, z)− ∆r · e + ∆φ

(1)

where α and z are azimuth and zenith angles, ∆φ is an arbitrary offset and cannot be
separated from the receiver clock. The unit vector e denotes the direction from the receiver
to the satellite. The offset vector ∆r can be chosen arbitrarily. Preferably, PCVs should
not induce a PCO and ∆r should be zero. In that case, the mean antenna phase center is
explicitly defined by the PCO. This convention is particularly important if one would only
apply PCO and no PCV [14].

Taking computational burden into consideration, residual approach is employed in
this research. The antenna PCV is represented as piecewise linear function with respect to
the zenith and azimuth angles in the antenna fixed coordinate system. The model assumes
that PCV is composed of different grids, and zenith and azimuth angles are equally divided.
When the observation is at the point of P within the grid ABCD, its PCV value can be
linearly interpolated:

∆PCV,P = (1− γ)(1− β)∆PCV,A + γ(1− β)∆PCV,B + γβ∆PCV,C + (1− γ)β∆PCV,D
γ = (α− α1)/(α2 − α1), β = (z− z1)/(z2 − z1)

(2)

where ∆PCV,P is the PCV at point P and is observation, ∆PCV,i(i = A, B, C, D) are the PCVs
at points A, B, C, D are parameters to be estimated. γ and β are combination coefficients,
α and z are azimuth and zenith angles of P, α1 is the azimuth of point A and D, α2 is the
azimuth of B and C, z1 is the zenith of A and B, z2 is the zenith of C and D.

3.2. Results

The PCOs of GRACE-FO satellites provided in the VGN1B product are introduced
as fixed and only the PCVs are estimated. Residual approach [36] is employed with three
iterations to obtain the PCV maps. Resolutions in azimuth and zenith are 5◦. Two kinds of
PCV maps are created—one is generated with the phase residuals from DD AR solution
and the other is derived from the SD AR solution.

Figure 2 are PCV maps of GRACE-FO satellites produced from the DD AR solution.
The azimuth of 0◦ points into the direction of flight. A similarity exists between the PCVs
of GRCC and GRCD satellites, especially in the azimuth ranges of 90◦–180◦ and 270◦–360◦.
The absolute maximum PCV of GRCC satellite is −14.56 mm with azimuth angle 185◦ and
elevation angle 25◦. For the GRCD satellite, the absolute maximum PCV is −14.95 mm
with azimuth angle 190◦ and elevation angle 30◦.

Figure 3 presents the PCV maps produced from the SD AR solution. The absolute
maximum PCV of GRCC satellite is −12.57 mm with azimuth angle 185◦ and elevation
angle 25◦, while the GRCD satellite is −12.15 mm with azimuth angle 185◦ and elevation
angle 30◦. The PCV maps generated from DD AR and SD AR solutions have similar patterns
when comparing Figure 2a with Figure 3a and comparing Figure 2b with Figure 3b. The
PCVs made from the SD AR solution have less maximum values.
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Figure 2. The 5◦ × 5◦ PCV corrections of (a) GRCC and (b) GRCD satellites based on ionosphere free
carrier phase residuals from the DD AR solution.

Figure 3. The 5◦ × 5◦ PCV corrections of (a) GRCC and (b) GRCD satellites based on ionosphere free
carrier phase residuals from SD AR solution.

PCV maps in Figures 2 and 3 are used to correct the carrier phase observations and
then to perform the POD. All available carrier phase residuals are averaged and Figure 4
illustrates the results of GRCC satellite. Figure 4a presents the carrier phase residuals
from the DD AR solution while Figure 4b presents the residuals from the SD AR solution.
It should be noted that the limit of the color bar is 5 mm. With application of the PCV
corrections, most of the carrier phase residuals of the DD AR solution are less than 1 mm
and the mean value is 0.13 mm. The carrier phase residuals of the SD AR solution are a bit
larger, especially in the range with azimuth of 0◦–30◦ and elevation of 30◦–60◦, the average
is 0.41 mm. Similar results are obtained for the GRCD satellite and are not shown here.
Carrier phase residuals can be used to measure the consistency between the applied models
and GPS observations. It can be induced that the application of PCV corrections improves
the orbit accuracy. The effects of PCV correction on POD and PBD will be presented in the
following sections.
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Figure 4. Carrier phase residuals of GRCC satellite derived from (a) DD AR solution and (b) SD AR
solution with application of PCV corrections.

4. POD with Ambiguity Resolution

The GNSS observation model and the methods employed to resolve the SD and DD
ambiguities are introduced in this part. FA, DD AR, and SD AR schemes are applied to
calculate the GRACE-FO orbits. The generated orbits are assessed with JPL’s orbit, SLR,
and KBR data. Effects of PCV corrections on POD and PBD are also analyzed.

4.1. Mathematical Models
4.1.1. GNSS Observation Model

GNSS code and carrier phase observations between a satellite and a receiver are
usually described by the following equations [35,57]:

Ps
r,j = ρs

r + c(dtr − dts) + Is
r,j + br,j − bs

j
Ls

r,j = ρs
r + c(dtr − dts)− Is

r,j + λj(Ns
r,j + Br,j − Bs

j ) + λjω
s
r

(3)

where Ps
r,j and Ls

r,j are code and carrier phase observations in meters, r and s represent the
receiver and GNSS satellite, j is the signal frequency, ρs

r is the geometry distance between
receiver and satellite, c is the speed of light, dtr and dts are receiver and satellite clock
errors, Is

r,j is ionospheric delay [58], br,j and bs
j are receiver and satellite hardware biases of

pseudorange, Br,j and Bs
j are hardware biases of the carrier phase observation, λj is signal

wavelength and Ns
r,j is the integer ambiguity. ωs

r is the phase wind-up error and can be
corrected by model [53], in the remaining part, this item will be omitted.

Both ionosphere free and ionosphere float models can be used for POD. The first order
ionospheric delay can be eliminated by the ionosphere free model, while in the ionosphere
float model, the ionospheric delay is estimated as an unknown parameter. The ionosphere
free approach eliminates the ionospheric delay twice and leads to smaller redundancy. The
ionosphere free method owns fewer unknown parameters and it also has the drawback of
lacking flexibility for further model strengthening [59]. In this investigation, the ionosphere
free model is employed.

Following the IGS convention, the IF pseudorange biases will be assimilated into the
receiver and satellite clock offsets. IF observations can be formulated as:

Ps
r,IF = ρs

r + c(dtr − dts)

Ls
r,IF = ρs

r + c(dtr − dts) + λ1Ns
r,IF

Ns
r,IF = Ns

r,IF + (Br,IF − br,IF/λ1)− (Bs
IF − bs

IF/λ1)

(4)

where Ps
r,IF and Ls

r,IF are IF code and carrier phase observations, dtr and dts are receiver
and satellite clock errors, including the pseudorange hardware biases. br,IF and bs

IF are
the IF pseudorange hardware biases while Br,IF and Bs

IF are the carrier phase biases. λ1
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is the wavelength of L1. Ns
r,IF is the IF ambiguity, which includes the hardware biases in

both pseudorange and carrier phase observations, Ns
r,IF is a combination of integer L1 and

L2 ambiguities.
In order to fix the ambiguities, Blewitt presents a sequential integer ambiguity resolu-

tion method to resolve the DD ambiguities of long baseline. The integer DD WL ambiguities
are firstly determined with a combination of pseudorange and carrier phase observations.
Then the DD narrow-lane (NL) ambiguities are fixed using the estimated IF ambiguities
and already fixed integer WL ambiguities [57]. For a single receiver integer ambiguity
resolution, GNSS satellites SD observations are used to cancel the receiver based phase bias.
Guo et al. provide a detailed description about the model to realize single receiver AR [35].
These methods are employed in this contribution to fix the SD and DD ambiguities.

4.1.2. Single Receiver Ambiguity Resolution

The float IF ambiguity can be rewritten as the combination of integer WL and float NL
ambiguities as the following [57]:

Ns
r,IF = f1 f2

f 2
1− f 2

2
Ns

r,WL +
f1

f1+ f2
Ns

r,NL

Ns
r,WL = Ns

r,1 − Ns
r,2

Ns
r,NL = Ns

r,NL + dr,NL − ds
NL

(5)

where Ns
r,WL and Ns

r,NL are integer WL and NL ambiguities, Ns
r,NL is float NL ambiguity,

dr,NL and ds
NL are the NL FCBs of the receiver and satellite.

The integer WL and NL ambiguities are fixed with two steps. Firstly, the WL ambiguity
is resolved using the Hatch–Melbourne–Wübbena combination [60–62]:

Ns
r,WL = (

f1Ls
r,1 − f2Ls

r,2

f1 − f2
−

f1Ps
r,1 + f2Ps

r,2

f1 + f2
)/λWL = Ns

r,WL + dr,WL − ds
WL (6)

where dr,WL and ds
WL are receiver and satellite WL FCBs, λWL is WL wavelength. After

correction of the WL FCBs, the integer WL ambiguity can be determined. Then integer NL
ambiguity can be derived with the fixed WL ambiguity, the estimated float IF ambiguity,
and the associated NL FCBs using Equation (5).

Once the WL and NL ambiguities are resolved, the IF ambiguity can be reconstructed
according to Equation (5). Usually satellite dependent WL and NL FCBs can be estimated
with ground network stations or provided by GNSS analysis institutions [26,55,63]. How-
ever, receiver dependent FCBs are not available and cannot be removed from Equations (5)
and (6). SD operation between satellites is suggested to cancel the receiver FCBs. The SD
integer WL and NL ambiguities can be calculated using Equation (7):

∆Ns1,s2
r,WL = ∆Ns1,s2

r,WL + ∆ds1,s2
WL

∆Ns1,s2
r,NL = ∆Ns1,s2

r,NL + ∆ds1,s2
NL

(7)

where ∆ is single difference operator, ∆Ns1,s2
r,WL and ∆Ns1,s2

r,NL are float SD WL and NL ambi-
guities of satellite s1 and s2 while ∆Ns1,s2

r,WL and ∆Ns1,s2
r,NL are integer ambiguities. ∆ds1,s2

WL and
∆ds1,s2

NL are SD hardware biases between satellites. Once SD WL and NL ambiguities are
fixed, the SD IF ambiguity can be recovered as follows:

∆Ns1,s2
r,IF =

f1 f2

f 2
1 − f 2

2
∆Ns1,s2

r,WL +
f1

f1 + f2
(∆Ns1,s2

r,NL − ∆ds1,s2
NL ) (8)

The recovered SD IF ambiguity is taken as pseudo-observation to constrain the undif-
ferenced IF ambiguity parameters in the POD estimation using Equation (9):

∆Ns1,s2
r,IF = Ns1

r,IF − Ns2
r,IF, Ws1,s2

r (9)
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where Ws1,s2
r is the weight of the pseudo-observation and will be assigned with a large

value to put a strong confidence.

4.1.3. Double Difference Ambiguity Resolution

With regard to the DD ambiguity, both receiver and satellite FCBs can be removed. The
WL and NL DD ambiguities are theoretically integers according to Equations (5) and (6).
The DD IF ambiguity can be reconstructed by:

∆∇Ns1,s2
r1,r2,IF =

f1 f2

f 2
1 − f 2

2
∆∇Ns1,s2

r1,r2,WL +
f1

f1 + f2
∆∇Ns1,s2

r1,r2,NL (10)

where ∆∇ is double difference operator, r1 and r2 denote a receiver pair. The DD IF
ambiguity then is also treated as a pseudo-observation to constrain the undifferenced
IF ambiguities.

∆∇Ns1,s2
r1,r2,IF = Ns2

r2,IF − Ns1
r2,IF − Ns2

r1,IF + Ns1
r1,IF, Ws1,s2

r1,r2 (11)

Ws1,s2
r1,r2 is the weight of the pseudo-observation. The precision of the DD and SD IF ambigui-

ties is set to be 1 × 10−4 L1 cycles (about 0.02 mm) to impose strong constraints.

4.1.4. Integer Ambiguity Validation

Several integer ambiguity resolution methods have been proposed including the
integer rounding, integer bootstrapping, integer least squares, and partial ambiguity
resolution methods [64]. The integer rounding approach is used in this research to resolve
the WL and NL ambiguities. The ambiguity validation procedure is presented here for
clearness. The reader can refer to [65] for more details.

Let b be the float WL or NL ambiguities and it is assumed that the probability density
function for b is:

P(b|n ) = 1

(2π)1/2σ
exp[− (b− n)2

2σ2 ] (12)

where n is the true integer ambiguity, σ is the formal uncertainty from the adjustment. Let
I be the nearest integer of b. In the ambiguity rounding procedure, it should be determined
whether to fix the ambiguity to I or leave it as float. The deviation

x = b− I (13)

must fall in the interval [−0.5, 0.5]. If the true integer ambiguity n is not equal to the
nearest integer I, the probability of wrong ambiguity resolution can be calculated using
Equation (14):

Q0 =
∞

∑
m=1

[
er f c(

m− x√
2σ

)− er f c(
m + x√

2σ
)

]
≤ α (14)

er f c(x) =
2√
π

∫ ∞

x
e−t2

dt (15)

where α is the allowable rate of wrongly fixed ambiguity, er f c is the complementary error
function. In order to eliminate some extremes, a decision function is defined:

d(x, σ) = T/Q0 (16)

T =

{
0, |x| ≥ T1orσ ≥ T2

(1− |x|T1
)(3T2 − 3σ), otherwise

(17)

where T1 is the limit for the deviation x and T2 is the limit for σ. In this analysis, T1 and
T2 are both 0.25 cycles for WL ambiguity resolution, and are 0.15 cycles for NL ambiguity

134



Remote Sens. 2021, 13, 4204

resolution. When d(x, σ) is greater than 1000, the ambiguity will be fixed to the nearest
integer [28,66].

4.2. Results

One year of data in 2019 collected by GRACE-FO satellites were analyzed; 38 days
were excluded due to large satellite maneuvers or data gaps. The method introduced
in Section 4.1.2 is used to resolve the SD WL and NL ambiguities, and the method in
Section 4.1.3 is adopted to fix the DD ambiguities. Firstly, the residuals and fixing rates of
WL and NL ambiguities are presented. Then the absolute orbit accuracy of each satellite
and baseline accuracy between two satellites are evaluated.

4.2.1. Ambiguity Resolution Results

Ambiguity resolution performance is evaluated in terms of the residual and fixing rate.
Ambiguity residual is the difference between the float ambiguity and its nearest integer.
After removing the satellite and receiver FCBs, the float SD WL and NL ambiguities should
be close to the integers. For DD ambiguities, the FCBs of the receiver and satellite are
cancelled, which leads to an integer nature. As illustrated by Teunissen [67], the distribution
of the ambiguity residuals is non-Gaussian. It is symmetric and the point of symmetry is
the origin, which implies that the mean of the ambiguity residuals is zero. The distribution
will become more peaked when the estimated float ambiguity is more precise. Figure 5a,b
are residual distributions of SD WL and NL ambiguities while Figure 5c,d are distributions
of DD ambiguities. Blue bars in the figures are percentages of the related residuals. The
mean values of SD and DD WL and NL residuals are all less than 0.01 cycles and verify the
symmetry of distribution. The standard deviations (STDs) of SD WL and NL residuals are
0.10 cycles and 0.07 cycles and validate the high quality of the estimated float ambiguities.
For DD WL and NL ambiguities, the STDs are both 0.06 cycles. The smaller STDs of DD
ambiguity residuals confirm the effectiveness of the DD operation to cancel the receiver
and satellite FCBs.

Figure 5. Residual distributions of (a) SD WL, (b) SD NL, (c) DD WL, and (d) DD NL ambiguities of
GRACE-FO satellites.
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The ambiguity fixing rate is the number of fixed ambiguities divided by the total
number of ambiguities. Figure 6 illustrates the daily ambiguity fixing rates of SD and DD
ambiguities. Figure 6a is for SD ambiguities while Figure 6b is for DD ambiguities. The
upper and lower panels of Figure 6a are results of GRCC and GRCD satellites. Blue and
red dots in Figure 6 are fixing rates of WL and NL ambiguities. For the GRCC satellite, one
year average fixing rates of SD WL and NL ambiguities are 98.5% and 95.8%. A similar
performance is observed for the GRCD satellite; the fixing rates are 98.4% and 96.5%. The
excellent fixing rates confirm the good quality of applied phase bias products. For the DD
case, higher fixing rates are obtained for WL and NL ambiguities, which are 99.1% and
96.7%. Gaps in day of year (DOY) 32–51, 146–149, 205–211, and 299–302 are because of
data missing.

Figure 6. Fixing rates of (a) SD WL and NL ambiguities of GRCC and GRCD satellites and (b) DD WL and NL ambiguities.

4.2.2. Single Satellite Orbit Validation

JPL’s precise orbit of GRACE-FO satellites is also included in the level 1B product.
The orbit is calculated with single receiver ambiguity resolution [32,44] and can be used to
assess the orbits generated in this investigation. The effect of PCV correction on POD is first
evaluated. Figure 7 presents the along-track orbit differences between SD AR solution and
JPL’s orbit. The upper panel is for GRCC satellite and lower part is for GRCD satellite. The
red dots are daily RMSs of differences of the orbit determined with PCV corrections while
blue dots are RMSs without PCV corrections. Using created PCV maps, the RMS of the
GRCC satellite decreases from 7.2 to 6.0 mm, and from 6.4 to 5.9 mm for the GRCD satellite.
The detailed results for three components of SD AR and DD AR orbits can be found in
Table 3. The average improvements in along-track, cross-track, and radial direction are
12.2%, 1.6%, and 1.0% for SD AR solution, and are 10.3%, 1.5%, and 3.5% for DD AR
solution. The improvement of along-track orbit accuracy is the most significant, which
validates the necessity of PCV calibration, especially for PBD.
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Figure 7. Daily RMSs of along-track orbit differences between JPL’s orbit and SD AR solution with
(red dots) and without (blue dots) PCV corrections. The upper panel is for the GRCC satellite and
lower panel is for the GRCD satellite.

Table 3. Orbit improvements with application of PCV maps for SD AR and DD AR solutions.

Solution Satellite Orbit No PCV/mm With PCV/mm Improvement

SD AR
Solution

GRCC
Along-track 7.2 6.0 16.7%

Cross-track 6.2 6.2 0

Radial 5.2 5.1 1.9%

GRCD
Along-track 6.4 5.9 7.8%

Cross-track 6.3 6.1 3.2%

Radial 5.1 5.1 0

DD AR
Solution

GRCC
Along-track 9.5 8.3 12.6%

Cross-track 6.5 6.4 1.5%

Radial 5.8 5.6 3.4%

GRCD
Along-track 8.8 8.1 8.0%

Cross-track 6.4 6.3 1.6%

Radial 5.7 5.5 3.5%

RMSs on DOY 100, 141, and 159 of GRCC satellite, and RMSs on DOY 204 and 290 of
GRCD satellite are larger than other days. It has been found that sometimes, in these days,
fewer GPS satellites are available, which leads to a decrease in orbit accuracy.

Orbit accuracy with different AR methods is also evaluated. Figure 8 presents the
RMSs of along-track orbit differences of FA, DD AR, and SD AR solutions with JPL’s orbit.
For GRCC satellite, the along-track RMS of the FA solution is 8.8 mm, the RMS is improved
to 8.3 mm with DD AR and further achieves 6.0 mm by using the SD AR method. Results
of three orbit components of the two satellites are listed in Table 4. Compared with the FA
solution, the DD AR orbit has an average improvement of 6.3% while the SD AR result has
an improvement of 18.3%. Similar to PCV correction, the along-track orbit accuracy has the
most significant improvement, which is more than 30%.
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Figure 8. Daily RMSs of along-track orbit differences of FA, DD AR, and SD AR solutions with JPL’s
orbit. The upper panel is for the GRCC satellite and the lower panel is for the GRCD satellite.

Table 4. RMSs of differences between the FA, DD AR and SD AR orbits and JPL’s orbit.

Satellite Orbit
Solutions/mm Improvement

FA DD AR SD AR DD AR SD AR

GRCC

Along-track 8.8 8.3 6.0 5.7% 31.8%

Cross-track 6.7 6.4 6.2 4.5% 7.5%

Radial 6.0 5.6 5.1 6.7% 15.0%

GRCD

Along-track 8.8 8.1 5.9 8.0% 33.0%

Cross-track 6.7 6.3 6.1 6.0% 9.0%

Radial 5.9 5.5 5.1 6.8% 13.6%

GRACE-FO satellites are equipped with SLR retroreflectors. The independent SLR data
can be used as external validation. SLR normal points from nine laser stations (Yarragadee,
Greenbelt, Haleakala, Zimmerwald, Mount Stromlo, Wettzell, Graz, Herstmonceux, and
Potsdam) are used for orbit evaluation. Residuals larger than 10 cm are rejected and an
elevation cutoff of 10◦ is applied. Figure 9 shows the RMSs of SLR residuals. Red, green,
and blue dots are RMSs of FA, DD AR, and SD AR orbits. The RMSs of the GRCC satellite
are 11.5, 10.2, and 9.6 mm, which confirms the positive impact of AR on the orbit quality.
Compared with the DD AR solution, the SD AR result has better performance, which is
also validated by JPL’s orbit.
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Figure 9. RMSs of SLR residuals derived from FA (red dots), DD AR (green dots), and SD AR
(blue dots) solutions. The upper panel is for the GRCC satellite and the lower panel is for the
GRCD satellite.

4.2.3. Baseline Validation

The GRACE-FO mission offers the possibility of validating the computed orbit, in
particular, the along-track component, with the ultra-precise KBR measurements [33,68].
Figure 10 illustrates the STDs of KBR residuals (named KBR STD hereafter) calculated
using FA, DD AR, and SD AR orbits. The effect of antenna PCV correction on PBD is also
illustrated. Figure 10a presents the KBR STDs of the SD AR orbit with PCV corrections
(blue dots), the SD AR orbit without PCV corrections (green dots), and FA orbit with PCV
corrections (red dots). PCV corrections used to calculate FA orbit are generated from the
SD AR solution. Figure 10b is the result of the DD AR solution.

Figure 10. Daily STDs of KBR residuals of (a) FA orbit with PCV corrections (red dots), SD AR orbit without PCV corrections
(green dots), and SD AR orbit with PCV corrections (blue dots); (b) FA orbit with PCV corrections (red dots), DD AR orbit
without PCV corrections (green dots), and DD AR orbit with PCV corrections (blue dots).

Both SD and the DD AR lead to a significant reduction in KBR residuals. Compared
with the FA result, the SD AR orbit improves the KBR STD from 5.9 to 3.1 mm, and the
DD AR orbit improves the STD to 1.6 mm. With PCV corrections, the KBR STD of the SD
AR solution decreases from 3.1 to 1.8 mm, and the STD of the DD AR orbit decreases from
1.6 to 0.9 mm. The baseline precision of the SD AR solution gains similar performance, as
presented by Arnold et al. [33]. The DD AR orbit achieves a sub-millimeter level as reported
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in previous research [6,19,69]. Comparisons with JPL’s orbit and SLR data show that the
SD AR solution possesses better performance, while in the KBR validation, the residual
STD of the DD AR orbit is smaller. In other words, the SD AR orbit has better absolute orbit
accuracy, while the DD AR orbit gets better relative performance. This is explained by two
facts: (a) phase bias products for SD AR are not free of errors and these errors may degrade
the KBR validation [35]; (b) both JPL’s orbit and the SD AR orbit in this investigation adopt
the single receiver ambiguity resolution method and a better consistency can be inferred.

5. Discussions

Precise knowledge of the phase center location of the GNSS antenna is a prerequisite
for high precision LEO orbit determination. PCO and PCV values of the LEO antenna
obtained from ground calibration cannot reflect the influence of error sources, which are
additionally encountered in the actual spacecraft environment. An in-flight calibration
of the LEO antenna is thus mandatory. In this analysis, antenna PCV is represented as
a piecewise linear function with respect to zenith and azimuth angles in the antenna
fixed coordinate system. A residual approach is employed to estimate the PCV correction.
Different ambiguity resolution strategies, including SD AR and DD AR, are investigated
to fully exploit the precision of GPS observations for POD. The single receiver integer
ambiguity resolution concept employed here makes use of the carrier phase biases and
clock products provided by CODE. One year of GRACE-FO data in 2019 are used to
demonstrate the effect of integer ambiguity resolution and PCV correction on POD.

PCV maps derived from SD AR and DD AR solutions have very similar patterns.
With PCV corrections, carrier phase residuals are reduced from about 10 to 1–2 mm, which
implies better consistency between the observations and applied models. The average
improvements of the SD AR solution in the along-track, cross-track, and radial directions
are 12.2%, 1.6%, and 1.0%, and for the DD AR solution, the improvements are 10.3%, 1.5%,
and 3.5%. The great enhancement in the along-track orbit accuracy validates the necessity
to calibrate the PCV errors in the relative POD.

The mean values of both SD and DD ambiguity residuals are less than 0.01 cycles
and confirm the symmetry of distribution. The fixing rates of SD WL and NL ambiguities
are more than 98% and 95%. Compared with the FA solution, DD AR orbit accuracy has
an average improvement of 6.3% while the SD AR result gains an increase of 18.3%. For
high-grade SLR stations, range residuals with RMS less than 10 mm are achieved for SD
AR orbit, which marks a 17% improvement compared to the FA result. Independent KBR
measurements are also used as external validations. KBR residuals STD of the SD AR
solution is 1.8 mm while STD of the DD AR orbit is 0.9 mm and reaches the sub-millimeter
level. The better baseline accuracy for the DD AR solution is explained by the errors in
phase bias products.

6. Conclusions

Integer ambiguity resolution plays a crucial role in achieving the best positioning or
orbit accuracy. Single receiver and double difference integer ambiguity resolution models
are introduced in this contribution. One year of GRACE-FO data were analyzed to verify
the orbit improvement with different ambiguity resolution strategies. In-flight antenna
PCV maps were developed to further exploit the POD accuracy.

With PCV corrections, along-track orbit accuracy of the SD AR solution is improved by
12.6%, and that of the DD AR solution is improved by 10.3%, which verifies the necessity
of in-flight antenna calibration. With phase biases cancelled by the double difference opera-
tion, fixing rates of DD ambiguities are more than 96.7%. Similar performance is achieved
by SD AR, which confirms the consistency of theoretical models and bias/clock products.

JPL’s orbited together with independent SLR and KBR measurements are used to
assess the results of different AR strategies. Both SD AR and DD AR solutions improve the
orbit accuracy. SD AR solution provides the best performance of absolute orbit. Compared
with JPL’s orbit, the RMS of the SD AR orbit differences is better than 6 mm and the SLR
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residual RMS is less than 10 mm. The DD AR solution realizes the highest baseline accuracy
and the STD of KBR residuals achieves 0.9 mm. In addition, sometimes there are fewer
GPS satellites available, which leads to the reduction of orbit accuracy. With the application
of multi-mode GNSS receivers and multi-GNSS phase bias products [70,71], orbit accuracy
based on single receiver ambiguity resolution can be further improved.
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Abstract: The existence of the common mode error (CME) in the continuous global navigation
satellite system (GNSS) coordinate time series affects geophysical studies that use GNSS observations.
To understand the potential contributors of CME in GNSS networks in Taiwan and their effect on
velocity estimations, we used the principal component analysis (PCA) and independent component
analysis (ICA) to filter the vertical coordinate time series from 44 high-quality GNSS stations in
Taiwan island in China, with a span of 10 years. The filtering effects have been evaluated and the
potential causes of the CME are analyzed. The root-mean-square values decreased by approximately
14% and 17% after spatio-temporal filtering using PCA and ICA, respectively. We then discuss
the relationship between the CME sources obtained by ICA and the environmental loads. The
results reveal that the independent displacements extracted by ICA correlate with the atmospheric
mass loading (ATML) and land water storage mass loading (LWS) of Taiwan in terms of both its
amplitude and phase. We then use the white noise plus power law noise model to quantitatively
estimate the noise characteristics of the pre- and post-filtered coordinate time series based on the
maximum likelihood estimation criterion. The results indicate that spatio-temporal filtering reduces
the amplitude of the PL and the periodic terms in the GPS time series.

Keywords: GPS time-series analysis; common mode error; independent component analysis;
seasonal signals; surface mass loading

1. Introduction

Continuous global navigation satellite system (GNSS) networks have been widely
used in the fields of geodesy and geophysics. The permanently operating ground reference
stations provide not only a millimeter-level 3-D coordinate time series under a global
reference frame, but also provide important observational data and quantitative constraints
for studies involving crustal deformation and dynamic processes on a global and regional
scale [1,2]. However, the GNSS data processing procedure is affected by many factors,
and numerous errors occur in the GNSS terminal products [3–5]. Geophysical signals can
be difficult to separate from noise and unknown error sources because they are hidden
in a detrended residual coordinate time series. Previous studies have identified that a
spatially correlated error generally exists in regional networks, caused by the reference
frame, satellites orbits, ocean tide correction models, and other unknown errors. This
is usually referred to as the common mode error (CME) [6–11]. The presence of this
error affects the accuracy of the station coordinates and velocity solutions, and conceals
many weak and transient signals in a coordinate time series (e.g., deep magma motion,
fault motion).
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Spatial filtering techniques can be used to mitigate the CME. There are presently two
types of spatial filtering techniques, stacking [6,12] and empirical orthogonal function
(EOF) decomposition [7], which have been widely used in the field of geodesy to detect
transient signals. Wdowinski et al. [6] initially introduced stacking to detect co-seismic dis-
placements in a residual position time series. However, Nikolaidis et al. [12] illustrated that
stacking works satisfactorily when the CME in a regional network is essentially spatially
homogeneous. Larger areas and weaker spatial correlations generally result in differences
between the spatial response of the different stations to the CME. Previous studies have
illustrated that the CME spatial correlation decreases with increasing distance and reaches
95% within 1000 km. For networks that exceed 2000 km, the CMEs exhibit significant
differences in various regions and the spatial correlation is essentially nonexistent beyond
6000 km [13,14]. To address this problem, Tian et al. [15] proposed a correlation weighting
stacking scheme. However, this algorithm is still affected by local-scale or site-specific
changes, and further research is necessary to obtain the appropriate weights of all the sites
at each epoch.

In comparison, Dong et al. [7] and Serpelloni et al. [16] verified that the EOF can
decompose residual coordinate time series into different modes to extract the CME, which
provides a stricter mathematical framework than stacking. Principal component analysis
(PCA) does not require CME spatial uniformity, but adopts a uniform temporal function
that affects stations across a regional network. Dong et al. [7] reviewed the spatial con-
sistency of stations using a visual appraisal of the decomposed principal components
(PCs) to extract the CME from the Southern California Integrated GPS Network (SCIGN).
PCA and its extensions have been subsequently used to eliminate the CME in local area
networks [8,17–24].

Previous studies focused on the effective removal of CME from a GNSS coordinate
time series to improve the accuracy of coordinate solutions from regional network mea-
surements [25], which is conducive to the study of some geophysical applications using
GNSS, such as the assessment of glacial isostatic adjustment models [26] and crustal move-
ment [27,28]. Other studies have addressed the potential contributors of CME, particularly
the potential geophysical signals [18,21,29–38]. This is particularly relevant for crustal
deformation caused by the redistribution of surface mass, such as strongly seasonal water
movements and atmospheric pressure changes. Kumar et al. [39] extracted the CME of
Taiwan using the EOF, and quantitatively analyzed the CME in the U direction and atmo-
spheric mass loading (ATML) of Taiwan, as calculated by the International Mass Loading
Service (IMLS). They found a significantly high correlation and degree of concordance
between the CME and ATML residuals for the vertical component. A further regression
analysis revealed that the highest 90% of the non-seasonal ATML displacements in Taiwan
are present in the CME variations.

However, the extraction of the CME using PCA still experiences some limitations for
geophysical interpretation. PCA is based on the second-order statistics of variance and
covariance, and therefore does not make full use of the higher-order CME statistics. PCA
can work effectively in cases where there is only a single source in the CME. However,
when the CME contains multiple competing sources, a single principal component (PC)
may contain a mixture of contributions from different sources, which can easily generate
artificial features. In contrast, Liu et al. [18,19,26], Ming et al. [38], and Yan et al. [29] applied
an independent component analysis (ICA) to geodetic data sets and successfully separated
seasonal and long-term trend signals.

Previous studies indicated the effectiveness of ICA in studying the potential contrib-
utors of CME in a regional GNSS coordinate time series. Thus, following the work of
Kumar et al. [39], we apply a combination of PCA and ICA to the vertical coordinate time
series of 44 stations from Taiwan island in China, and extract the CMEs of this network. The
associated effects on the stations’ coordinate residuals and observed values are analyzed
and compared. We discuss the relationship between the CME sources and environmental
loadings, and compare GPS CMEs with vertical surface displacement predictions from the
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IMLS. We determine the cause of the Taiwan GNSS network CME, except for the atmo-
sphere pressure loading (ATML), and separate the signals related to land water storage
mass loading (LWS). The results further validate the accuracy of ICA applications for CME
signal separation and the geophysical interpretation of regional networks. Changes in the
optimal noise model of the GNSS stations before and after the ICA filtering are analyzed,
as well as the differences between the time series parameters of the GNSS stations.

2. Methods and Data Processing
2.1. GNSS Data Processing

All of the stations in Taiwan’s continuous GPS (CGPS) array are equipped with dual-
frequency geodetic GNSS receivers (Trimble 4000 SST Geodetic II P and 4000 SSE/SSIGeodetic
Surveyor) [40]. A station was usually occupied for more than two sessions, and each session
included 6–14 h of GPS observations by tracking all available satellites that had risen higher
than a 15◦ elevation angle. The sampling interval for the data logging is 15 s. The collected
data are downloaded from the internal RAM of the receivers to a PC hard disk or floppy
disk. The raw data of each station are then transferred to the Receiver INdependent
EXchange (RINEX) format using a transfer program for post-processing. The GNSS data in
RINEX format is converted to the Bernese format, compiled and processed, and solved with
respect to the Penghu Structural Stabilization Station on the west coast [40–42]. Figure 1
displays the location distribution map of CGPS sites in Taiwan Province. In this study, the
GPS measurements of 44 sites in Taiwan Province (red triangle in Figure 1) from 2006 to
2016 can be obtained from the GPS Lab web application (http://gps.earth.sinica.edu.tw,
accessed on 2 August 2021) of Institute of Earth Sciences, Academia Sinica, Taiwan Province,
which requires a simple registration process to access data. You can download three-
component continuous GPS time series data for all sites through the “download time
series” button.

In this study, we first selected data from the 283 available sites in the Taiwan CGPS
array that have been observed for more than 10 years, and 109 sites that have been observed
for less than 10 years. We then calculated the data length ratio of each site (Ratioi = Li/3652,
L is the data length of the ith site, i = 1, 2, · · · , 392) based on the vertical coordinate
time series data of each site from January 1, 2006 to December 31, 2015 (ten-year span,
totaling 3652 days). We selected 188 sites with Ratio ≥ 90%. We adopted the approach
of visual appraisal to screen and select 44 high-quality time series sites according to the
data consistency and quality. Figure 2 shows the data span of the 44 sites used for the CME
estimation, with nearly all of the sites having a data cycle longer than 9.5 years.

In the time series spatio-temporal analysis, GNSS coordinate time series require a series
of pre-processing steps. Coordinate series processing mainly includes outlier detection and
elimination, offsets detection, missing data interpolation, etc. Kurtosis is the non-Gaussian
property of random variables that can be measured by the fourth-order moment of the
variables, defined as:

kurt(x) = E
{

x4
}
− 3
(

E
{

x2
})2

(1)

where x is an independent random variable and E is a mathematical expectation operator.
In the ICA process, it is assumed that x is normalized, and E

{
y2} = 1. The kurtosis is

simplified to E
{

y4} − 3. For Gaussian variables, the kurtosis kurt(y) = E
{

y4} − 3 =
3E
{

y2}− 3 = 0, which implies that the kurtosis of the Gaussian variable is 0, the super-
Gaussian variable is positive, and the sub-Gaussian variable is negative. A stronger non-
Gaussian expression of the variable is associated with a greater absolute value of kurtosis. It
should be noted that the kurtosis calculation is highly sensitive to outliers [43–46]. Outliers
in a GNSS time series must therefore be identified in advance. The triple standard difference
method is used for outlier detection and elimination. An offset in a time series is most
often caused by antenna replacements and co-seismic displacement deformation, which
affects the analysis of periodic changes of the GNSS coordinate series and the estimation
of some geophysical signals. Here, we use the most convenient manual visual inspection
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method to eliminate the offsets [47]. The missing data in the time series are interpolated
after eliminating the outliers and fitting the offsets. The initial values of the missing data
are interpolated using a PCA iteration approach [26]. An initial interpolation result is
obtained using an inverse distance weighting interpolation. PCA is then applied and the
first several PCs for which the cumulative percentage exceeds 70% are used to reconstruct
the series. The PCA reconstruction is repeated until the maximum absolute value of the
difference between two iteration is less than 0.01 mm.
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Figure 2. Data availability of the 44 GPS sites. Blanks represent the missing data.

In the data pre-processing of the 44 GNSS stations, we used Equation (2) to fit the
time series of each station, and eliminated the linear term and offset term, to smoothen the
observation, and input the missing data. The time series after unified treatment ranges
from approximately −20 to 20 mm. We selected five stations with a notable linear term,
offset term and missing data in the coordinate time series (CHKU, JUNA, S101, SFON and
SHAN), as indicated on the left in Figure 3, and the pre-processed data are presented on
the right. It can be seen that the linear term, offset term, and missing data are all corrected.
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The coordinate time series for each site can be modeled as follows to obtain the effects
of seasonal variations and colored noise [12]:

y(ti) = a + bti + c sin(2πti) + d cos(2πti) + e sin(4πti) + f cos(4πti) +
ng

∑
j=1

gi H
(
ti − Tgi

)
+ εi (2)

where ti for i = 1, 2, · · · , N is the daily solution epoch in units of years, a and b are the
site position and linear rate, respectively, c and d are the annual term coefficients, e and f
are the semi-annual coefficients, H

(
ti − Tgi

)
is a Heaviside step function (when ti ≥ Tgi,

its value is 1; otherwise it is 0), gi is the change of rate from ti = Tgi, and εi is the model
residual and also represents noise. It is usually assumed that εi is white noise; however,
the analysis of a large amount of data shows that the noise in the coordinate time series
obtained from GNSS continuous observation data contain both white noise and colored
noise [5,48–54]. The velocity error in a GPS coordinate time series may be underestimated
by factors of 5–11 if a pure white noise model is assumed [5]. If the influence of colored
noise is not considered, a biased or inaccurate geophysical interpretation may be obtained.

2.2. Principal Component Analysis

PCA is an orthogonal decomposition method that combines a group of related data
and decomposes the group into a group of linear uncorrelated orthogonal eigenvectors and
corresponding PCs. Each of the vectors reflects some of the information from the original
matrix to different degrees. The PCs are arranged in descending order of eigenvalues,
and the first few PCs can generally capture most of the information from the original
matrix. Therefore, the main functions of the PCA is to manage the statistical method of
dimensionality reduction in mathematics, explore a small number of PCs to represent
the signals of the original data, and reflect the characteristic modes contained within the
original matrix as much as possible [7,20,55].

The daily station residual time series with a span of m days in a continuous GNSS
network is constructed by n stations, X

(
ti, xj

)
(i = 1, 2, · · · , m; j = 1, 2, · · · , n). Firstly, we

preprocess each data column in matrix X with trends and outliers, and obtain its covariance
matrix B using the following equation:

bij =
1

m− 1

m

∑
k=1

xk,ixk,j (3)
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where xk,i, xk,j respectively represent the time series corresponding to the ith and jth stations
at epoch k. The symmetric matrix B can be decomposed as:

B = VΛVT (4)

where eigenvector matrix VT is an (n× n) matrix and Λ is a non-zero diagonal matrix of
order k. For a complete rank covariance matrix B, k = n. The matrix X can be expressed as:

X = VP (5)

where P is a (m× n) matrix. The k-th row vector in P is the kth PC for matrix X and
represents a temporal signature of the mode. The kth column vector in V is the kth spatial
response corresponding to the mapped PC, which represents the spatial distribution of
the mode. The above decomposition method is known as an EOF analysis or a PCA. The
matrix P can be denoted as:

P = VTX (6)

We arrange the eigenvalues λi(i = 1, 2, · · · , n) in descending order, and the contri-
bution of each PC to the original data set can be represented by the feature cumulative
contribution rate mk(k = 1, 2, · · · , n):

mk =
∑k

i=1 λi

∑n
i=1 λi

(7)

The first few PCs represent those that contribute the most to the variance of a partic-
ipating time series, and are usually related to the common source of temporal function.
Higher-order PCs usually relate to the influence of local or individual stations. The CME
calculated by PCA can then be obtained according to:

εPCA =
q

∑
k=1

vk pk(1 ≤ q < n) (8)

where q is the number of PCs that define the CME.

2.3. Independent Component Analysis

ICA is a data-driven approach based on blind source separation (BSS). BSS only
assumes that the signal sources are independent non-Gaussian signals, and the relationship
between the information of the signal sources and the linear transformation is unknown.
ICA is a digital signal processing algorithm developed to solve this problem. Compared to
the model-driven approaches, ICA works without prior information about the underlying
sources, which allows it to effectively detect some signals that cannot be obtained when
using other methods [43–46].

It is assumed that signal sources are composed of several statistically independent
signals that overlap in both temporal and spatial domains, ICA synchronously observes
the overlapping signals using multiple channels and decomposes the observed signals into
several ICs, after the unmixing, as a set of source signal estimates (Figure 4). The channels
exert no influence on the signal, and the number of observed channels is the same as the
number of signals. The standard noiseless ICA mathematical model is:

X(t) = AS(t) (9)

where the random vectors X(t) = [X1(t), · · · , XM(t)]T represent the observed signals and
random vectors Si(t), i = 1, 2, · · · , N; M ≥ N represent the source signals, and A is a mix-
ing matrix. The ICA decomposition process can be regarded as the inverse transformation
of Equation (9):

Y(t) = ˆS(t) = BX(t) (10)

151



Remote Sens. 2021, 13, 4221

where B is the unmixing matrix. It is assumed that the row vectors in S are statistically
independent of each other, their joint probability density function (pdf) is the product of
their marginal probability density function, which means that, the joint entropy of each
component is the sum of the entropy of each component, such that:

p(S) =
n

∏
i=1

p(Si) (11)

where p is the pdf of S, where both A and the source signal S are unknown. However,
as long as the output components separated by the unmixing matrix B are statistically
independent of each other, this approach is equivalent to separating the source signals.
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The basic hypothesis of ICA is that the source signals are statistically independent,
allowing for no more than one source with a Gaussian distribution while describing the
remaining sources with non-Gaussian distributions. Most of the deformed signals in GNSS
coordinate sequences are also non-Gaussian signals, and the non-Gaussian signals are
quantized by negentropy. The ICA attempts to create various linear transformations on the
observed signals, and the maximum negentropy of the transformed quantity is likely to
indicate the source signals [43,46]. Various ICA algorithms have been derived based on
this fundamental idea. In this study, we use the FastICA algorithm based on negentropy to
estimate the original signals [56,57]. The negentropy is defined as:

J(X) =
∫ +∞

−∞
pG(X) ln pG(X)dX +

∫ +∞

−∞
p(X) ln p(X)dX (12)

where p(X) is the pdf of X, and pG(X) is the pdf of the Gaussian distribution with the same
covariance matrix as p(X). The greater negentropy values are associated with stronger
non-Gaussian signals [57–59].

A detailed description of the FastICA algorithm procedure is as follows:

1. Centralize and whiten the observed data.
2. Choose an initial weight vector of unit norm w.
3. Update w+ through w+ = E

[
Zg
(
wTZ

)]
− E

[
g′
(
wTZ

)]
w.

4. Normalize w by w = w+/||w||+.
5. Return to step 3 if w is not converged.

We can similarly reconstruct the original data set of a GNSS time series of n stations
across a period of m days and calculate the CME using the source signals that have been
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separated by ICA. We can obtain ICs by Y(t) = BX(t), assuming that A = B−1, and X can
be obtained by:

X(t) = B−1Y(t) = AY(t) (13)

The CME based on ICA can thus be given as:

εICA =
R

∑
k∈R

akyk (14)

where R is a group of temporal components in spatio-temporal filtering.

3. Results
3.1. Common Mode Error Extraction Using PCA/ICA

To intuitively compare the amplitude of each component, the corresponding spatial
response is usually divided by the maximum absolute value and scaled to a variation
interval of −100% ∼ 100%, where the scaled amount is multiplied by the corresponding
temporal components. An upward movement is a positive response and a downward is a
negative response. The results of the first five PCs are shown on the left side of Figure 5,
and their corresponding spatial responses are provided in the first row of Figure 6.
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We use the standard CME definition provided by Dong et al. [7], in which most
stations (50%) for a certain PC mode exhibit a clearly normalized spatial response (> 25%)
and the eigenvalue of the mode exceeds 1% of the collective eigenvalues; it can therefore
be considered as a common mode. The spatial response corresponding to the first PC
in the first line of Figure 6 displays notably good regional consistency, and its average
normalized amplitude (absolute value) is 77.3%. However, the 2nd–5th. PCs do not satisfy
this condition. In terms of eigenvalues, Table 1 provides the percentage of the first 10 PC
eigenvalues for the total eigenvalues and the cumulative contribution rate (eigenvalues).
The first PC accounts for 24.7%, the second PC accounts for 6.5%, and the cumulative
contribution rate of the eigenvalues tends to stabilize after the fifth order, which indicates
that the first PC is able to represent the most common-mode components. In summary,
we define the displacement component caused by the first PC as the CME of the entire
GPS network.
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positive spatial response, and the blue arrow represents the negative spatial response.

Table 1. Individual contribution rate and cumulative contribution rate of the top ten PCs.

Order of PCs Individual
Contribution Rate (%)

Cumulative
Contribution Rate (%)

1 24.7 24.7
2 6.5 31.2
3 4.6 35.8
4 3.7 39.5
5 3.6 43.1
6 3.0 46.1
7 2.7 48.8
8 2.5 51.3
9 2.4 53.7
10 2.3 56.0

We use ICA to process the five components from PCA. The principle is realized using
ICA’s fast fixed-point algorithm [57,60]. The first step of the algorithm is to centralize and
whiten the observed values before processing. The mixing matrix is orthogonal so as to
reduce the number of free parameters. The mixed signals are then linearly transformed to
express an unrelated variable with a variance that is equal to 1 (whitening or spheroidizing).
This step comprises the pretreatment process of ICA, which is realized by PCA. This is
conducted because the number of PCs reserved for the ICA analysis should be lower than
the data dimension. The process of trial and error is therefore used to select the appropriate
quantity [61]. In this study, the effect of retaining the first five PCs becomes apparent.

The ranking of the ICs obtained by ICA does not correspond to a decrease in the
variance. We therefore calculate the average ratio of the GPS_IC displacement in each
GPS site calculated by the ICA filtering to the observed time series, in accordance with the
procedure described by Liu et al. [19] and Milliner et al. [62]. Smaller ratios are associated
with contributions that are more significant, and the ICs are reordered in ascending order.
The corresponding spatial response of each IC is normalized according to the absolute
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value of its maximum value so that the comparison is more accurate. The IC time series and
the corresponding spatial response value, after the IC, is multiplied by the normalization
factor, shown on the right in Figure 5 and in the second row of Figure 6. The first two ICs
are evidently the largest of the original data according to the previous definition of the
CME, and their spatial response values display the same sign. We can therefore locate the
displacement caused by these two components as the CME of the entire GPS network in
ICA filtering.

After calculating the CME, we subtract its influence on each station from the original
time series. The filtering effect can be described by the reduction rate of the root mean
square (RMS) of the residual time series (Figure 7). The results in Table 2 reveal that after
PCA and ICA filtering, the average RMS values are reduced by approximately 14% and
17%, respectively. These two methods can therefore be used to effectively improve the
signal-to-noise ratio of the residual time series.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 7. RMS reduction percentage of residual time series after ICA filtering. 

Figure 7 shows the decline of the RMS value of the residual time series at each station 
after ICA filtering. Figure 7 also presents notable differences in the ICA filtering effect 
between the east and west. The RMS reduction rate in the west is relatively large, whereas 
that in the east is small, which is partially due to topography. There are many mountains 
on the eastern side of Taiwan and the stations are sparsely distributed, whereas the west-
ern side is relatively flat and the stations are relatively dense. Another explanation is the 
orogenic processes, as there is topographic uplift in the eastern region [63] and sinking in 
the southwest region due to groundwater extraction [64]. This phenomenon can also be 
observed in the second-order PCs obtained via PCA filtering, and the station response 
indicates notable local variation characteristics, as shown in PC2 in the first line of Figure 
6. 

3.2. Noise Analysis of GNSS Coordinate Time Series 
In the noise analysis of the Taiwan GNSS time series, for the original time series of 

each station, we fit the offsets in advance, interpolate the original data, and then analyze 
the power spectrum of the noise series. The results are presented in Figure 8. Due to the 
large volume of data, this study uses the GS39 station as an example to elaborate on an 
explanation. It can be seen that the power spectrum at low and high frequencies of the 
noise series presents different peaks and demonstrates a clear linear trend term. The spec-
tral energy in the low-frequency band is higher than that in high-frequency band. The 
spectral exponent of this component is -0.67, which indicates that the noise of this station 

Figure 7. RMS reduction percentage of residual time series after ICA filtering.

Table 2. Mean RMS error before and after PCA/ICA filtering of GPS stations.

Method RMS/mm

Before 6.47
After PCA 5.58

ICA 5.40

Figure 7 shows the decline of the RMS value of the residual time series at each station
after ICA filtering. Figure 7 also presents notable differences in the ICA filtering effect
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between the east and west. The RMS reduction rate in the west is relatively large, whereas
that in the east is small, which is partially due to topography. There are many mountains
on the eastern side of Taiwan and the stations are sparsely distributed, whereas the western
side is relatively flat and the stations are relatively dense. Another explanation is the
orogenic processes, as there is topographic uplift in the eastern region [63] and sinking
in the southwest region due to groundwater extraction [64]. This phenomenon can also
be observed in the second-order PCs obtained via PCA filtering, and the station response
indicates notable local variation characteristics, as shown in PC2 in the first line of Figure 6.

3.2. Noise Analysis of GNSS Coordinate Time Series

In the noise analysis of the Taiwan GNSS time series, for the original time series of
each station, we fit the offsets in advance, interpolate the original data, and then analyze
the power spectrum of the noise series. The results are presented in Figure 8. Due to
the large volume of data, this study uses the GS39 station as an example to elaborate on
an explanation. It can be seen that the power spectrum at low and high frequencies of
the noise series presents different peaks and demonstrates a clear linear trend term. The
spectral energy in the low-frequency band is higher than that in high-frequency band. The
spectral exponent of this component is −0.67, which indicates that the noise of this station
is influenced by colored noise. Through piecewise fitting, the slope of this component is
approximately approached, yielding−1 at a low frequency and 0 at a higher frequency. The
low-frequency result possesses the characteristics of flicker noise, and the high-frequency
result possesses the characteristics of white noise. It can thus be estimated that the noise
type of this point is a combination type of white noise and flicker noise.
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4. Discussion
4.1. Potential Geophysical Interpretation of the CME

We note that although the RMS reduction results are similar, the PCA and ICA filtering
processes exhibit different spatial and temporal patterns. Previous studies have also
revealed that PCA-derived CMEs are not completely unrelated to local effects or random
noise. The decomposition of similar contribution components in an actual network residual
time series is difficult to achieve using PCA, and we cannot identify potential geophysical
mechanisms or study the subtle signals in GPS observations [29]. In contrast, there is
a high correlation between the common mode components extracted by ICA and the
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simulated surface mass loading deformation. An important criterion to better understand
and describe the differences between the ICA and PCA results is the extent to which the
temporal and spatial patterns of annual crustal deformation, caused by mass loadings of
various geophysical sources, are restored by using these two methods.

We submitted requests for real-time solutions for the ATML, and LWS 3-D displace-
ment files from 44 stations in Taiwan between 1 January 2006 and 31 December 2015
using the online solution function of the IMLS (http://massloading.net/, accessed on
2 August 2021) [65–68]. For ATML and LWS, we used the GEOS-FPIT model developed by
the Global Modeling and Assimilation Office at NASA Goddard Space Flight Center, which
considers a time range from 1 January 2000 to present, that is updated several times per day.
The model resolution is 0.50◦ × 0.625◦ × 72 layers × 3 h. We obtained the displacement
time series in the center-of-figure frame.

We averaged all of the loading series displacements into the daily results, and we
calculated the average GPS_IC1 and GPS_IC2,comparing it with the average ATML and
LWS. As indicated in Figure 9, GPS_IC is the outer product of the IC and its corresponding
spatial response. We note that ATML and LWS are consistent in terms of their amplitude
and phase with GPS_IC1 and GPS_IC2, respectively. The correlation coefficients of these
two temporal patterns are 0.58 and 0.4, respectively. We therefore suggest that atmospheric
and hydrological mass loading are the main components of the CME in the Taiwan GPS
network, which can be reflected by the IC extracted by ICA spatio-temporal filtering.
Although IC1 and IC2 can be interpreted by ATML and LWS, other temporal components
are statistically independent, and their unretrieved information still requires further study.
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4.2. Effect of Removing the CME

We then use the Hector software [69] to analyze the 44 noise sequences with only
the offsets corrected using the white-plus-power law (W + PL) model. We do not fix the
spectral index, but treat it as an unknown factor, and solve it alongside the linear, annual,
and semi-annual periodic terms [14]. On this basis, we subtract the CME after ICA filtering
and analyze the obtained noise sequence, as shown in Table 3. We also analyze the power
spectrum of the original noise sequence, PCA filtered noise sequence, and ICA filtered
noise sequence of station GS39, as shown in Figure 10. The ICA filtering approach is
observed is more useful than the PCA in terms of the amplitude of the annual term.

Table 3 lists the estimated parameters and noise terms of the 44 stations in Taiwan.
We can see that the PL amplitude is reduced by an average of approximately 27.8% after
ICA filtering, which indicates that the filtering has a certain suppression effect on noise.
However, there is not an obvious change in the amplitude of the white noise (W), which
indicates that it originated locally. The amplitude of annual and semi-annual periodic
terms decreased by approximately 60% and 18%, respectively. Before and after the filtering,
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the average spectral index shifted from −0.77 to −0.92, which is consistent with the result
of Rao et al. [70], indicating that the noise model of the Taiwan GPS data is closer to the
white-plus-flicker noise (W+FN) model with a spectral index of −1.

Table 3. Estimated parameters using Hector software before and after spatiotemporal filtering (ICA).

Sites
Annual Amplitude (mm) Semi-Annual (mm) PL Amplitude WN Amplitude Spectral Index κ

Before After Before After Before After Before After Before After

‘ANKN’ 1.23 ± 0.33 0.70 ± 0.25 0.55 ± 0.25 0.50 ± 0.21 10.32 8.07 4.08 4.13 −0.47 −0.37
‘CHKU’ 2.41 ± 0.31 0.40 ± 0.19 0.60 ± 0.23 0.39 ± 0.15 8.63 4.94 3.50 4.00 −0.67 −0.93
‘CHNT’ 3.80 ± 0.83 2.80 ± 0.80 0.88 ± 0.45 0.77 ± 0.40 20.32 19.12 6.17 6.40 −0.98 −1.05
‘CLAN’ 4.30 ± 1.00 2.39 ± 0.94 1.58 ± 0.65 1.35 ± 0.60 24.21 23.04 6.09 6.23 −1.01 −1.10
‘CTOU’ 2.54 ± 0.45 0.67 ± 0.31 0.53 ± 0.26 0.59 ± 0.24 11.60 8.14 4.90 5.24 −0.85 −1.02
‘CWEN’ 3.41 ± 0.37 0.69 ± 0.20 0.55 ± 0.25 0.44 ± 0.16 9.99 5.37 3.88 3.75 −0.73 −0.65
‘DAHU’ 2.63 ± 0.45 1.58 ± 0.38 0.48 ± 0.25 0.50 ± 0.24 12.19 9.52 4.24 4.73 −0.75 −0.89
‘DOSH’ 3.90 ± 0.38 0.36 ± 0.18 0.40 ± 0.21 0.35 ± 0.15 10.94 5.36 3.80 4.52 −0.64 −0.68
‘FLON’ 2.76 ± 0.46 1.64 ± 0.42 1.58 ± 0.39 1.33 ± 0.36 15.33 14.31 0.00 0.01 −0.45 −0.43
‘FNGU’ 2.76 ± 0.37 0.44 ± 0.21 0.85 ± 0.27 0.64 ± 0.17 9.52 4.60 4.26 4.40 −0.82 −1.25
‘GS15’ 2.90 ± 0.29 0.91 ± 0.20 0.40 ± 0.19 0.31 ± 0.13 8.37 3.90 3.54 4.32 −0.60 −1.19
‘GS16’ 2.18 ± 0.45 0.67 ± 0.31 0.63 ± 0.30 0.42 ± 0.21 12.38 9.58 5.43 5.57 −0.73 −0.70
‘GS21’ 2.03 ± 0.36 0.82 ± 0.25 0.58 ± 0.24 0.37 ± 0.15 8.48 4.36 3.95 3.84 −0.94 −1.47
‘GS22’ 2.63 ± 0.43 1.72 ± 0.33 0.49 ± 0.25 0.43 ± 0.20 10.89 7.58 3.73 4.00 −0.85 −0.99
‘GS31’ 1.80 ± 0.40 2.04 ± 0.33 0.45 ± 0.23 0.30 ± 0.16 9.54 6.58 3.82 3.78 −0.99 −1.24
‘GS33’ 2.86 ± 0.36 0.49 ± 0.23 0.58 ± 0.24 0.50 ± 0.17 8.59 4.68 4.44 4.42 −0.93 −1.37
‘GS39’ 3.94 ± 0.33 1.32 ± 0.24 0.58 ± 0.24 0.42 ± 0.16 9.13 4.81 3.02 3.75 −0.67 −1.17

‘HUAL’ 4.06 ± 0.57 1.38 ± 0.45 0.89 ± 0.38 0.51 ± 0.25 14.22 10.14 5.96 5.68 −0.89 −1.11
‘ILAN’ 4.10 ± 0.70 2.35 ± 0.43 0.92 ± 0.41 0.47 ± 0.23 14.38 9.43 6.60 5.59 −1.27 −1.09
‘JHCI’ 3.72 ± 0.32 0.63 ± 0.18 0.56 ± 0.24 0.57 ± 0.16 10.23 5.50 2.79 3.83 −0.45 −0.37
‘JONP’ 3.17 ± 0.34 0.58 ± 0.18 0.51 ± 0.23 0.28 ± 0.13 9.75 4.45 3.83 4.26 −0.63 −0.76
‘JPEI’ 3.05 ± 0.46 1.70 ± 0.43 0.60 ± 0.29 0.68 ± 0.29 12.07 10.31 6.14 6.43 −0.78 −0.94
‘JULI’ 2.20 ± 0.32 0.83 ± 0.26 0.63 ± 0.25 0.57 ± 0.20 9.33 5.70 4.98 6.01 −0.51 −0.95

‘JUNA’ 3.16 ± 0.41 0.83 ± 0.27 0.46 ± 0.23 0.32 ± 0.16 10.38 5.75 4.56 4.66 −0.89 −1.19
‘PAOL’ 2.84 ± 0.47 0.65 ± 0.31 0.52 ± 0.27 0.50 ± 0.24 12.30 9.80 5.68 5.58 −0.80 −0.78
‘S101’ 3.50 ± 0.37 1.78 ± 0.29 0.72 ± 0.28 0.57 ± 0.23 11.76 8.98 2.63 3.96 −0.50 −0.51
‘S106’ 2.90 ± 0.36 0.50 ± 0.22 0.35 ± 0.18 0.29 ± 0.14 9.21 5.70 4.42 4.36 −0.82 −0.87
‘S170’ 2.14 ± 0.33 0.43 ± 0.20 0.96 ± 0.26 0.66 ± 0.17 9.22 5.00 3.94 4.27 −0.71 −1.00

‘SFON’ 3.58 ± 0.48 1.19 ± 0.38 0.52 ± 0.26 0.42 ± 0.21 11.43 8.74 5.12 5.10 −0.92 −1.00
‘SHAN’ 0.79 ± 0.40 1.87 ± 0.44 0.84 ± 0.37 0.63 ± 0.29 14.82 11.21 4.70 5.28 −0.75 −0.85
‘SHJU’ 2.97 ± 0.45 1.20 ± 0.30 0.84 ± 0.31 0.76 ± 0.21 11.27 6.04 4.56 4.80 −0.92 −1.26

‘SHMN’ 1.67 ± 0.34 0.36 ± 0.19 0.85 ± 0.28 0.71 ± 0.24 11.85 10.08 0.03 0.02 −0.36 −0.28
‘SINY’ 3.82 ± 0.49 0.50 ± 0.26 1.01 ± 0.36 0.76 ± 0.27 13.29 9.31 5.64 5.57 −0.73 −0.73
‘TACH’ 2.85 ± 0.49 0.68 ± 0.33 0.44 ± 0.23 0.36 ± 0.19 11.92 8.04 4.06 4.15 −0.98 −1.34
‘TOFN’ 2.51 ± 0.46 0.5 ± 0.26 0.59 ± 0.28 0.62 ± 0.24 11.58 8.50 4.07 4.15 −0.91 −0.98
‘TSIO’ 1.85 ± 0.45 0.96 ± 0.39 1.11 ± 0.33 0.96 ± 0.29 11.60 9.61 4.26 4.60 −0.86 −1.04
‘VR01’ 1.60 ± 0.42 0.86 ± 0.33 0.46 ± 0.23 0.31 ± 0.16 10.31 6.85 4.46 4.40 −0.97 −1.33

‘WANS’ 3.33 ± 0.49 2.05 ± 0.40 0.77 ± 0.32 0.83 ± 0.29 11.98 9.71 5.33 5.12 −0.95 −0.96
‘WARO’ 2.01 ± 0.44 0.96 ± 0.32 0.81 ± 0.33 0.38 ± 0.20 13.44 10.57 5.08 4.06 −0.55 −0.47
‘WUFN’ 2.61 ± 0.28 0.95 ± 0.18 0.51 ± 0.21 0.25 ± 0.12 9.00 4.00 2.43 4.46 −0.42 −0.82
‘WUKU’ 2.71 ± 1.07 2.65 ± 1.05 1.99 ± 0.78 1.95 ± 0.76 29.23 28.39 0.05 1.59 −0.92 −0.95
‘YENL’ 2.31 ± 0.36 0.73 ± 0.29 0.42 ± 0.21 0.31 ± 0.16 9.71 6.73 5.21 5.62 −0.70 −1.05
‘YM03’ 1.61 ± 0.51 1.80 ± 0.40 0.78 ± 0.35 0.94 ± 0.32 13.74 11.38 5.84 5.23 −0.80 −0.64
‘YM05’ 2.68 ± 0.47 0.77 ± 0.34 0.85 ± 0.34 0.59 ± 0.26 12.98 9.91 3.95 4.51 −0.72 −0.83
Mean 2.77 ± 0.45 1.12 ± 0.34 0.72 ± 0.30 0.59 ± 0.23 12.08 8.72 4.21 4.46 −0.77 −0.92
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5. Conclusions

We use PCA and ICA approaches to analyze the vertical coordinate time series of
44 sites in Taiwan island in China from 2006 to 2016. The results are summarized as follows.

1. Both PCA and ICA can effectively remove the CME. The average RMS of PCA and
ICA in the U direction shifted from 6.47 mm to 5.58 mm and 5.40 mm, respectively, a
decreased by approximately 14% and 17%. However, the CMEs of the two approaches
reveal notable differences in their temporal and spatial characteristics. Figure 6 shows
that the PCA separates only one CME and the ICA separates two CMEs. We therefore
believe that PCA may eliminate the original site information, whereas ICA retains
more original site information.

2. There are notable differences in the ICA filtering effect between the east and west of
Taiwan. The RMS reduction rate in the west is relatively large, whereas that in the
east small, which is partially due to topography. There are many mountains on the
eastern side of Taiwan and the stations are sparsely distributed, whereas the western
side is relatively flat and the stations are relatively dense. Another explanation is the
orogenic processes, as there is a topographic uplift in the eastern region and sinking
in the southwest region due to groundwater extraction.

3. To explore the possible geophysical sources of ICA’s CMEs, we compare the CMEs
of ICA with the predicted average loading displacements caused by changes in the
atmospheric and hydrological loadings. It is found that GPS_IC1 and ATML, and
GPS_IC2 and LWS are consistent in terms of amplitude and characteristics. The
correlation between GPS_IC1 and ATML is 0.55, and the correlation coefficient between
GPS_IC2 and LWS is 0.40. This indicates that seasonal changes in Taiwan are related
to the movement of water in addition to atmospheric pressure.

4. We used Hector software to analyze the noise characteristics of the time series of all
stations prior to filtering. The average spectral index shifted from −0.72 to −0.92,
which indicates that the most suitable noise model in Taiwan is W + FN. Filtering can
also effectively reduce PL noise. After filtering, PL noise is reduced by an average
of approximately 28%. The average annual cycle item is also significantly reduced
by approximately 60%. ICA filtration is more advantageous than PCA filtration. The
noise sequence filtered by ICA and PCA at the GS39 station was analyzed to verify
the above conclusions.
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Abstract: Improving the altimetric precision under the requirement of ensuring the along-track
resolution is of great significance to the application of iGNSS-R satellite ocean altimetry. The results
obtained by using the empirical integration time need to be improved. Optimizing the integration
time can suppress the noise interference from different sources to the greatest extent, thereby im-
proving the altimetric precision. The inverse relationship between along-track resolution and signal
integration time leads to the latter not being infinite. To obtain the optimal combination of integral
parameters, this study first constructs an analytical model whose precision varies with coherent
integration time. Second, the model is verified using airborne experimental data. The result shows
that the average deviation between the model and the measured precision is about 0.16 m. The
two are consistent. Third, we apply the model to obtain the optimal coherent integration time of
the airborne experimental scenario. Compared with the empirical coherent integration parameters,
the measured precision is improved by about 0.1 m. Fourth, the verified model is extrapolated to
different spaceborne scenarios. Then, the optimal coherent integration time and the improvement of
measured precision under various conditions are estimated. It was found that the optimal coherent
integration time of the spaceborne scene is shorter than that of the airborne scene. Depending on the
orbital altitude and the roughness of the sea surface, its value may also vary. Moreover, the model
can significantly improve the precision for low signal-to-noise ratios. The coherent integration time
optimization model proposed in this paper can enhance the altimetric precision. It would provide
theoretical support for the signal optimization processing and sea surface height retrieval of iGNSS-R
altimetry satellites with high precision and high along-track resolution in the future.

Keywords: coherent integration time optimization model; global navigation satellite systems reflec-
tometry (GNSS-R); ocean altimetry precision; waveform correlation; signal optimization processing

1. Introduction

Accurately measured sea surface height (SSH) is one of the critical parameters of
marine ecosystem monitoring, which is of paramount significance to applications such
as fishery, oil drilling, and commercial navigation. Global navigation satellite systems
reflectometry (GNSS-R) or the passive reflection and interference system (PARIS) can
perform ocean altimetry as a passive remote sensing technique [1]. It has some unique
advantages compared with the traditional tide gauge station and monostatic radar ocean
altimetry. On the one hand, the receiver can capture multiple global navigation satellite
system (GNSS) signals simultaneously, which increases the spatial coverage. On the other
hand, as a novel bistatic passive remote sensing method, it has the characteristics of low
cost, low power consumption, all-weather and high time revisit rate, which can make up
for the shortcomings of the existing technology to a large extent. Since the technology
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was proposed, ground-based, air-based, and space-based altimetry experiments have been
conducted successively to verify its feasibility [2–4].

Some signal processing techniques for GNSS-R ocean altimetry have been proposed.
Conventionally, GNSS-R altimetry involves cross-correlating the reflected signals with the
local replicas of the open navigation signals (cGNSS-R) [5]. The encrypted signal (e.g., P(Y))
has a broader bandwidth, which will bring a sharper autocorrelation function (ACF) and
a higher range precision. With it, the reconstructed code GNSS-R (r-GNSS-R) altimetry
improves the precision by reproducing the encrypted signals [6]. The interferometric
altimetry (iGNSS-R) utilizes the full composite components of the direct signal to correlate
with the reflected signal [5]. The partial interferometric GNSS-R (piGNSS-R) altimetry
extracts a portion of the encrypted signal from the full composite components to obtain a
sharper ACF, which is an extension of iGNSS-R [7]. Nevertheless, in the case of iGNSS-R
and piGNSS-R, the loss of signal-to-noise ratio (SNR) caused by dual-channel noise is more
severe than that of cGNSS-R, which leads to a two-fold improvement in precision only [8].
The SNR should be improved by increasing the signal processing time, as this will diminish
the influence of thermal noise and speckle noise on altimetric precision [9]. However, a
longer integration time corresponds to a longer specular point (SP) movement distance.
Considering the moving speed of the sub-satellite point (km/s) and the size of the spatial
footprint (~10 km), the actual inverted single height represents the average over the larger
sea area which further reduces the along-track resolution [10]. The previous study has
shown that in the spaceborne iGNSS-R altimetry scenario, in order to achieve an altimetric
precision better than 20 cm, the signal processing time required for a single height retrieval
is approximately 10 s, and the along-track spatial resolution is about 65 km [8]. If the
iGNSS-R ocean altimetry with high precision and high along-track spatial resolution can
be realized, it would provide critical data and information resources for small and medium
scale ocean phenomena monitoring, high temporal and spatial resolution ocean gravity
field model establishment, and other earth science research.

One of the data products of GNSS-R observation is the delay-Doppler maps (DDM).
Fernando et al. detailed the corresponding relationship between the DDM and its spatial
location [11]. The waveform corresponding to zero Doppler is extracted from the cali-
brated DDM waveform for GNSS-R code-delay altimetry, and the delay information of
the reflected signal is extracted from this waveform. Commonly used retrieval algorithms
include the peak point of the first derivative (DER), the peak of the waveform (MAX), and
the half-power point (HALF) [8,12,13]. Obtaining the inversion delay requires correction
of numerous parameters including the receiver and transmitter orbits, ionospheric errors,
tropospheric errors, and antenna baseline offsets [14]. For the evaluation of the altimetry
performance, Li et al. considered both the altimetric precision and the altimetric accuracy.
Altimetric accuracy is primarily affected by systematic errors. The altimetric precision is
mainly induced by the randomness of the received signal caused by thermal noise and
speckle noise. Theoretically, the higher the SNR of the signal, the more accurate the SP
delay information extracted from the waveform, and the better the altimetric precision [15].

It is possible to increase the altimetric precision by optimizing the payload and signal
post-processing. Payload optimization includes increasing antenna gain, refining antenna
pointing and receiver bandwidth, etc. [16,17]. For signal post-processing, one method to
improve the altimetric precision is to increase the signal’s coherent integration time and
incoherent average number. Both methods inhibit the noise introduced in different ways.
The former is to suppress the thermal noise introduced at the receiver end, while the latter
is to suppress the speckle noise introduced in the glistening area near the SP. The total
integration time of signal processing is the product of the coherent integration time and
incoherent average number. In theory, high precision requires an increased integration
time. Despite this, the inverse relationship between the along-track resolution and the
integration time prevents the latter from increasing indefinitely. It is typically necessary
to sacrifice a certain degree of precision when performing altimetry tasks requiring high
spatial resolution along the orbit. To achieve an optimal altimetric precision for a given

164



Remote Sens. 2021, 13, 4715

spatial resolution along track, it is necessary to optimize the combination of coherent and
incoherent parameters. Accordingly, Martin-Neira et al. derived an altimetric precision pre-
diction model with coherent integration time as a variable [18], but this model overlooked
the influence of the correlation between the waveforms. You et al. constructed a waveform
correlation model from the time domain and frequency domain to predict the upper limit
of the waveform coherence time [19,20]. Li et al., reconstructed the altimetric precision
model by considering the correlation of the waveforms which had reasonable consistency
with the measured results [21], but the influence of the coherent integration time on the pre-
cision was not discussed in detail. Currently, traditional intermediate frequency (IF) data
processing uses empirical parameters to approximate an optimal precision. The coherent
integration time normally takes 10 ms in airborne scenarios [21] and 1 ms in spaceborne
scenarios [22]. However, the actual optimal coherent integration processing depends on
factors such as the position and relative motion of the transmitter and receiver. This needs
to be estimated through accurate modelling.

Different from previous studies, in order to improve the precision of iGNSS-R ocean
altimetry, this study constructs a coherent integration time optimization model by deducing
the conversion relationship among coherent integration time, waveform correlation, and
altimetric precision. Furthermore, the model can more accurately estimate the variation of
precision with coherent integration time in different iGNSS-R altimetry applications so as
to optimize the final precision result.

2. Signal Processing and Height Inversion

In order to examine the accuracy of the coherent integration optimization model, we
use the data obtained by the Institute for Space Studies of Catalonia (IEEC) through an
airborne experiment on the Baltic Sea on the 3 December 2015, for verification. The delay
difference between direct and reflected signals is calculated using interference processing.
The raw IF datasets are processed on the ground with the software receiver, including data
acquisition, processing, height retrieval, and precision calculation.

The aircraft’s altitude was about 3 km during the experiment, and the velocity was
about 50 m/s. The direct and reflected signals are captured by the 8-element phased array
antennas of RHCP (right-handed circular polarization) and LHCP (left HCP) respectively.
The radiofrequency (RF) signals received by the antenna elements are filtered, amplified,
and down-converted into IF signals. The IF signals are quantized by a comparator, and
the quantized signals are connected to a field-programmable gate array (FPGA) through
D-type flip-flops whose parallel processing capability is used for sampling. Analogue
signals received by an element are quantized into one-bit in-phase components and one-bit
quadrature components per sample. The sampling frequency is 80 MHz. Finally, the
sampled digital signal is transmitted into the ground receiving station through the PCIe
bus [23]. The acquired data is processed by a software-defined receiver. A simplified
diagram of data processing and altimetry retrieval is depicted in Figure 1.
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2.1. Signal Processing
2.1.1. Data Fetch

The IF data is read in 4 bytes at a time, which correspond to the in-phase and quadra-
ture components of the 16 antenna elements sampled at a time. The binary data is converted
from 0, 1 code to 1, −1 code. That means the logic level is converted to a polarity non-
return-to-zero level. The direct signal and the reflected signal sampled each time can be
expressed as [24]:

SnTc
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8
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si,up_I(k) + j

8
∑

i=1
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SnTc
down(k) =

16
∑

i=9
si,down_I(k) + j

16
∑

i=9
si,down_Q(k)

(1)

where SnTc
up (k) and SnTc

down(k) are the amplitudes of the kth sample of the direct signal
and the reflected signal during the nth coherent integration, s is the signal component
of each antenna element, i is the antenna element number, up_I and up_Q respectively
represent the in-phase and quadrature components of the zenith pointing antenna, and
down_I and down_Q denote the in-phase and quadrature components of the nadir pointing
antenna respectively.

2.1.2. Coherent Integration

The coherent integration time is set to Tc and the sampling frequency fs is 80 MHz.
In this case, fs × Tc samples constitute the sequence of each coherent integration, which
is expressed as SnTc

up [K] = [SnTc
up (1), SnTc

up (2) . . . SnTc
up ( fs × Tc)]. Removing single-frequency

interference is essential before coherent integration can be performed to prevent it from
influencing the measurement result. Through fast Fourier transform (FFT), the time do-
main signal SnTc

up [K] and SnTc
down[K] are transformed into the frequency domain SnTc

up [ f ] and
SnTc

down[ f ], and the amplitude anomalies in the frequency spectrum are identified and filtered
out. The filtered direct signal and the reflected signal are cross-correlated in the frequency
domain to obtain the complex waveform y(nTc, τ) = F−1(S∗nTc

up [ f ]× SnTc
down[ f ]). It should
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be declared that the phased array antenna is used in this experiment, and beamforming
is usually employed to improve the SNR in the signal post-processing. However, the
effect of beamforming may submerge the influence of the coherent integration time on the
SNR of power waveforms. To reveal the role of coherent integration time, this research
abandons beamforming.

2.1.3. Retracking and Incoherent Average

The complex waveforms after coherent integration need to be incoherently averaged
to degrade the influence of speckle noise. With the vertical drift of the aircraft during
this period, the waveform series need to be compensated with respect to the first one
(retracking) [25]. Figure 2A shows a power waveform obtained after incoherent averaging.
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Figure 2. Examples of measured and simulated power waveforms. (A) Normalized measured power waveform processed
from the IF data. The τobs

DER is the maximum point of the first derivative. (B) Normalized simulated power waveform
generated based on the Z-V model. The τm

DER is the maximum point of the first derivative. The τm
sp is the nominal SP

calculated based on the WGS-84 reference ellipsoid.

2.2. Height Inversion
2.2.1. Delay Estimation and Error Correction

The delay of the reflected signal through the SP can be estimated from the power
waveform. The delay estimation can be divided into two types: fixed-point tracking and
model fitting. Fixed-point tracking involves tracking a given point of the waveform, such
as DER, MAX, and HALF. The DER delay estimation is applied in this study, which can be
expressed as [15]:

τobs,corr
DER = τobs

DER + (τm
sp − τm

DER) (2)

where τobs
DER is the delay corresponding to the maximum of the measured waveform’s

first derivative (Figure 2A), and τm
sp and τm

DER correspond to the nominal SP delay and
the maximum of the simulated waveform’s first derivative. The nominal SP τm

sp is the
minimum of the reflection path calculated from the WGS-84 reference coordinate when
the positions of the transmitter and the receiver are known. The simulated waveform
(Figure 2B) is generated according to the Zavorotny and Voronovich (Z-V) model, which
takes into account the influence of geometry, instrument configuration, and ocean state [26].
The difference between τm

sp and τm
DER obtained from the simulated waveform is used as the

deviation correction for DER tracking.
The estimated bistatic delay information of the SP also needs error correction, includ-

ing tropospheric error ρtrop, ionospheric error ρiono, and antenna baseline error ρbl [12,14].
As the ionosphere is located above 60 km, both direct and reflected signals received by
the airborne platform go through the same data path for downlink transmission, so the
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delay deviation can be ignored. The tropospheric error correction is derived from the
Saastamoinen model [21]:

ρtrop =
4.6

sin e
(1− e−HR/Htrop) (3)

where e is the satellite elevation angle, HR is the receiver height, and Htrop is the average
tropospheric height. The antenna baseline offset is calculated from the path difference
between the zenith pointing antenna and the nadir pointing antenna relative to the SP
under the known airborne position and attitude information. The corrected SP delay can
be converted to the actual height from the receiver to the sea surface [15].

Hobs
e =

τobs,corr
DER − (piono + ptrop + pbl)

2× sin(e)
(4)

2.2.2. Height Retrieval and Precision Calculation

After delay estimation and error correction, the vertical distance from the sea surface
to the reference ellipsoid can be computed as:

SSH = Hobs
e − Hm

e = Hobs
e −

τm
sp

2× sin(e)
(5)

where Hm
e is the height of the aircraft on the WGS84 reference ellipsoid obtained by using

bistatic geometry. A fitted piecewise linear function is subtracted from the measured SSH
sequence to generate zero mean, near-white noise residuals. The precision is obtained by
calculating the standard deviation of the SSH residuals for each trajectory.

σobs
h (Tc) =

√〈∣∣∣SSHk
residual −

〈
SSHk

residual

〉∣∣∣
2
〉

(6)

It is primarily due to the following considerations that linear fitting is used instead of
the geoid model. The altimetry precision is affected by zero-mean random error, which
is mainly due to the random nature of the received signals caused by thermal noise and
speckle noise. The SSH residual after subtracting the linear fit can be used to evaluate
randomness. In contrast, precision will be affected by the errors in the geoid model [27].

3. Construction of Coherent Integration Time Optimization Model

The altimetric precision is related to the power uncertainty of the incoherent average
waveform at the SP. The uncertainty value of the incoherent average waveform will be
affected by the correlation between the waveforms. To more accurately reflect the variation
of precision with the coherent integration time, the waveform correlation is considered in
the precision prediction model. Since the correlation between the waveforms varies with
the coherent integration parameters, variable conversion is performed on the reconstructed
precision model to obtain the coherent integration time optimization model whose precision
varies with the coherent integration time in this section.

3.1. The Reconstruction of Altimetric Precision Model

According to [18], the estimated altimetric precision can be converted by the uncer-
tainty of the incoherent average power waveform at SP.

σm
h (τ) =

c
2× cos(i)

σZ(τ)

Z′(τ)
=

1
2× cos(i)

1
Sh(τ)

σZ(τ)

Z(τ)
(7)

where i is the incident angle, c is the speed of light in vacuum, Z(τ) = 〈Z(t, τ)〉 is
the average of the power waveform, and the derivative of which corresponds to Z′(τ).
Sh = Z′(τ)/cZ(τ) indicates the logarithmic derivative of the power waveform at SP which
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is defined as the altimetric sensitivity. σZ(τ)/Z(τ) is the ratio of the standard deviation
to power amplitude which is defined as the effective independent incoherent average
number [21]. Since σZ(τ) depends on the correlation between the waveforms, the ratio is
derived analytically in this section.

As introduced in Section 2, the complex waveform after coherent integration of direct
and reflected signals can be represented by a discrete array y(nTc, τ):

y(nTc, τ) = [y(nTc, τ1), y(nTc, τ2) . . . . . . y(nTc, τn)] (8)

where nTc is the nth coherent integration process, Tc is the coherent integration time
which is usually in milliseconds, and τn is the code delay whose resolution is inversely
proportional to the signal sampling rate. The square of each complex waveform results in a
one-shot power waveform expressed as [21]:

z(nTc, τ) = y(nTc, τ)y∗(nTc, τ) (9)

In the case of an incoherent average of NI one-shot power waveforms, the power
waveform can be expressed as:

Z(τ) =
1
NI

NI−1

∑
n=0

z(nTc, τ) = 〈z(nTc, τ)〉 (10)

where 〈〉 stands for the ensemble average. A power waveform is usually processed in
seconds, which can be expressed as:

TI = Tc × NI (11)

Due to the relative motion of the transmitter and the receiver, the correlation between
two complex waveforms separated by ñTc in time is determined by the coherence of the
signals from two ocean contribution areas. These regions are elliptical, and the length of the
semi-axis is related to τn. The correlation between complex waveforms is defined as [19]:

Cy(ñTc, τ) = 〈y(nTc, τ)y∗(nTc + ñTc, τ)〉 (12)

where ñTc is the time interval between complex waveforms. The spatial geometry of
correlation function is illustrated in Figure 3. It can be seen that the correlation between
the two sea surface scattering signals gradually decreases as ñTc increases. An analogous
correlation between one-shot power waveforms can also be derived as:

Cz(ñTc, τ) = 〈[z(nTc, τ)− 〈z(nTc, τ)〉][z(nTc + ñTc, τ)− 〈z(nTc + ñTc, τ)〉]〉 (13)
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The correlation time of the signal is usually measured in milliseconds, while the time
of incoherent averaging can reach the order of seconds. Thus, it can be assumed that there
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is no correlation between the incoherent average power waveforms, i.e., CZ(t̃, τ) = 0t̃ 6= 0.
The variance of the power waveform can be expressed as [21]:

σ2
Z(τ) = CZ(0, τ) =

〈
[Z(t, τ)− 〈Z(t, τ)〉]2

〉
(14)

The effective incoherent average number can be reconstructed following Appendix A
as [21]:

1
Neff

=
σ2

Z(τ)

Z2
(τ)

=

1
NI

NI−1
∑

ñ=−(NI−1)

∣∣Cy(ñTc, τ)
∣∣2

∣∣Cy(0, τ)
∣∣2 (15)

3.2. The Relationship between Model Parameters and Coherent Integration Time

As discussed in Section 3.1, the altimetric precision is determined mainly by two
parameters, Sh and Neff. In this section, the variables of these two parameters are derived
to be expressed in terms of coherent integration time. The re-derived parameters are
brought into Equation (7) to construct the coherent integration time optimization model.

3.2.1. Altimetric Sensitivity

As discussed in [28], the complex waveform is composed of useful signal and noise
components

y(nTc, τ) = ys(nTc, τ) + ynd(nTc, τ) + ynr(nTc, τ) + yndr(nTc, τ) (16)

where ys(t, τ) is the cross-correlation value for the useful signal term, and ynd(t, τ),ynr(t, τ)
and yndr(t, τ) are the cross-correlation values of the direct and reflected noise terms.

Assuming that the signal component has no correlation with the noise components,
the power waveform can be expressed as [29]:

Z(τ) =
〈
|ys(nTc, τ)|2

〉
+
〈
|ynr(nTc, τ)|2

〉
+
〈
|ynd(nTc, τ)|2

〉
+
〈
|yndr(nTc, τ)|2

〉
(17)

The components above can be interpreted as the expression for the coherent integration
time [18,20]:

〈
|ys(nTc, τ)|2

〉
= 2Pd

s 2PtGr(
→
p )σ0

4πR2
t (
→
p )R2

r (
→
p )
×Λ2(∆τ)× sinc2(∆ f Tc)d2 p

〈
|ynr(nTc, τ)|2

〉
= 2kTrec_r

Tc
2Pd〈

|ynd(nTc, τ)|2
〉
=

2kTrec_d
Tc

2Pr〈
|yndr(nTc, τ)|2

〉
= 2kTrec_r

Tc
2kTrec_dB

(18)

where B represents the equivalent noise bandwidth of the receiver, Trec_d and Trec_r repre-
sent the equivalent input noise temperature of the up-looking and down-looking chains, Pr
represents the total power of the reflected signal at the input of the correlator, Pd represents
the total power of the direct signal at the input of the correlator, Pt represents the power of
the transmitted signal, and Gr represents the antenna gain [30,31]. Based on Equations (17)
and (18), the altimetric sensitivity can be represented by the coherent integration time [5].

3.2.2. Effective Incoherent Average Number

As discussed in Equation (15), the effective incoherent average at the SP is closely
related to the waveform correlation [32]. Therefore, when the processing time of the
incoherent average power waveform is TI, the variation of Neff with the coherent integration
time can be approximated following Appendix B as:
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1
Neff

=

Tc
NI−1

∑
ñ=−(NI−1)

(
2Pd

s 2PtGr(
→
p )σ0

4πR2
t (
→
p )R2

r (
→
p )

Λ2(∆τ)sinc2(∆ f Tc) exp−j2π∆ f (ñTc) d2 p +
2Pdnd

0
Tc

tri( ñTc
Tc

) +
Bnd

0 nu
0

Tc
tri( ñTc

Tc
)

)

TI

(
2Pd

s 2PtGr(
→
p )σ0

4πR2
t (
→
p )R2

r (
→
p )

Λ2(∆τ)sinc2(∆ f Tc)d2 p +
2Pdnd

0
Tc

+
Bnd

0 nu
0

Tc

) (19)

where nd
0 = 2kTd and nu

0 = 2kTu are the power spectral density of thermal noise from the
up-looking and down-looking chains respectively, tri() is the triangular function, ∆τ is
the difference between τn and the scattering point delay τ(

→
p ), and ∆ f is the difference

between 0 Doppler and the scattering point Doppler f (
→
p ).

Accordingly, the coherent integration time optimization model can be derived by
simultaneously applying Equations (7) and (17)–(19). In accordance with Equation (17), a
larger coherent integration time is needed to improve the altimetric sensitivity and precision.
Nevertheless, the limitation of Neff on the altimetric precision leads to a relatively smaller
expected value of the coherent integration time. As a consequence, the best precision result
is achieved by balancing the time required for the coherent integration of both aspects.

4. Results and Application
4.1. Validation of Coherent Integration Time Optimization Model

The proposed model precision results are compared with the experimental results
to verify the effectiveness of the coherent integration time optimization model in this
section. The measured precision is calculated as described in Section 2. With the power
waveform processing time TI = 1 s unchanged, the precision variation σobs

h (Tc) with
coherent integration time can be determined by varying the value of Tc. To avoid the
error interference caused by aircraft turning, two straight flight trajectories are selected for
precision calculations. Figure 4B illustrates the inverted SSH sequence when Tc is 10 ms
during the experiment. The corresponding SSH residual sequence is shown in Figure 4C.
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The coherent integration time optimization model has been acquired in the following
steps as described in Section 3. Obtain auxiliary data during the experiment, including the
position and velocity information of the receiver after dual-frequency orbit determination,
the GPS satellite position and velocity using the IGS precision ephemeris interpolation
method, wind speed (~7 m/s) and payload parameters. These simulation parameters
are listed in Table 1. The elevation angle is computed with the bistatic geometry. The
computation of the variations in the effective incoherent average number and altimeric
sensitivity with coherent integration time can be obtained by applying Equations (17)–(19).

171



Remote Sens. 2021, 13, 4715

By substituting the intermediate results into Equation (7), the coherent integration time
optimization model can be calculated.

Table 1. Air-based simulation parameters that are consistent with those for the experiment described
in Section 2.

Design Parameter Value

Receiver height ~3000 m
Transmitter altitude 20,200 km

Receiver velocity 50 m/s
Antenna temperature 200 K

Antenna gain 15 dBi
Elevation angle 70◦

Processing interval 39,102–40,721
Power waveform processing time 1 s

Wind speed 7 m/s
Process method iGNSS-R

Sampling frequency 80 MHz
Carrier frequency 1575.42 MHz (GPS L1)

Receiver bandwidth 35 MHz
Waveform retracking method DER

Filter bandwidth 12 MHz

A comparison between the variance of the model and the measured result is shown
in Figure 5. To evaluate the effectiveness of the model, the mean deviation of precision〈∣∣σm

h (Tc)− σobs
h (Tc)

∣∣〉 is used. σm
h (Tc) is the precision calculated by the model, whereas

σobs
h (Tc) is the measured precision. The results show that the average deviation between the

red and blue curves is 0.85 m, and the average deviation between the red and black curves
is 0.16 m. Therefore, the proposed model considering the correlation of the waveforms is
in good agreement with the measured result.
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Figure 5. The variation of the precision with coherent integration time under different conditions.
Red indicates the measured result. Black indicates the model result considering the correlation
between the waveforms. Blue indicates the model result without considering the correlation between
the waveforms.

The model curve and the measured curve differ by a certain amount. On the one
hand, the measured precision result is generally worse than that of the model, with an
average of 0.16 m. This may be due to the lack of beamforming in the signal processing,
which causes the SNR to decrease. On the other hand, the trend of the measured curve
fluctuates. As opposed to the simulated results, the actual measurement results may
contain other stochastic factors such as aircraft mechanical vibrations, attitude changes,
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and antenna pointing, etc. These random factors can be used to optimize the model by
obtaining recorded data of aircraft attitude and vibration in the future.

4.1.1. Altimetric Sensitivity

The reciprocal of the altimetric sensitivity simulation is compared with the measured
result, as shown in Figure 6. It can be appreciated that the measured and the simulated
curves are in good agreement. As the coherent integration time increases, the reciprocal of
the sensitivity approaches a limit value. The difference between the curves may be caused
by unaccounted noises [33,34].
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4.1.2. Effective Incoherent Average Number

It can be seen from Equation (19) that the effective incoherent average is a nonlinear
function of the coherent integration time. The variations of NI and Neff with the coherent
integration time are compared, as shown in Figure 7. It reveals that when TI is constant,
NI and Tc are inversely proportional. However, Neff and Tc are non-linearly related. The
difference between Neff and NI will gradually decrease as the coherent integration time
increases. If there were no correlation between the waveforms i.e., Cy(ñTc, τ) = 0, ñ 6= 0,
then Neff would be equal to NI. Neff also varies with the length delay cτn as shown in
Figure 8. It is a hybrid effect of SNR and Doppler bandwidth at different delays [35].
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4.2. Application of Coherent Integration Time Optimization Model

The conformity between the model and the measured results indicates that the pro-
posed model can better reflect the influence of coherent integration time on the altimetric
precision. Consequently, the model can be used to determine the optimal coherent in-
tegration time to improve experimental data processing. In addition, the model can be
applied to a variety of altimetry situations to provide a theoretical reference for data
optimization processing.

4.2.1. Model Application: Airborne Experiment Scenario

In the airborne altimetry scene described in Section 4.1, the traditional integration
parameters cannot yield the optimal precision. In constructing a coherent integration time
optimization model based on the same experimental parameters, the optimal coherent
integration time is calculated to be 7.5 ms, as shown in Figure 5. By applying this integral
parameter to the processing of the measured data, the precision is 0.81 m. As compared
to the empirical coherent integration (10 ms) [21], the altimetric precision is improved by
0.09 m.

4.2.2. Model Application: Extrapolation to Spaceborne Scenario

Given the reasonable levels of agreement between the simulated model and the
airborne experimental data, the proposed coherent integration time optimization model
has been implemented to simulate spaceborne iGNSS-R data. Since there is no dedicated
iGNSS-R altimetry satellite at present, the results of model optimization can provide a
theoretical reference for improving the in-orbit performance of an iGNSS-R-based ocean
altimeter in the future. The altimetric precision is mainly determined by the system
instrument parameters and observation geometry. These factors will lead to different
model optimization results. According to the model’s expression, the main parameters that
affect the precision are respectively analyzed, including the receiver’s orbital altitude, sea
surface roughness, elevation angle, and antenna gain. Previously, these parameters were
discussed, and this section re-evaluates them in light of the novel model [31,36]. It needs to
be clarified that the Z-V model does not account for the influence of coherent scattering
under low wind speed conditions; the minimum wind speed is set to 4 m/s to avoid errors
caused by the simulation waveform. The fixed system parameters are summarized in
Table 2. The dependence of the precision variation and the optimal coherent integration
time on different parameters is analyzed as follows.
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Table 2. The common simulation parameters for spaceborne altimetry scenarios.

Design Parameter Value

Receiver bandwidth 35 MHz
Antenna temperature 200 K
Transmitter altitude 20,200 km

Process method iGNSS-R
Sampling rate 80 MHz

Carrier frequency 1575.42 MHz (GPS L1)
Waveform retracking method DER

Filter bandwidth 12 MHz
Power waveform processing time 1 s

As can be seen from Figure 9:
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Figure 9. The simulation variation curves of the estimated altimetric precision with the coherent integration time under
different conditions. (A) When the wind speed is 6 m/s, the elevation is 60◦, the antenna gain is 15 dBi, and the orbit
altitude varies. (B) When the orbit altitude is 600 km, the elevation is 60◦, the antenna gain is 15 dBi, and the wind speed
varies. (C) When the orbit altitude is 600 km, the wind speed is 6 m/s, the antenna gain is 15 dBi, and the elevation varies.
(D) When the orbit altitude is 600 km, the wind speed is 6 m/s, the elevation is 60◦, and the antenna gain varies.

(1) As shown in Figure 9A, the precision decreases with the altitude of the orbit. When
the orbit altitude increases from 200 km to 1000 km, the optimal precision decreases from
0.43 m to 0.94 m. This is because, according to Equation (17), the signal power decreases
squarely with the transmission distance, causing the SNR to decrease. On the other hand,
the receiver velocity decreases with altitude, resulting in increased waveform correlation
and decreased effective incoherent average.

As the orbital altitude increases, the optimal coherent integration time increases from
1.5 ms to 3 ms. Higher altitude results in greater energy loss, which calls for a longer time
for coherent integration, which improves the SNR and therefore the altimetric sensitiv-
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ity. The higher the orbital altitude of the receiver, the more noticeable the improvement
in precision of the optimal coherent integration time when compared to the empirical
spaceborne coherent integration parameters (1 ms). Therefore, the coherent integration
time optimization model is preferred for improving the altimetric precision under the low
SNR conditions.

(2) As shown in Figure 9B, the precision decreases with wind speed. With an increase
in wind speed from 4 m/s to 10 m/s, the optimal precision decreases from 0.57 m to 0.85 m.
At low wind speeds, the sea surface is smooth, the waveform coherence is strong, and the
effective incoherent average is small. However, the SNR is high, which enhances precision.

The optimal coherent integration time will increase from 1.6 ms to 3 ms with wind
speed. This is because high wind speed increases ocean scattering. Simultaneously, the
higher the wind speed, the worse the SNR, and the greater the precision improved by the
optimal coherent integration time.

(3) In Figure 9C, the optimal precision increases from 0.94 m to 0.63 m as the elevation
angle changes from 40◦ to 80◦. On the one hand, increasing the elevation angle shortens
the propagation path of the navigation signal, which reduces the signal energy loss. On the
other hand, according to Figure 3, the iso-delay area decreases with the elevation angle,
thereby increasing the effective incoherent average.

Since both the altimetric sensitivity and the effective incoherent average decrease
with the elevation angle, the balance between the two leads to little change in the optimal
coherent integration time. Accordingly, as the elevation angle increases, the SNR of the
reflected signal upgrades and the improvement of the precision by the optimal coherent
integration time becomes insignificant.

(4) As illustrated in Figure 9D, when the antenna gain is increased from 15 dBi to
30 dBi, the optimal precision improves from 0.72 m to 0.31 m. The high gain antenna
can increase signal energy and upgrade the SNR. When the antenna gain is increased
from 25 dBi to 30 dBi, the optimal precision is only improved from 0.34 m to 0.31 m. This
indicates that an increase in antenna gain will not be sufficient to improve precision at
high SNRs.

Similarly, the optimal coherent integration time does not greatly improve the precision
in the case of high gain. Since the change of the antenna gain does not affect the effective
incoherent average, the optimal coherent integration time does not change much with the
antenna gain.

(5) In general, the optimal coherent integration time calculated in the spaceborne
simulation is shorter than that for the airborne scenario. This is because the satellite
receiver has a high velocity, making the Doppler bandwidth and the effective incoherent
average large. The shorter coherent integration time can effectively reduce the influence of
speckle noise.

The simulation analysis of the above parameters indicates that the coherent integration
time optimization model improves the precision more significantly when the SNR of
the reflected waveform is relatively weak. Limited by the code bandwidth, improving
the SNR of the signal does not increase the precision infinitely but approaches the limit
value. Additionally, the optimal coherent integration time varies with the simulation
parameters, and the spaceborne scenario tends to be shorter than the airborne scenario.
Increasing the altitude of the orbit and the wind speed will also increase the optimal
coherent integration time.

5. Conclusions

This paper constructs a coherent integration time optimization model from the per-
spective of signal processing to improve iGNSS-R ocean altimetric precision. The research
mainly involves three aspects: the processing of IF data and the extraction of precision
information; the derivation and verification of the coherent integration time optimization
model; and the application of the validated model to airborne and spaceborne altimetry
mission scenarios to predict the optimal solution for precision.
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(1) To estimate the SP delay for airborne data processing, we use the DER method.
The altimetric precision is evaluated based on the random characteristics of the SSH.
(2) For the purpose of optimizing the precision performance, we consider the influence
of the correlation between waveforms on the covariance of the power waveform, and
derive the coherent integration time optimization model from the statistical properties
of the waveform. The model is verified by airborne measurements. Results indicate that
the average deviation between model and measurement precisions is 0.16 m, which is
acceptable. (3) Based on the optimal coherent integration time of the model solution, we
processed the experimental data, and the precision is improved by about 0.1 m relative
to that obtained using the empirical parameters. The positive validation of the coherent
integration time optimization model provides a tool for evaluating the optimal coherent
integration time and its precision under different orbital altitudes, sea surface roughness,
elevation angles, and antenna gains in spaceborne iGNSS-R altimetry scenarios. The
results show that the optimal coherent integration time for the spaceborne scene is shorter
than that for the airborne scene. In the case of low SNR, the model can improve the
precision to the decimeter level. Due to the combined effect of the SNR and the Doppler
bandwidth, the optimal coherent integration time increases with the orbit altitude and the
sea surface roughness.

The coherent integration time optimization model developed in this paper is capable
of optimizing the waveform processing parameters and improving the altimetric precision.
It can be applied to the optimization of data processing and high-precision retrieval for
future spaceborne iGNSS-R altimetry missions. In future research, we will also analyze
and evaluate the influence of the calibration errors of the instrument, the receiver orbit,
and the atmosphere on the precision.
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Appendix A

Simultaneous Equations (8) and (13), Cz(ñTc, τ) can be derived as [21]:

Cz(ñTc, τ) = 〈[z(nTc, τ)− 〈z(nTc, τ)〉][z(nTc + ñTc, τ)− 〈z(nTc + ñTc, τ)〉]〉
= 〈[y(nTc, τ)y∗(nTc, τ)− 〈y(nTc, τ)y∗(nTc, τ)〉]
×[y(nT + ñTc, τ)y∗(nTc + ñTc, τ)− 〈y(nTc + ñTc, τ)y∗(nTc + ñTc, τ)〉]〉

= 〈y(nTc, τ)y∗(nTc, τ)y(nT + ñTc, τ)y∗(nTc + ñTc, τ)〉
−〈y(nTc, τ)y∗(nTc, τ)〉〈y(nT + ñTc, τ)y∗(nTc + ñTc, τ)〉

(A1)
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In general, the complex waveforms follow the circular complex Gaussian statistics.
The correlation function of the one-shot power waveforms can be simplified by using the
complex Gaussian moment theorem [37]:

〈y(nTc, τ)y∗(nTc, τ)y(nT + ñTc, τ)y∗(nTc + ñTc, τ)〉
= 〈y(nTc, τ)y∗(nTc, τ)〉〈y(nT + ñTc, τ)y∗(nTc + ñTc, τ)〉
+〈y(nTc, τ)y∗(nTc + ñTc, τ)〉〈y∗(nTc, τ)y(nT + ñTc, τ)〉

(A2)

Substituting Equation (A2) into Equation (A1), we can get:

Cz(ñTc, τ) = 〈y(nTc, τ)y∗(nTc + ñTc, τ)〉〈y∗(nTc, τ)y(nT + ñTc, τ)〉
=

∣∣Cy(ñTc, τ)
∣∣2 (A3)

Cz(0, τ) =
∣∣Cy(0, τ)

∣∣2
= 〈y(nTc, τ)y∗(nTc, τ)〉〈y∗(nTc, τ)y(nTc, τ)〉
= 〈y(nTc, τ)y∗(nTc, τ)〉〈y∗(nTc, τ)y(nTc, τ)〉
= 〈z(nTc, τ)〉〈z(nTc, τ)〉

(A4)

According to Equations (10) and (14), the variance of the power waveforms after
incoherent average can be expressed as [21]:

σ2
Z(τ) = CZ(0, τ)

= 〈[Z(t, τ)− 〈Z(t, τ)〉][Z(t, τ)− 〈Z(t, τ)〉]〉
= 〈Z(t, τ)Z(t, τ)〉 − 〈Z(t, τ)〉〈Z(t, τ)〉
= 〈Z(t, τ)Z(t, τ)〉 − 〈z(t, τ)〉〈z(t, τ)〉

(A5)

Substitute Equation (10) into the first term of Equation (A5), we can get:

〈Z(t, τ)Z(t, τ)〉 = 1
N2

I

〈
NI−1

∑
i=0

z(iTc, τ)
NI−1

∑
j=0

z(jTc, τ)

〉

= 1
N2

I

NI−1
∑

i=0

NI−1
∑

j=0
〈z(iTc, τ)z(jTc, τ)〉

(A6)

According to Equation (A1), 〈z(iTc, τ)z(jTc, τ)〉 can be represented as:

〈z(iTc, τ)z(jTc, τ)〉 = Cz((i− j)Tc, τ) + 〈z(nTc, τ)〉〈z(nTc, τ)〉 (A7)

σ2
Z(τ) = CZ(0, τ)

= 1
N2

I

NI−1
∑

i=0

NI−1
∑

j=0
Cz((i− j)Tc, τ)

=
NI−1

∑
k=−(NI−1)

NI−k
N2

I
Cz(kTc, τ)

= 1
NI

NI−1
∑

ñ=−(NI−1)
Cz(ñTc, τ)

(A8)

Simultaneous Equations (A3), (A4) and (A8), we can get:

1
Neff

=
σ2

Z(τ)

Z2(τ)

=
σ2

Z(τ)

〈z(nTc ,τ)〉〈z(nTc ,τ)〉

=

NI−1
∑

n=−(NI−1)
|Cy(ñTc ,τ)|2

NI|Cy(0,τ)|2

(A9)
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B.

Assuming that there is no correlation between the signal term and noise term, the
complex waveforms of iGNSS-R can include the following four items [18]:

Cy(ñTc, τ) = Cy,s(ñTc, τ) + Cy,nd(ñTc, τ) + Cy,nu(ñTc, τ) + Cy,ndu(ñTc, τ) (A10)

Since the noise of the reflected signal is much larger than that of the direct signal, can
be assumed. According to [20], the covariance of signal components can be simplified as:

Cy,s(ñTc, τ) = 〈ys(nTc, τ)ys
∗(nTc + ñTc, τ)〉

= 2Pd
s 2PtGr(

→
p )σ0

4πR2
t (
→
p )R2

r (
→
p )

Λ2(∆τ)sinc2(∆ f Tc) exp−j2π∆ f (ñTc) d2 p (A11)

According to [21], the covariance of the noise component can be simplified as:

Cy,nd(ñTc, τ) =
2Pdnd

0
Tc

tri( ñTc
Tc

)

Cy,ndu(ñTc, τ) =
Bnd

0 nu
0

Tc
tri( ñTc

Tc
)

(A12)

Simultaneous Equations (A10)–(A12), Cy(ñTc, τ) can be converted as:

Cy(ñTc, τ) = 2Pd
s 2PtGr(

→
p )σ0

4πR2
t (
→
p )R2

r (
→
p )

Λ2(∆τ)× sinc2(∆ f Tc) exp−j2π∆ f (ñTc) d2 p

+
2Pdnd

0
Tc

tri( ñTc
Tc

) +
Bnd

0 nu
0

Tc
tri( ñTc

Tc
)

(A13)

Simultaneous Equations (A9) and (A13), the relationship between the reciprocal of the
effective incoherent average number and the coherent integration time can be derived as
Equation (19).
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Abstract: With the realization of global navigation satellite system (GNSS) completion, GNSS re-
flectometry (GNSS-R) has become increasingly popular due to the advantages of global coverage
and the availability of multiple sources in terms of earth remote sensing. This paper analyzes the
Beidou navigation satellite system (BDS) signal reflection detection of multiple satellites and multiple
moving targets under multiple-input and multiple-output (MIMO) radar systems and proposes a
series of methods to suppress multiple Doppler phase influences and improve the range detection
property. The simulation results show the restored target peaks, which match the RCS data more
accurately, with the GNSS-R Doppler phase influence removed, which proves the proposed method
can improve target recognition and detection resolution performance.

Keywords: global navigation satellite system reflectometry (GNSS-R); Beidou navigation satellite
system (BDS); Doppler compensation; range resolution

1. Introduction

At the moment more than 70 satellites are already in view; this brings great opportu-
nities and challenges for both scientific and engineering applications. The different global
navigation satellite system (GNSS) signals are compared and analyzed in the literature [1]
in terms of detection performance and signal characteristics. A four-system positioning
model for multi-satellite detection is proposed in the literature [2].

Global navigation satellite system reflectometry (GNSS-R) detection has become a
popular tool for earth remote sensing, such as multiple maritime targets detection, with
its gradual improvement in observation technology. Based on GNSS-R delay–Doppler
map (DDM) imaging, an effective method of expression based on GNSS-R signals, the
literature [3–5] shows an incoherent range walk compensation method and accurate real-
ization methods to improve the DDM imaging effectiveness. The waveform and detection
models were analyzed in [6,7] for GNSS-R detection. With the gradual maturity of the
Beidou navigation satellite system (BDS), BDS satellite remote sensing studies have become
increasingly widespread. The single-frequency PPP time transfer performance of BDS-2/3
is evaluated for excellent performance and BDS-3’s is expected for better accuracy with
the continuous development of real-time products of BDS [8]. Time–frequency-transfer
and time performance technology based on BDS systems have been implemented and
evaluated [9,10]. With the increase in the demand for precise positioning, an increasing
number of observational reports have been proposed with constant improvement of the
positioning method. The literature [11,12] presents a real-time detection and point position
method based on the combination of GPS and BDS observations.

BDS-R detection still leaves some problems to be solved. Due to the low reflected
signal power, it is difficult to obtain complete target information with a background of
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strong clutter and noise. Reference [13] notes that for large and medium-sized targets
on the sea surface, GNSS-R detection can acquire a sufficient signal-to-noise ratio (SNR)
of 20~25 dB [14] after several seconds of accumulation. Next, one study in the litera-
ture [14,15] simulated a delay–Doppler map (DDM) of large-scale targets and verified the
effectiveness of large-scale target detection based on short time accumulation signals using
the range–Doppler Fourier method. In terms of theoretical construction and system model,
reference [16] gives an extremum approximation algorithm for advanced receiver au-
tonomous integrity monitoring, and triple-frequency combining observation models have
been studied for precise point positioning [17]. Moreover, real-time, direction-constrained
determination methods were proposed for point velocity detection studies [18–20]. In order
to better interpret the target information of the GNSS-R signal and obtain the images that
match the detected target, many signal processing methods were proposed. The incoherent
range walk compensation method was proposed for spaceborne GNSS-R imaging [3], and
GNSS-R-based moving target indication is studied in the literature [21]. In terms of marine
target detection, ocean surface target detection and positioning were discussed [22], the
delay and Doppler tracking errors were analyzed [15], and the feasibility analysis of ship
detection by DDM was simulated [23]. In order to distinguish sea targets from sea clutter,
the blind sea clutter suppression method was discussed [24]. Moreover, the data of TDS-1
were used to prove the effectiveness of the proposed target detection method [25], and the
anomalous artifacts of TDS-1 DDM were analyzed in [26].

In this paper, multiple-BDS signal reflection detection for multiple moving targets
was studied. We propose the multiple targets Doppler compensation (MTDC) method to
keep target peaks from the influence of the Doppler phase and provide a target peak iden-
tification method and range inversion methods to realize the specific scatter information
detection of targets. The contributions of this paper can be summarized as follows: (1) The
target peak reduction problem existing in multiple-BDS signal detection was analyzed
by echo formulas, and solutions are proposed for two situations: when target estimation
information is acquired and when it is not. In the simulation, a difference of more than
400 Hz in the Doppler frequency was set among the detected targets, which further verifies
that the proposed method is effective; (2) The target peak identification method is proposed
based on 33 m sampling at the echoes, and the improved target detection peaks can express
the target information more accurately in terms of amplitude and range point; (3) A range
inversion method is proposed to acquire the specific scatter information in the case of
low-resolution BDS signals. The results are in good agreement with the corresponding RCS
data in the ship target simulation; (4) In terms of practicability, the proposed MTDC method
1 and range inverse method 1 can remove the Doppler phase influence and further acquire
the targets’ RCS distribution without target estimation. The target peak identification
results based on 33 m echo sampling can be utilized to verify target recognition. Moreover,
the results were simulated and analyzed under clutter and noise backgrounds.

The rest of the sections in this paper are organized as follows. Section 2 discusses the
MIMO BDS signal detection model and lists existing problems. The Doppler compensation
methods and range detection resolution design of the BDS signal based on MIMO multiple-
target detection are discussed in Section 3. In Section 4, the simulation results and analysis
are obtained. Finally, the paper is concluded in Section 5.

2. Detection Model and Existing Problems
2.1. Detection Model

The detection model of multiple GNSS-R signals for multiple targets was firstly
outlined. The BDS signals, which are transmitted by MEO (medium earth orbit) satellites
in the Beidou No. 3 system fixed at 2.1528× 104 km above the Earth’s surface, were used
as detection sources. The detection simulated maritime multiple moving target detection
under space-based observation. The geometry of the model is given in Figure 1, where a
rectangular coordinate system is established and the XOY level coincides with the sea level.
The satellites, targets, and receiver positions are marked in red.
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2.2. Signal Structure

During the detection model, several sets of B1I and B3I signals transmitted by MEO
satellites with corresponding pseudo-random noise (PRN) codes were used. A part of the
signals reaches the airborne-based receiver directly, and the other part of the signals is
reflected by the ship targets and arrives at the latter receiver. The received echo is the sum
of all echoes transmitted by each satellite and reflected by each target. In the simulation
experiment, we found the echo modulation information through the proposed geometric
model with satellite ephemeris, receiver motion information and target position, altitude,
and velocity information. The BDS signals’ model structures are expressed as formulae
with changes and states in the propagation and receivers, as follows.

In the formula expression, we set ‘i’ as the satellite number and ‘j’ as the target number.
The transmitting BDS signal [27,28] of satellite i is expressed as:

si(t) = ACiDi cos(2π f0t + ϕi) (1)

where si(t) contains B1I and B3I signals. A is the signal amplitude, Ci the signal ranging
code, and Di the signal data code. During the cosine function, f0 is the carrier frequency,
and ϕi is the original phase. The echoes after propagation and receiving can be expressed
as follows:

Ri
d = ai

d · si(t− τi
d, f di

d) (2)

Ri,j
r = ai,j

r · si(t− τ
i,j
r , f di,j

r ) (3)

where the subscripts ‘d’ and ‘r’ are direct signals and reflected signals, respectively. ai
d is the

propagation coefficient and scattering coefficient of direct signals, and ai,j
r is the reflected

signal reflected by target j. τ and f d are the responding transmitted delay and Doppler
frequency, which are related to the carrier frequency and show different values between the
B1I and B3I signals. Finally, the total received B1I and B3I signals transmitted by multiple
satellites and propagated through the direct and multiple targets reflection approach is
expressed as

R =
M

∑
i=1

(Ri
B1I,d +

N

∑
j=1

Ri,j
B1I,r) +

M

∑
i=1

(Ri
B3I,d +

N

∑
j=1

Ri,j
B3I,r) (4)
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For pulse accumulation and slow-time Doppler frequency detection, the echoes ex-
pressed in Q ranging code periods is (5), after data code demodulation processing.

QR =
Q

∑
q=1

uTP(t− q · TP) · R (5)

where QR represents the echoes in Q ranging code periods, and uTP(t − q · TP) = 1,
q · TP < t < (q + 1)TP is the window function. TP is the ranging code cycle period.

2.3. Existing Problems

Based on the detection model, there exist several problems which promote the devel-
opment of the proposed methods:

• First, the satellites and receiver are moving fast, which will produce a large Doppler
frequency. With different dual-station angle of targets, the Doppler frequencies among
the targets shows big differences, which weakened target detection peaks to varying
degrees. A Doppler compensation method should be given to restore and unify the
target peaks.

• Second, since the BDS signal was not devised for GNSS-R detection, its range resolu-
tion is not sufficient to detect ship targets well. Further RCS distribution information
of targets needs to be detected for target recognition.

3. Methods
3.1. Multiple Targets Detection Doppler Compensation

In order to remove the Doppler phase influence during multiple targets detection, we
further studied echo processing. The B3I signal is set as an example to express the formula,
and the B1I signal has the same form. Take Formulas (1) and (3) into (5) as

QR i,j
B3I,r =

Q
∑

q=1
uTP(t− q ∗ TP) · Ri,j

B3I,r

= ai,j
B3I,r Ai

B3IC
i
B3I ·

Q
∑

q=1

{
u
(

t− τi
rj − q · TP

)

· cos(2π f di,j
B3I,r(t− τ

i,j
B1I,r − q · TP) + ϕi

B3I)
}

(6)

where QR i,j
B3I,r is the received reflected B3I signals transmitted by satellite i and reflected

by target j during Q ranging code periods. According to the ranging code Ci
B3I, we find

the duty ratio of the signal to be 1 in a ranging code period. Therefore, the Doppler phase
changes during a signal ranging code period cannot be ignored. The echoes model (6) is
improved as

QR i,j
B3I,r = ai,j

B3I,r Ai
B3IC

i
B3I ·

Q
∑

q=1

NC
∑

n=1
{uTc

(
t− τ

i,j
r − qTP − nTc

)

· cos(2π f di,j
B3I,r(t− τ

i,j
B3I,r − qTP − nTc) + ϕi

B3I)}
(7)

where Nc is the number of range code elements, and Tc is the range code element period. In
(7), the Doppler phase of echoes changes with each ranging code element, and it influences
the target range peak result level of the matched filter. The normalized autocorrelation
peak level changing with Doppler frequency is shown in Figure 2, where the peak level
reduces slowly first and then drops quickly to lower than 0.1 when the Doppler frequency
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is more than 1000 Hz. Moreover, the relevant parameters are described in the simulation
section. Focusing on the Doppler phase influence, we express (7) as

QR i,j
B3I,r =

QR i,j
B3I,r(Phi,j

B3I,r)

QPhi,j
B3I,r =

Q
∑

q=1

NC
∑

n=1
uTc(t− qTP − nTc) · 2π f di,j

B3I,r(t− qTP − nTc)

= QPhi,j
B3I,r( f di,j

B3I,r)

(8)

where we can find that QPhi,j
B3I,r is the sequence with a length of Q · Nc and is up to f di,j

B3I,r.
Moreover, each target reflects echo carriers with different Doppler frequencies, and we
needed to reduce multiple Doppler phase influences for better detection of the target peak.
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Figure 2. Target peak curves with the Doppler channel in the detection of BDS signals.

Before the Doppler phase compensation, the compensatory Doppler frequency of tar-
get echoes needed to be acquired. We propose two methods: method 1, without estimation
and method 2, with estimation. In method 1, we acquired the Doppler frequency range of
targets by satellite navigation code data and receiver data as

f di
B1I,min =

min( f di
B1I,sat_rec + f di

B1I,rec_tar_max, f di
B1I,sat_rec − f di

B1I,rec_tar_max)

f di
B1I,max =

max( f di
B1I,sat_rec + f di

B1I,rec_tar_max, f di
B1I,sat_rec − f di

B1I,rec_tar_max)

(9)

and the compensated Doppler frequencies are acquired by sampling in the range with an
interval of 125 Hz as

1 f di,j′
B1I,r =

1 f di
B1I,min + 250 ∗ (j′ − 1)

1 f di
B1I,min ≤ 1 f di,j′

B1I,r ≤ 1 f di
B1I,max

(10)
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where 1 f di
B1I,rj′ is the compensation Doppler frequency of method 1 and j′ is the com-

pensation number. Using the estimated information of targets, the compensated Doppler
frequencies are set as Doppler frequency estimation values in method 2.

2 f di,j′
B1I,r =

2 f di,j′
B1I,e (11)

where 2 f di,j′
B1I,r is the compensation Doppler frequency of method 2. After acquiring the

corresponding Doppler frequency, the compensation phase is expressed as

QCPhi,j′
B3I,r =

Q
∑

q=1

NC
∑

n=1
uTc(t− qTP − nTc) · 2π f di,j′

B3I,r(t− qTP − nTc)

= QCPhi,j′
B3I,r( f di,j′

B3I,r)

(12)

To solve the multiple Doppler phase influences and restore the weakened target
peak, we propose the multiple target Doppler compensation (MTDC) method, which
compensates for the echoes with multiple Doppler phase sequences at the corresponding
range code period position of targets and fetches the maximum value of the filter outputs
as the compensation result. Next, (13) expresses the compensated echo.

QCRi,j,j′
B3I,r =

QR i,j
B3I,r(

QPhi,j
B3I,r +

QCPhi,j′
B3I,r) (13)

where QCRi,j,j′
B3I,r denotes the echoes of satellite i and target j with compensation j’. The

echoes from satellite i with multiple-target Doppler compensation can be expressed as

QCRi,j′
B3I =

QCRi
B3I,d +

N

∑
j=1

QCRi,j,j′
B3I,r (14)

Next, we matched echoes with the corresponding satellite signal as

QC Mi,j′
B1I =

QCRi,j′
B3I ⊗ si

B3I(t) (15)

Finally, (16) shows the selected maximum of each compensation as the result.

QC Mi
B1Ic = max(QC Mi,1

B1I, . . . , QC Mi,j′
B1I, . . . , QC Mi,N′

B1I ) (16)

The formula mentioned above is the one-dimensional range–Doppler compensa-
tion of multiple target reflections. In the next part, we show the Doppler and the delay
two-dimensional Doppler compensation methods for Doppler delay image target peak
compensation. To better express the Doppler phase changes among code element periods
ranging code periods in a discrete time system, we express the Doppler phase in the form
of a matrix as (17), where each row expresses a period of TP, and its range is from 0 to
Q · TP.

phi
B1I,rj = f di

B1I,rj·


0 + 0, . . . , 0 + nTc, . . . , 0 + (Nc − 1)Tc
...

...
...

qTP + 0, . . . , qTP + nTc, . . . , qTP + (Nc − 1)Tc
...

...
...

(Q− 1)TP + 0, . . . , (Q− 1)TP + nTc, . . . , (Q− 1)TP + (Nc − 1)Tc




(17)

where we can find that the number column is incremented by Tc in each row and is
incremented by TP in each column. Therefore, we can take the FFT in the columns of the
matrix to first acquire the Doppler information of targets. Next, we compensate the matrix
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in each TP row for the duration based on the compensation phase. Finally, we can obtain
the compensated DDM results by the proposed MTDC method.

3.2. Resolution Study and Peaks Identifying Methods

In this part, we study the resolution performance of the BDS signal. As shown
in Table 1 in the simulation section, the B3I signal is transmitted with a bandwidth of
20.46 MHz. Figure 3 shows the autocorrelation curves of the B3I signal and two chirp
signals with bandwidths of 10.23 MHz and 20.46 MHz.

Table 1. System parameter.

Signals B3I

Bandwidth (B)/MHz 20.46

Carrier frequency f0/Hz 1.268× 109

Satellite1 PRN 19

Satellite2 PRN 26

Satellite3 PRN 21

Satellite4 PRN 22

Receiver label/km (0, 0, 6.5)

Receiver velocity/m/s 250

Receiver velocity angle ϕ = 135◦,θ = 90◦

Simulation serial number 1 2

Accumulation time/s 0.128 10
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Figure 3. Autocorrelation curves of GNSS B3I and chirp signals.

In Figure 3, we find that the main lobe of the B3I signal is wider than that of the chirp
signal at 20.46 MHz. According to Formula (18), where C is the electromagnetic wave
velocity and B is the signal bandwidth, the range resolution of the two chirp signals can be
calculated as 29.32 m. The resolution of the B3I signal is approximately 30 m, as shown
in Figure 3.

∆r = C/B (18)
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To further study the resolution of the B3I signal, we simulated two-point target
detection with interval of 29 m and 33 m by using the B3I signal, setting the chirp signal
at a 10.23 MHz bandwidth as a comparison. Figure 4a shows the detection peaks of the
GNSS B3I signal and chirp signal reflected by two-point targets with a distance of 29 m.
We found that the solid line peaks overlap completely, which means that the B3I signal
cannot distinguish the two-point targets. The chirp signal, with a bandwidth of 10.23 MHz,
can clearly detect two-point target peaks. Next, in Figure 4b, where the distance between
two-point targets is 33 m, two signals show two target peaks, and the sidelobe of the B3I
signal in the center is higher, while its sidelobes on both sides are lower than those of the
chirp signal.
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Figure 4. Two-point target detection main lobe curves of GNSS B3I and chirp signals: (a) The distance between the two
targets is 29 m; (b) the distance between two targets is 33 m.

Next, we studied the sidelobe between the two target peaks of the B3I signal detection
curves. Figure 5 shows the normalized sidelobe peak curves between two target peaks of
the GNSS B3I signal as the distance between two targets. We found that the sidelobe peaks
gradually decreased until the distance was more than 30 m, and in the range of 30~60 m,
they had a linear decline as the distance increased. The results show that the GNSS B3I
signal can realize a clear target peak resolution with an interval of targets near 30 m. After
further simulation, we found that 33 m is the suitable interval for B3I signals with clear
and smaller peak resolutions.

In BDS-R detection, the echo intervals are smaller than the resolution of the B3I signal,
and in the case of bistatic detection, intervals of targets vary with the bistatic angle. To
acquire a clear and stable resolution, we propose sampling the echoes with an interval of
33 m, and the RCS data for comparative verification can also be processed with an interval
of 33 m.
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Figure 5. Sidelobe between two main lobe peak ratios of the B3I and chirp signals.

3.3. Resolution Study and Range Inversion Methods

In this section, we study the peak inversion methods. For the limited resolution
problem, we propose a correlation peak inversion method to determine the specific range
information of targets based on one-dimensional detection data and the corresponding
signal autocorrelation function. Moreover, the inversion result accuracy is related to the
sampling frequency of the echoes. We propose two methods to find the approximate ranges
of target positions in the time domain. In method 1, without target estimation information,
we found the range as follows: (1) Acquiring matched filter results, we filtered it with a
normalized amplitude > a0. (2) Next, we divided the results into small segments, between
each pair of segments. There is a low amplitude period with a length of b0, where a0 and
b0 can be utilized to adjust the target range for better adaptability of detecting targets.
In method 2, we can obtain the rough target position in the echoes by rough detection.
The inversion ranges can be expressed as Range = [range1, range2, . . . , rangem, . . . , rangeM],
and the corresponding sampling points can be expressed as N = [n1, n2, . . . , nm, . . . , nM].
The inversion in rangem can be expressed as

nm

∑
q=1

(s(n− nm + q)− s(n + q))Amp(q) = M(rangem) (19)

where Amp is the modulating amplitude of the received signals. When clutter, noise,
and the correlation sidelobe have little influence, the specific radar cross-section (RCS)
distribution can be expressed as

RCS(rangem) = Amp (20)

According to the literature [28], clutter and noise influence can be suppressed effec-
tively during long-term accumulation. Because the RCS of the simulation ship is large, we
accumulated 10 s to effectively suppress the clutter and noise in simulation 2 and corrected
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the distance and velocity migration. Therefore, we can utilize the inversion method to
acquire the specific range information of targets.

3.4. Target Information Inversion Method Based on GNSS-R Detection

In signal processing, the detection results of different satellites can be separated by
signal range codes. After acquiring multiple satellite detection results for the targets, the
different target peaks in the range dimension can be distinguished when the targets keep a
sufficiently large distance. Additionally, we can also distinguish them by the difference
in beam direction. To acquire the precise coordinate information of targets in bistatic
detection, we can determine the target coordinates by detecting the target range and
velocity information, satellite information, and receiver information.

Ni,j · TP ·C + ri,j =

√
(xi

s − xj
t)

2
+ (yi

s − yj
t)

2
+ (zi

r − zj
t)

2

+

√
(xr − xj

t)
2
+ (yr − yj

t)
2
+ (zr − zj

t)
2 (21)

(vr · θi,1
r + vi

s · θi,2
r )/λ + (vi,j

t · θi,j,1 + vi
s · θi,j,2)/λ

= Mi,j · PRF + f di,j (22)

The target coordinate information can be acquired by the satellite coordinate informa-
tion from the signal data and the range detection results, as shown in Formula (21). We
can also obtain the target velocities through the Doppler detection results as (22), where
xi

s, yi
s, zi

s are the coordinates of satellite i, and xj
t, yj

t, zj
t are the coordinates of target j. Ni,j,

and ri,j are the cycle number and distance during a cycle of detected results of target j and
satellite i,, respectively. In (22), vi,j

t · θi,j,1 expresses the component of the velocity of target
i in the direction of the bistatic angular bisector between satellite i and the receiver, and
vi

s · θi,j,2 is the component of the velocity of satellite i in the direction of target j. vr · θi,1
r

and vi
s · θi,2

r are the corresponding velocity components between target i and the receiver.
Mi,j and f di,j are the Doppler cycle number and Doppler value of the detected results of
target j and satellite i, respectively.

3.5. Experimental Technical Scheme

Figure 6 shows the experimental technical scheme of multiple targets and multiple-
GNSS-R-signal detection. The technical route of the detection can be divided into three
parts: (1) The BDS MEO satellite information can be obtained from the database [29] and
the signal can simulate the parameter, as observed in the literature [27,28]. We found the
ship model using the physical optics scattering method and simulated the sea clutter with
the weibull distribution model; (2) After establishing the detection model, the echo was
simulated and preprocessed. Where the echo was sampled, the distance migration and
velocity migration were corrected, and the direct part of echo was suppressed; (3) For the
third part, we simulated the DDM, 33-meter one-dimensional range image, and inverse
image with multiple-target Doppler compensation, 33-meter peak identifying methods,
and inverse methods. The proposed method has been bolded in the picture.
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Figure 6. The technical process of multiple GNSS-R signals and multiple-targets detection. 

4. Simulation Results and Discussion 
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was set as airborne-based to better reflect the Doppler frequency difference of each target 
during GNSS-R detection. During the 10 s pulse accumulation time in simulation 2, we 
set the receiver plane to move horizontally and at a constant speed according to the given 
direction and speed, and the ship does not change its track. The influence of the Doppler 
and distance values instigated by the aircraft movement can be compensated for by the 
known aircraft movement parameters combined with the geometric model. Additionally, 
we set the linear delay compensation to be once per pulse period to remove the delay 
effect caused by ship motion. 
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Figure 6. The technical process of multiple GNSS-R signals and multiple-targets detection.

4. Simulation Results and Discussion

In this section, two sets of simulation results are given to evaluate the effectiveness
of the proposed MTDC method, the target peaks resolution method and the target peaks
range inversion method based on the B3I signal of four BDS satellites and the MIMO
system. The system parameters and target parameters are listed in Tables 1 and 2. The
geometry schematic diagram of the simulation is plotted in Figure 6, where the receiver
was set as airborne-based to better reflect the Doppler frequency difference of each target
during GNSS-R detection. During the 10 s pulse accumulation time in simulation 2, we
set the receiver plane to move horizontally and at a constant speed according to the given
direction and speed, and the ship does not change its track. The influence of the Doppler
and distance values instigated by the aircraft movement can be compensated for by the
known aircraft movement parameters combined with the geometric model. Additionally,
we set the linear delay compensation to be once per pulse period to remove the delay effect
caused by ship motion.

4.1. Simulation 1

In simulation 1, we detected three sets of point targets based on the B3I signals of
four BDS satellites without considering clutter and noise. The point target information is
expressed in Table 2, where the points were set with an interval of 30 m, and its geometric
distribution was plotted in Figure 7. In particular, to better study the detection property,
the RCS ratios of target 1, target 2, and target 3 were set to 2:5:15.
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Table 2. Target parameter.

Simulation 1
Point r/km ϕr v/m/s ϕv Interval/m Number

Target 1 1 150◦ 15 −120◦ 30 1

Target 2 1.5 135◦ 20 −135◦ 30 5

Target 3 2 60◦ 20 −120◦ 30 3

Simulation 2
Ship r/km ϕr v/m/s ϕv Length/Width(m)

Target 1 1 150◦ 15 −120◦ 141/20

Target 2 1.5 135◦ 20 −135◦ 314.6/40.8

Target 3 2 60◦ 20 −120◦ 142/18
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Figure 7. Geometry schematic diagram of multi-signal and multi-target detection simulation.

To study the target peak resolution effectiveness of the sampling method at 33 m,
Figures 8 and 9 show the RCS data distribution and one-dimensional range detection results
with sampling at 33 m. In Figure 8, the circle line expresses the original RCS distribution of
point target 3 under each satellite, and the star line represents the data with a sample at
33 m. In Figure 9, the curves are the detection peaks of point target 3 under each satellite,
and its direction and length vary with the detection angle. Taking Figure 8 as a comparison,
we found that the small peaks in the detection results of Figure 9 are in good agreement
with the sampling data at 33 m in terms of amplitude and range point. The results can be
utilized to estimate the RCS distribution of targets and verify target recognition.

To research the Doppler and range information of detection by four satellites, the
simulation shows the DDM results of three sets of point targets of the B3I signal from four
satellites separately in Figure 10. Because the resolution of B3I is near 30 m, each set of
point targets was detected as a few light points in the DDM, and according to the number
of points set in each target, we identified that the highlights are target 3, target 2, and
target 1, in order from the strongest to the weakest. Among the four detection results, the
Doppler frequency of each target ranged from −1000 to 1900 Hz for the high speed and
different radiation angle of the satellites, but the difference in the Doppler value among
targets was stable at approximately 400 Hz on account of the target points and receiver
location. The motion of the receiver and the target determine the Doppler difference among
targets. Moreover, the range and velocity information of the detection of four satellites can
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determine the target coordinate information using the target information inversion method
mentioned previously.
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4.2. Simulation 2

In simulation 2, we designed a simulation to detect three sets of ship targets based
on the B3I signals of satellite 3 considering Gaussian noise and sea clutter based on the
Weibull model. The ship target information and geometric diagram are also expressed in
Table 2 and Figure 7.

In Figures 11 and 12, we show the Doppler compensation effectiveness comparison
of the two compensation methods. In Figure 11, we simulated the one-dimensional range
detection compensated results of three ship targets without target estimation information,
and the results are compensated for with single Doppler channels and the MTDC method.
Figure 11a–c show the incomplete peak amplitudes of three ship targets, and Figure 11d
shows the target peaks without Doppler phase influence, which shows the effectiveness of
MTDC in estimating no-target information situations. Figure 12 shows the compensation
results with acquired target estimation information. Figure 12a–c show that each target
peak can return to the normal level under the corresponding Doppler compensation and
that other target peaks lose part of their amplitudes. Figure 12d shows the MTDC method
compensation results expressing all target peaks, obtaining their maximum level. The
results of Figures 11 and 12 verify that the proposed MTDC method can remove the Doppler
phase influence of multiple target detection.
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results of three ship targets under the detection of the B3I signal of satellite 3, where 
pictures (a) and (b) express whether the results consider clutter and noise. In Figure 16a, 
combined with target peak identification and target range inverse results, we found that 
the highlight groups were target 1, target 3, and target 2 from left to right. The ship targets 
can be detected as several highlights with a range resolution of near 30 m and a Doppler 
frequency resolution of approximately 8 Hz. Due to the high speed of the receiver and 
different received angles, the targets’ Doppler frequency varies in the range of 400 Hz, 
and there are 8 Hz offsets in the scattered point in a target. After introducing clutter and 
noise backgrounds, Figure 16b shows the detection results with clutter distribution, as 
shown in Figure 7, with 10 s pulse accumulation. We found a clutter highlight group near 
the 0 Hz Doppler channel with a normalized amplitude of 0.6. In the range dimension, a 

Figure 12. Doppler compensation comparison of method 2 in a one-dimensional range image by B3I signals of satellite 3:
(a) results with first target Doppler compensation; (b) results with second target Doppler compensation; (c) results with third
target Doppler compensation; (d) results with the proposed MTDC method based on multiple estimated target Dopplers.

Based on the same sampling at 33 m, we plotted the one-dimensional range detection
results of three ship targets by satellite 3 in Figure 13, where Figure 13a,c,e show the
sampling detection results at 3 m and the sampling detection results at 33 m for ships 1,
2, and 3, respectively. Compared with the RCS data of Figure 13b,d,f, we found that the
sampling detection at 3 m can express the general outline of the ship’s target RCS without
accurate amplitude and range point information. The small peaks in the sampling results
at 33 m, which are in good agreement with the sampling data obtained at 33 m, express
segmented scattering strong points with accurate amplitude and computable range points.
The results can be more accurate in the service of target recognition.
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To further study the resolution improvement method, we simulated the detection re-
sults of satellite 3 with range inverse methods to acquire the more delicate RCS distribution
of targets based on the sampling frequency fs = 10*B. Figure 14 shows the range inverse
results of method 1, in which we screened the probable target information by amplitude
and segment; the results are given by a certain length in the low-amplitude region. The
dotted line in Figure 14 expresses the RCS data, and the circle line, which is the inverse
result, which does not consider clutter, is in good agreement with the data in terms of the
amplitude and range point, especially at strong scattering points. Moreover, we utilized
the small square line to express the inverse results with clutter and noise backgrounds with
10 s pulse accumulation. It shows that target peaks can be recognized from clutter and
noise backgrounds with the proposed inverse method.
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Figure 14. Range inversion results of 3 ship targets under the detection of BDS satellite 3 with range inversion method 1:
(a) ship 1; (b) ship 3; (c) left part of ship 2; (d) right part of ship 2.

In the other situation, since we have estimated the target information, we can acquire
rough target distance ranges and reverse them using the range inverse method 2. Figure 15
shows the range inverse results based on target estimation information, where ship 2 can
notably be expressed more completely and accurately than with method 1.
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Figure 15. Range inversion results of 3 ship targets under the detection of BDS satellite 3 with target estimation information
by range inversion method 2: (a) ship 1; (b) ship 2; (c) ship 3.

Starting from the two dimensions of Doppler and range, Figure 16 plots the DDM
results of three ship targets under the detection of the B3I signal of satellite 3, where
pictures (a) and (b) express whether the results consider clutter and noise. In Figure 16a,
combined with target peak identification and target range inverse results, we found that
the highlight groups were target 1, target 3, and target 2 from left to right. The ship targets
can be detected as several highlights with a range resolution of near 30 m and a Doppler
frequency resolution of approximately 8 Hz. Due to the high speed of the receiver and
different received angles, the targets’ Doppler frequency varies in the range of 400 Hz, and
there are 8 Hz offsets in the scattered point in a target. After introducing clutter and noise
backgrounds, Figure 16b shows the detection results with clutter distribution, as shown in
Figure 7, with 10 s pulse accumulation. We found a clutter highlight group near the 0 Hz
Doppler channel with a normalized amplitude of 0.6. In the range dimension, a few clutter
peaks overlapped target 1, which protected the detection of target 1 from clutter influence.
Some cluttered peaks overlapped target 2 and target 3, but the cluttered peaks are small
and dispersed, which reduces the influence of the detection of the two targets. Moreover,
the cluttered strong scatter point does not overlap in the simulation, supporting better
detection results for the signal process. This situation has a large probability of overlapping
since the scattering intensity of sea clutter is random.
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(b) with clutter background.
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Figures 12–16 show the one-dimensional range image Doppler compensation results,
one-dimensional range image target peak identification results, range inverse results, and
DDM results of three ship targets in simulation 2, which verify that multiple fetched
ship targets can be detected with better strength using the MDTC method with noise and
sea clutter backgrounds in a 10 s accumulation, and the ship RCS distribution structure
can be further acquired by the proposed target peak identification method and range
inversion method.

5. Conclusions

This paper studies multiple-BDS signal reflection detection for multiple moving
targets in the sea. It analyzes the influence of multiple-target Doppler phases and proposes
the MDTC method to suppress influence under target estimation and not under target
estimation. The results show the proposed method can effectively restore target peaks
under the influence of four kinds of Doppler frequencies in GNSS-R detection, where the
Doppler frequency variation range is −1000–1900 Hz. For further study of target peak
detection, simulations of point target and ship target detection were performed to verify the
effectiveness of the proposed peak identification method and range inversion methods. The
peak identification results of four satellites and three ship targets showed corresponding
peaks which matched the RCS data of detected targets. The range inversion results show
a better resolution of target peak detection results, which can obtain the specific RCS
distribution of ships in the hundred-meter class. At last, noise and clutter backgrounds
were added to simulation 2 under 10 s pulse accumulation, which shows some influence
on the sidelobe of target 2 and target 3, and the three target main peaks can still be detected
relatively clearly. In the future, we will study the detection simulation of small-scale targets
in the sea and detection with various satellite detection angles.
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Abstract: A multi-frequency Global Navigation Satellite System (GNSS) provides greater opportuni-
ties for positioning and navigation applications, particularly the BeiDou Global Navigation Satellite
System (BDS-3) satellites. However, multi-frequency signals import more pseudorange channels,
which introduce more multi-channel Differential Code Biases (DCBs). The satellite and receiver DCBs
from the new BDS-3 signals are not clear. In this study, 9 DCB types of the new BDS-3 signals from
30-days Multi-GNSS Experiment (MGEX) observations are estimated and investigated. Compared
with the DCB values provided by the Chinese Academy of Science (CAS) products, the mean bias and
root mean squares (RMS) error of new BDS-3 satellite DCBs are within ±0.20 and 0.30 ns, respectively.
The satellite DCBs are mostly within ±0.40 ns with respect to the product of the Deutsches Zentrum
für Luft- und Raumfahrt (DLR). The four sets of constructed closure errors and their mean values
are within ±0.30 ns and ±0.15 ns, respectively. The mean standard deviation (STD) of the estimated
satellite DCBs is less than 0.10 ns. In particular, our estimated satellite DCBs are more stable than DCB
products provided by CAS and DLR. Unlike satellite DCBs, the receiver DCBs have poor compliance
and show an obvious relationship with the geographic latitude when compared to the CAS products.
The STDs of our estimated receiver DCBs are less than 1.00 ns. According to different types of receiver
DCBs, the distribution of STDs indicates that the coefficient of the ionospheric correction has an
influence on the stability of the receiver DCBs under the ionosphere with the same accuracy level. In
addition, the type of receiver shows no regular effects on the stability of receiver DCBs.

Keywords: BeiDou Global Navigation Satellite System (BDS-3); Differential Code Biases (DCBs);
multi-channel; ionospheric correction

1. Introduction

The Global Navigation Satellite System (GNSS) has been widely used in geosciences
and life [1,2]. In particular, China’s BeiDou Global Navigation Satellite System (BDS-3) was
officially operated for global users on July 31, 2020 [3]. As the first hybrid constellation of
navigation satellite systems in the world, BDS-3 has been developing rapidly and providing
global services, and can provide positioning, navigation, and timing (PNT) services [4].
BDS-3 transmits other new signals of multiple frequency bands, which is compatible with
signals of B1 and B3 provided by the BeiDou regional navigation satellite system (BDS-
2). Multi-frequency signals provide plentiful observations for satellite applications but
also introduce new errors in the positioning process [5,6]. For example, the difference
of hardware delay between the signals of double-frequency bands is designated as the
differential code bias (DCB), which affects the accuracies of the ionospheric modeling and
GNSS precise positioning [7,8]. There are multiple channels for BDS observations on the
same frequency, which are summarized in Table 1 from the Receiver Independent Exchange
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(RINEX) format (https://files.igs.org/pub/data/format/rinex305.pdf). Therefore, the
multiple DCBs caused by multi-channel signals of BDS-3 should be estimated and analyzed
accurately.

Table 1. The pseudorange channels of BDS multi-frequency signals.

System Freq. Band Frequency/MHz Channel Codes
of Pseudorange

BDS-2 B2 1207.140 C7I C7Q C7X
BDS-2/3 B1 1561.098 C2I C2Q C2X

B3 1268.52 C6I C6Q C6X
BDS-3 B1C 1575.42 C1D C1P C1X

B2a 1176.45 C5D C5P C5X
B2b 1207.140 C7D C7P C7Z

B2(a+b) 1191.795 C8D C8P C8X

Generally, the ionospheric total electron content (TEC) and DCB need to be consid-
ered simultaneously during the estimation process. Carrier-to-code leveling (CCL) is a
common estimation method to extract ionospheric TEC and DCB. It exhibits suitable accu-
racy and simple implementation with the dual-frequency geometry-free (GF) observation
combination [9,10]. Moreover, the method of undifferenced and uncombined precise point
positioning (PPP) shows higher estimation accuracy when compared with the CCL [11].
However, the PPP approach introduces external constraints on the receiver coordinates,
orbits, and clock errors [12,13]. The above-mentioned methods are only used to extract
the ionospheric observations, while DCB estimation should be further considered. Iono-
spheric correction generally includes two components: external ionospheric models and
simultaneous estimation [14]. The empirical ionospheric models and the global ionospheric
map (GIM) can be used as external ionospheric models to correct the ionosphere. The
empirical ionospheric models mainly include the Klobuchar model, NeQuick model, and
BeiDou Global Ionospheric delay correction Model (BDGIM) [15–17]. Since the Ionosphere
Working Group (IWG) was created by IGS in 1998, many Ionosphere Associate Analysis
Centers (IAACs) continue to generate GIMs with high-precision for GNSS users [18]. To
achieve simultaneous estimation, the ionospheric modeling is performed, including the
global spherical harmonics (SH) and regional generalized trigonometric series function
(GTSF) [19,20]. The Multi-GNSS Experiment (MGEX) network of the International GNSS
Service (IGS) has been developed [21] so that more and more stations can track multi-
frequency new BDS-3 signals. However, the number of these stations is insufficient for
global ionospheric modeling and DCB estimation of BDS-3 signals.

Recently, the ionosphere and DCB of BDS-2/3 have been analyzed and discussed. Xue
et al. [22] analyzed the stability of BDS-2 B1I-B2I and B1I-B3I DCBs by using multi-GNSS
observations. Zhu et al. [23] verified and analyzed satellite and receiver DCB by employing
the BDGIM. MGEX observations are utilized to analyze the stability and systematic bias
of BDS-2 and BDS-3 DCBs [24,25]. Deng et al. [26] also estimated multiple satellite DCBs
of BDS-3 and compared with the Chinese Academy of Sciences (CAS) and the Deutsches
Zentrum für Luft- und Raumfahrt (DLR) products. However, most studies have focused
on the DCBs estimation and analysis of BDS B1 and B3 frequency, or between B1/B3 and
other frequencies. It has a lack of variation characteristics of satellite and receiver DCBs
from new BDS-3 signal observations.

This paper aims to estimate and analyze the satellite and receiver DCBs of the new BDS-
3 signals (B1C/B2a/B2b/B2(a+b)). The method of DCB estimation and data are introduced
in Section 2. Results are presented in Section 3. Nine DCB types from the MGEX network
are estimated and compared with DCB products provided by the CAS/DLR. Besides, four
sets of closure errors of satellite DCBs are analyzed in detail, including the distribution and
the mean values of closure errors. The accuracy and stability of the BDS-3 receiver DCBs
are analyzed. Finally, some discussion and conclusions are given in Sections 4 and 5.
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2. Methods and Data
2.1. Ionospheric Estimation Equation

Observations obtained from the files of RINEX format generally include pseudorange
and carrier-phase observations. Considering multiple errors, the general observation
equations can be expressed as follows [27]:





Ps
i,j = ρs

i + dti − dts + ds
tro,i + µj · ds

ion,i,1 + di,j − ds
,j + εP

Φs
i,j = ρs

i + dti − dts + ds
tro,i − µj · ds

ion,i,1 + bi,j − bs
,j + Ns

i,j + εΦ

µj = f 2
1 / f 2

j

(1)

where P and Φ are the pseudorange and carrier-phase observations, respectively; i and j
refer to the receiver and the frequency index, respectively; s denotes the BDS satellite; ρ
is the geometric range between the receiver and satellite; dti and dts are the receiver and
satellite clock offsets, respectively; dtro and dion are the slant tropospheric and ionospheric
delays, respectively; µj denotes the frequency-dependent multiplier factor; di,j and ds

,j are
the receiver and satellite pseudorange instrumental delays at f j frequency, respectively;
bi,j and bs

,j are the receiver and satellite the carrier-phase hardware delays at f j frequency,
respectively; N denotes the integer ambiguity; and εP and εΦ are the noises of pseudorange
and carrier-phase observations, including multipath, respectively.

For any dual-frequency observations of BDS-3, ionospheric observable can be obtained
from GF combined observations, which can be expressed as [28]:





P4 = Ps
i,1 − Ps

i,2 = (µ1 · dion,i,1 − µ2 · dion,i,1) + (di,1 − di,2)−
(

ds
,1 − ds

,2

)
+ εP,4

= (µ1 · dion,i,1 − µ2 · dion,i,1) + DCBi − DCBs + εP,4

Φ4 = Φs
i,1 − Φs

i,2 = −(µ1 · dion,i,1 − µ2 · dion,i,1) + (bi,1 − bi,2)−
(

bs
,1 − bs

,2

)
+
(

Ns
i,1 − Ns

i,2

)
+ εΦ,4

(2)

where P4 and Φ4 are the GF pseudorange and carrier-phase observations, respectively;
DCBi and DCBs are the corresponding receiver and satellite DCB, respectively; and εP,4
and εΦ,4 are the noises of GF pseudorange and carrier-phase observations, respectively.

To eliminate the large noise of pseudorange observations P4 [29], the CCL approach is
adopted during one observation arc with no cycle slips. The pseudorange instrumental
delay and integer ambiguity remain the same constant in such arcs, so the ionospheric
observables after smoothing can be expressed as [14]:

Ps = Φ4(ti)−
1
n

tn

∑
n=t1

[P4(ti) + Φ4(ti)] = −(µ1 − µ2) · ds
ion,i,1 − DCBi + DCBs (3)

where n refers to the number of measurements during one observation arc.

2.2. Ionospheric Correction Based on GIM

Due to the insufficient distribution of BDS-3 stations, the external ionospheric correc-
tion is introduced from GIM provided by the Center for Orbit Determination in Europe
(CODE). Then, the single-layer mapping function is used for converting slant TEC (STEC)
to VTEC. It can be expressed as follows [30]:





ds
ion,i,1 = 40.30

f 2
1

STECs
i

STECs
i = MF · VTECs

i
MF = 1

cos[arcsin( R
R+H sin(α·E))]

(4)

where MF denotes the mapping function, R is the average radius (6371 km) of the Earth,
H is the assumed height (450 km) of the single layer ionosphere, α refers to the model
coefficient (0.9782), and E is the satellite elevation angle. VTEC can be obtained by linear
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interpolation based on GIM, involving interpolations of two-dimensional space and time
series [31].

2.3. DCB Separation and Estimation

After correcting the ionosphere, Equation (3) contains only satellite and receiver
DCB. For one-day observation, the DCBs of each satellite and receiver are estimated as
one constant, respectively. To solve the singular problem of the equation, the zero-mean
condition is adopted to separate the DCBs of satellites and receivers. Namely the sum of
the DCBs of all satellites is zero on one day, so Equation (3) can reach full rank [32]. Under
this constraint condition, the DCB variations are not affected [33]. The zero-mean condition
for BDS-3 satellites can be expressed as:

N

∑
s=1

DCBs = 0 (5)

where N denotes to the total number of BDS-3 satellites observed per day. When the
satellites observed are different per day, the zero-mean condition will be inconsistent.
In that case, the conversion method needs to be implemented for unified zero-mean
condition [25].

Based on Equations (3)–(5), the DCB estimation by employing CODE’s GIM can be
rewritten as:





Ps − 40.30( f 2
1 − f 2

2 )
f 2
1 f 2

2
· MF · VTECs

i = −DCBi + DCBs

N
∑

s=1
DCBs = 0

(6)

Finally, the cut-off elevation angle is set to 15◦ to reduce the impact of multipath noise
and mapping function errors [10]. To get an arc without cycle slips, the MW (Melbourne–
Wübbena combination) and ionospheric residual observations are used to process the
sequence of GF observations [28].

2.4. Experimental Data

With the development and updating of MGEX stations, increasingly more stations
can track the BDS-3 new signals. Eighty-eight stations of the MGEX network collected
from a period of 30 days, corresponding to the day of year (DOY) 060-089 in 2021, were
processed to estimate DCBs of BDS-3. Figure 1 shows the distribution of the MGEX stations
with tracking the BDS-3. It can be seen from Figure 1 that the distribution of the stations
tracking the BDS-3 new signals is inadequate and uneven, so a single BDS-3 system cannot
implement the global ionospheric modeling yet. According to the multi-channel type of
BDS-3 in the observation file, we estimate 9 DCB types of BDS-3 new signals. The channel
type depends on the type of station receiver. Table 2 shows pseudorange observation
channels and corresponding frequency bands used to estimate 9 DCB types in our study.
As we can see from Table 2, the number of stations with receiving new BDS-3 signals is still
less than GPS stations in the hundreds. In particular, the C7Z-C8X combination has only
19 stations that can be used for DCB estimation.
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Table 2. Nine types in the DCB estimation of BDS-3.

Freq. Band
Pseudorange Observation Channels

Combination 1 Stations Number Combination 2 Stations Number

B1C-B2a C1P-C5P 60 C1X-C5X 28
B1C-B2b C1P-C7D 43 C1X-C7Z 23
B2a-B2b C5P-C7D 42 C5X-C7Z 23

B1C-B2(a + b) C1X-C8X 21
B2a-B2(a + b) C5X-C8X 23
B2b-B2(a + b) C7Z-C8X 19

3. Results and Analysis
3.1. Quality Analysis of New BDS-3 Signal

To assess the quality of the new BDS-3 signals, we analyze the multipath (MP) combi-
nation of multi-channel signals. Figure 2 shows MP values of BDS-3 C19, C37, C38, and C45
satellites during the DOY 60–89, 2021, which are observed at stations PTGG and FFMJ. The
digits represent the root mean squares (RMS) of MP. As shown, the MP values vary within
±2 m. The signal quality of C1P/C5P/C7D channels is not significantly different. The RMS
of C1X(B1C) MP is significantly larger than the other three channels. Nevertheless, MP
of the C8X (B2) channel has satisfying signal performance. Thus, it can be seen the signal
quality of B1C frequency is the worst and that of B2(a+b) frequency is the best.
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3.2. Validation of Satellite DCBs

CAS and DLR analysis centers (ACs) provide DCB products for BDS-3 signals but do
not include all DCB types. To validate the accuracy of DCBs within the 30 days estimated in
this paper, we analyzed statistics of the DCBs, including mean bias and RMS, with CAS and
DLR products. Figure 3 depicts the statistical results of 4 DCB types with the direct value
provided by CAS products. The mean bias and RMS of satellite DCBs vary within ±0.20 ns
and 0.30 ns, respectively. The results show our estimated DCBs have better consistency
with the direct DCB value provided by CAS products. Owing to the DLR only provides
DCB types between C2I and other channels, we calculated the conversion value of DCBs
between the channels of BDS-3 new signal by using DLR products. The mean bias and RMS
of 6 satellite DCB types are shown in Figure 4. The results of comparison with DLR products
are inferior to the previous result with CAS and are mostly within ±0.40 ns. According
to the error propagation principle, the cumulative error of the converted value can lead
to a larger deviation of the result. In particular, C45 and C46 are obviously difference.
Compared with CAS products and our estimated results, it is found that the values of DLR
products deviate. This may be related to corresponding satellite stability and observation
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quality. Finally, the time series of C1P-C5P of DCB and the differences with respect to CAS
products are shown in Figure 5. The estimated DCB of C1P-C5P varies between the −79.00
and 23.00 ns, and the differences vary within ±0.30 ns. It can be seen that the time series
DCB of C1P-C5P are stable and consistent with the DCB provided by CAS products.
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The stability of satellites during long time series is an important index to evaluate
the accuracy of DCBs. Figure 6 shows the distribution of deviation between 9 DCB types
of BDS-3 satellites and the corresponding mean values. The deviations of 9 DCB types
vary within ±0.30 ns for the whole distribution. The optimal deviation is less than 0.10 ns,
particularly for the C5P-C7D and C7Z-C8X. Table 3 summarizes the mean values of the
standard deviation (STD) of BDS-3 DCBs of DLR, CAS, and our results. Our results are
consistent with the stability of DCBs provided by CAS products. The conversion values of
DCB provided by CAS and DLR products are less stable than our estimated DCBs. DCBs
provided by DLR products related to C1X and C5X channels exhibit instability in C45 and
C37 satellites. Our estimated DCBs of C37 satellites show instability in the C1X channel.
This indicates that the stability levels of our estimated DCB and CAS are the same, but the
conversion values of DCB provided by DLR products are slightly less stable.
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Table 3. Mean STD of BDS-3 DCBs of DLR, CAS, and our results, showing the corresponding satellite
psuedo random noise (PRN); the bold types are the direct values provided by CAS products.

Type CAS DLR Our Results

Max Min Mean Max Min Mean Max Min Mean

C1P-C5P 0.115
(C42)

0.040
(C39) 0.076 0.100

(C42)
0.049
(C39) 0.072

C1P-C7D 0.087
(C34)

0.045
(C38) 0.066

C5P-C7D 0.036
(C43)

0.013
(C26) 0.025

C1X-C5X 0.128
(C30)

0.050
(C40) 0.087 0.470

(C45)
0.065
(C40) 0.125 0.195

(C37)
0.050
(C27) 0.092

C1X-C7Z 0.118
(C36)

0.056
(C40) 0.092 0.465

(C45)
0.079
(C44) 0.130 0.168

(C37)
0.049
(C30) 0.091

C5X-C7Z 0.120
(C36)

0.035
(C40) 0.075 0.215

(C39)
0.073
(C36) 0.111 0.075

(C37)
0.023
(C27) 0.042

C1X-C8X 0.131
(C46)

0.066
(C40) 0.097 0.490

(C45)
0.080
(C35) 0.129 0.191

(C37)
0.043
(C27) 0.095

C5X-C8X 0.117
(C44)

0.039
(C40) 0.071 0.213

(C39)
0.065
(C36) 0.104 0.052

(C22)
0.016
(C23) 0.029

C7Z-C8X 0.085
(C22)

0.021
(C40) 0.055 0.093

(C43)
0.040
(C24) 0.060 0.051

(C29)
0.011
(C40) 0.022

3.3. Internal Coincidence of Satellite DCB

According to the nine estimated DCB types, four sets of closure errors can be con-
structed, including C1P-C5P-C7D, C1X-C5X-C7Z, C1X-C5X-C8X, and C1X-C7Z-C8X. Fig-
ure 7 shows the distribution of four sets of closure errors for all BDS-3 satellites. The
fluctuation in closure error is within ±0.30 ns. The closure errors of C1P-C5P-C7D are less
than 0.10 ns by using more stations. From the normal distribution curve, the distribution
of BDS-3 satellites closure error conforms to the condition under the influence of random
noise. Moreover, the corresponding mean closure error is also depicted in Figure 8. The
mean closure errors of all DCB types are less than 0.15 ns. Echoing the conclusion above,
the C1P-C5P-C7D set has the smallest closure error, which relates to the use of more stations.
The closure errors of the C37 satellite related to the C1X channel are larger, indicating its
poor stability.
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3.4. Validation and Variation of Receiver DCBs

To evaluate variation characteristics of receiver DCBs, we classify experimental stations
in terms of receiver types, which are summarized in Table 4. According to the receiver
tracking the channel types of BDS-3 new signals, the observation channels consist of two
sets, i.e., C1P/C5P/C7D and C1X/C5X/C7Z/C8X. The former receiver types belong to
Septentrio (SEPT), and the latter receiver types belong to TRIMBLE and JAVAD (https:
//files.igs.org/pub/station/general/IGSNetwork.csv) [21]. The corresponding station
names are also given. As a matter of common knowledge, the stability of receiver DCBs
is not as good as satellite DCBs, and it is susceptible to receiver hardware and changes in
the external environment. Besides, receiver DCBs provided by CAS tracking BDS-3 new
signals are not continuous for 30 days. Thus, we only compare our estimated receiver DCBs
with their corresponding values provided by CAS products during 30 days.

Table 4. Station and receiver information for BDS-3 DCB estimation.

Observation Channels Receiver Type Station

C1P/C5P/C7D

SEPT POLARX5TR AMC4 BREW BRUX CEBR GAMG GODE
HARB KOUG MGUE NLIB NNOR ONSA
PARK SPT0 STJ3 THTG USN7 YEL2

SEPT POLARX5

ABPO ALIC AREG ARUC CHPI DGAR
FAA1 FALK GOP6 HAL1 IISC JPLM
KIR0 KIRU KITG KOUR MAL2 MAO0
MAR6 MDO1 METG MIZU MKEA NKLG
NYA2 OUS2 PTGG QAQ1 REDU SANT
SCOR SEYG SUTH THU2 USUD VACS
VILL VIS0

SEPT POLARX5E KOS1
SEPT ASTERX4 KIT3 RIO2 TASH

C1X/C5X/C7Z/C8X

TRIMBLE ALLOY BRST CHPG LMMF OWMG UNB3

JAVAD TRE_3 DELTA
ARHT BRMG FFMJ GCGO GODN GODS
HUEG LEIJ MET3 PIE1 SOD3 TIT2
WARN WTZZ

JAVAD TRE_3
ENAO LPGS POTS SGOC SUTM ULAB
URUM WIND WUH2

When the estimated results of satellite DCBs are relatively stable, the estimation
of receiver DCBs is also directly subject to ionospheric delay estimation or correction.
The accuracy of the ionospheric modeling is also closely related to geographic latitude.
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Hence, the geographic latitude is taken as the horizontal axis to analyze receiver DCBs.
Figure 9 shows the RMS of four receiver DCB types, including C1P-C5P, C1X-C5X, C1X-
C7Z, and C1X-C8X, which are dotted in different colors. Overall, the RMS of receiver
DCBs vary within 2.50 ns. The RMS show an obvious relationship with the geographic
latitude. The RMS mostly exceed 1.00 ns at low latitudes between −30◦ and 30◦. However,
higher consistency exists between our estimated receiver DCBs and CAS products in
middle and high latitudes. Statistics for RMS of four receiver DCB types are depicted in
Figure 10, including the maximum, minimum, and mean for each DCB type. The RMS of
our estimated receiver DCBs is mostly less than 1.50 ns with respect to CAS. There is an
equivalent accuracy among C1X-C5X, C1X-C7Z, and C1X-C8X DCBs. Because there are
more low-latitude stations used to estimate C1P-C5P, the RMS values are relatively large.
Finally, we calculate the mean value for RMS of our estimated receiver DCBs, which is
about 0.68 ns. Considering the previous satellite DCB analysis, this phenomenon is caused
by higher ionospheric activity at lower latitudes and the different ionospheric modeling
strategies from CODE and CAS.
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Figure 11 shows the STDs for all BDS-3 receiver DCB types in our study. Most STD
values are less than 0.50 ns, and all of them are less than 1.00 ns. This indicates the receiver
DCBs have poor stability compared with satellite DCBs. In addition, it can be seen that
the receiver DCB types associated with the B1C(C1P/C1X) frequency are less stable than
other types. As shown by the digitals in this figure, the absolute values of coefficient for
ionospheric correction term increase due to the use of the dual-frequency observation
with a larger frequency difference. The accuracy of ionospheric products provided by
CODE is 2-8 TEC Unit (TECU) [34]. Coefficients with large absolute values can amplify the
ionospheric errors under the ionospheric corrections with the same accuracy level, thus
leading to the unstable estimated receiver DCBs. In terms of different colored dots, there is
not a significant regularity. Thus, it can be explained that the type of receiver has no critical
determinant for its stability.
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of the ionospheric correction with corresponding DCB types.

4. Discussion

The satellite and receiver DCBs of new BDS-3 signals are estimated and analyzed in
this paper. The MP values of BDS-3 new signals show that the B1C signal quality is slightly
worse at the highest frequency, which is significantly affected by MP and other noises.
Comparing our estimated results with CAS and DLR products, the DCB values with respect
to the C45 and C46 satellites in DLR products have a deviation. When fewer available
stations are used to estimate DCB products, the quantity and quality of observables have

214



Remote Sens. 2022, 14, 594

a large impact on the stability of satellite DCB estimates. Satellite DCB estimates are
susceptible to poor quality observations and thus result in systematical bias and instability.

The receiver DCBs of the new BDS-3 signals exhibit an obvious relationship with the
geographic latitude. The latitudinal dependence of receiver DCB estimates is consistent
with Li et al. [24] and Wang et al [25]. Different ionospheric coefficients have a significant
influence on the stability of receiver DCBs. Under the ionospheric corrections with the
same accuracy level, the ionospheric coefficient with a larger absolute value will amplify
the errors in the process of error propagation. Although the STDs of receiver DCBs show
no obvious relationship between the type of receiver and its stability, this relationship also
needs to be further analyzed and validated for latitude, temperature, and other influencing
factors [22,35].

Because there are only a few MGEX stations with tracking such channel codes of
observation, the DCB estimation does not cover all the channel codes, such as C1X-C7D
and C5X-C7D. The DCB types can be further estimated and analyzed when more stations
are established by tracking the relevant channel codes of observation in the future.

5. Conclusions

As the main error source of multi-frequency BDS signal applications, the DCBs of new
BDS-3 signals (B1C/B2a/B2b/B2(a+b)) are estimated and analyzed systematically in this
paper. The nine sets of DCB types are constructed using the 88 stations from the MGEX
network for 30 days. The main conclusions are summarized as follows:

1. Compared to the direct DCB values provided by CAS products, the mean bias and
RMS of satellite DCBs are within ±0.20 and 0.30 ns, respectively, while the results are
mostly within ±0.40 ns when compared with the DLR products.

2. By analyzing STD values for each DCB type, our estimated DCBs are more stable
than CAS and DLR products. In particular, DCBs of DLR products related to the
C1X channel of the C45 satellite have poor stability, leading to a deviation from our
estimation and CAS product.

3. Four sets of constructed closure errors are within 0.30 ns, and their mean values are
less than 0.15 ns, indicating that our estimated satellite DCBs of BDS-3 have high
precision.

4. The RMS of receiver DCBs is mostly less than 1.50 ns with respect to CAS products.
An obvious relationship is found between RMS values and the geographic latitude,
e.g., the RMS of C1P-C5P DCB with more than 1.00 ns for stations in low latitude
areas. Almost all the receivers of C1X/C5X/C7Z/C8X channels are located at middle
and high latitudes, so the receiver DCBs are better consistent with CAS products.

5. The STDs of BDS-3 receiver DCBs are within 1.00 ns, which are not as stable as
satellite DCBs. The STDs of different receiver types show no significant differences.
However, the coefficients of ionospheric correction obtained by different frequencies
differ significantly.

Although the BDS-2/3 system has been fully built, the number of stations with tracking
new BDS-3 signals is far less than GPS. To promote precise applications of multi-frequency
BDS-3, more stations with tracking full frequencies of BDS-3 signals need to be established,
which will contribute to ionospheric modeling and DCBs estimation.
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Abstract: In this study, we conduct a correlation analysis between the daily occurrence times of the
increase and decrease anomalies in the global total electron content (TEC) in the ionosphere, and
the daily earthquake energy release within 110–130◦E longitude over the following three latitude
regions: A: 13◦S–0.5◦S (22.3◦S–10◦S geomagnetic), B: 0.5◦S–19.5◦N (10◦S–10◦N geomagnetic), and
C: 19.5◦N–32.1◦N (10◦N–22.5◦N geomagnetic). The TEC data from global ionosphere maps (GIMs)
during earthquake events of M ≥ 2.5 that occurred in 2015–2018 are used in this study. The time
series of daily seismic wave energy releases within the three regions and the daily occurrence times of
the TEC anomalies in each GIM grid are computed. By time-shifting the time series, the correlations
are calculated and compared globally, and the temporal characteristics are also examined. The
disturbance storm time (Dst) index, planetary geomagnetic index Kp, and daily observed 10.7 cm
solar flux (F10.7) are used to remove data associated with space weather variations. Although the
seismo-ionospheric precursor is not confirmed by the statistical investigations, the greater occurrence
times of TEC decrease anomalies are observed in the southeast in Region A, and the conjugate point
13 days prior to a M6.9 earthquake in Region A, which occurred on 5 August 2018, in accordance
with the statistical results. Therefore, it is required to apply more parameters to understand the
causes of the ionospheric TEC variations and investigate whether ionospheric variations are caused
by earthquakes.

Keywords: earthquake energy; total electron content; global ionosphere maps; seismo-ionospheric anomaly

1. Introduction

Earthquakes are one of the most devastating types of natural disasters, and large
earthquakes can cause great damage to life and property. Therefore, predicting the occur-
rence of earthquakes in advance has been of interest to researchers and the general public.
Scientific attempts related to earthquake prediction include monitoring variations in the
geomagnetic field, surface displacements, groundwater levels, etc. [1–5]. In addition, many
studies have shown that the electron density in the Earth’s ionosphere might vary anoma-
lously within approximately 7 days prior to earthquakes [6–11]. Liu et al. [6,7] conducted
regional ionospheric observations using the Chung-Li ionosonde (25.0◦N, 121.2◦E) and
the Global Positioning System (GPS) network in the Taiwan area to observe the maximum
plasma frequency foF2 in the ionospheric F2 region and the total electron content (TEC),
respectively, and detected ionospheric variations before the 1999 M7.7 Chi-Chi earthquake,
which occurred in central Taiwan. The results show that the ionospheric electron density
over the epicenter anomalously decreased 1, 3, and 4 days before the Chi-Chi earthquake.
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To understand the ionospheric precursor signatures, it is important to examine global
ionospheric variations prior to earthquakes. Global ionosphere maps (GIMs) provided
by the Center for Orbit Determination in Europe (CODE) are based on time-continuous
observations with global coverage and can be used to investigate the global distributions
of ionospheric anomalies. Liu et al. [8–10] employed GIMs to investigate the seismo-
ionospheric precursors (SIPs) for the 2008 M 8.0 Wenchuan, China, the 2004 M 9.1 Sumatra,
and the 2010 M 7.0 Haiti earthquakes, respectively. They found that ionospheric TEC
anomalies appeared around the epicenters 1–6 days prior to the three earthquakes. Fur-
thermore, satellite observations have detected ionospheric variations before earthquakes.
For example, Liu et al. [11] utilized data obtained by the French satellite Detection of
Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) to analyze
the differences between the observed ionospheric parameters before and after the 2008
Wenchuan earthquake and found that the ionospheric nighttime electron density and ion
density decreased significantly over the epicenter 1–6 days before the earthquake. On
2 February 2018, the China Seismo-Electromagnetic Satellite (CSES) was launched. It mea-
sures the electric field, magnetic field, electron density, ion density, and other important
parameters. Yan et al. [12] showed that the ionospheric parameters observed by CSES
around the epicenters of four earthquakes with a M > 7.0 during August 2018 were per-
turbed prior to the earthquakes. Statistical results also support pre-earthquake anomalous
variations in the ionospheric electron density [6,8,9,13–15]. Several mechanisms have been
proposed to explain the occurrence of SIPs, including atmospheric conductivity changes in
the global electric circuit (GEC) related to ionization caused by an increase in the radon em-
anations before earthquakes [16], amplification of internal gravity waves (IGWs) produced
due to surface motion through interaction with planetary waves and their subsequent
propagation to the ionosphere where they modify the dynamo electric fields [17], and
large-scale electric field-induced ionospheric perturbations [18,19].

There are also studies showing the opposite findings. For example, Masci et al. [20]
analyzed ionospheric TEC during the 6 April 2009 M6.1 L’Aquila (Italy) earthquake and
showed that the hump-like shape in the TEC difference (DTEC) time series calculated
from two GPS receivers in central Italy, which was interpreted as a possible earthquake
effect by Nenovski et al. [21], appears to be a diurnal variation and cannot be considered
an earthquake-related effect. Dautermann et al. [22] and Thomas et al. [23] investigated
long periods of data; the former used 2 years (2003–2004) of TEC data from the Southern
California Integrated GPS Network (SCIGN) for earthquakes in southern California, and
the latter used GIMs for the 1279 M ≥ 6.0 earthquakes globally during the years 2000–2014.
Both studies showed no evidence to support ionospheric perturbations prior to earthquakes.
The supporting and opposite results might be because the variability in SIPs might be large,
making them sometimes difficult to detect.

Many studies have shown that the ionospheric anomalies in GIM TEC associated with
earthquakes might have frequent or prolonged occurrence times (e.g., Liu et al. [10]). In this
study, we would like to investigate the possibility of establishing an earthquake prediction
model by using GIM TEC, considering the frequent or prolonged feature of SIPs. This
study focuses on earthquakes that occurred during 2015–2018 within three selected low
geomagnetic latitude regions in the 110–130◦E longitude sector. The day is used as a unit,
and the daily seismic energy released within the three latitude regions is computed. The
correlation coefficients between the seismic energy and the daily occurrence times of GIM
TEC anomalies within each GIM grid for ±15 days from the energy release are calculated.
Thus, we could compare the correlations globally and examine the temporal characteristics.
The data that are associated with geomagnetic disturbances by using the disturbance storm
time (Dst) index are removed. In addition, the results of using declustered seismic energy
and removing data by using Dst and considering the planetary geomagnetic index Kp and
daily observed 10.7 cm solar flux (F10.7) are investigated.
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2. Materials and Methods
2.1. Earthquake Data

In this study, the earthquake data from U.S. Geological Survey (USGS, https://
earthquake.usgs.gov/earthquakes/search/, last accessed on 26 January 2022) and GIM
TEC from CODE (ftp://ftp.aiub.unibe.ch/CODE/, last accessed on 29 August 2021) are
used. All earthquakes that occurred within a longitude range of 110–130◦E and during
1 January 2015, to 31 December 2018, with M≥ 2.5 from the USGS are included in this study.
We presumed that the uncertainties, which might be associated with the pre-earthquake
effects near the Earth’s surface and their coupling to the ionosphere, such as magnetic dip,
and the geographically related conditions (for example, ocean, urban area, etc.), might pro-
duce different ionospheric variations, and the selected longitude sector is subdivided into
three latitude regions, which are A: 13◦S–0.5◦S (22.3◦S–10◦S geomagnetic), B: 0.5◦S–19.5◦N
(10◦S–10◦N geomagnetic), and C: 19.5◦N–32.1◦N (10◦N–22.5◦N geomagnetic). The three
regions are separated mainly according to the magnetic dip angle. The distribution of the
earthquakes used is shown in Figure 1.
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where E is seismic wave energy in erg (10 −7 J). The total seismic wave energy released 
within a region by all the earthquakes was then summed for each day during 2015–2018. 
The time series of daily seismic energy and the temporal distributions of earthquakes with 
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in total worldwide, releasing a total seismic wave energy of 1.28 × 10 25 erg during 2015–

Figure 1. The distribution of earthquakes of magnitude ≥ 2.5 occurring within 110–130◦E longitude
from 1 January 2015 to 31 December 2018 (white dots), and the global distribution of GIM TEC
observed at 1800 UT on 21 March 2018 in TEC units (1 TECU = 10 16 electron/m2). Two vertical white
lines denote longitudes of 110 and 130◦E. The three study Regions A (13◦S–0.5◦S), B (0.5◦S–19.5◦N),
and C (19.5◦N–32.1◦N) are divided by four red lines. The equatorial ionization anomaly (EIA) can be
seen between approximately −150 and 30◦E longitudes.

It is shown that SIPs might be related to earthquake energy [13,14]. One of the variables
used in computing the correlation coefficient is the daily total energy of seismic waves
radiated by earthquakes in a given latitude region. The seismic wave energy released by an
earthquake of magnitude M was estimated using the following relationship developed by
Gutenberg and Richter [24]:

logE = 11.8 + 1.5 M (1)

where E is seismic wave energy in erg (10−7 J). The total seismic wave energy released
within a region by all the earthquakes was then summed for each day during 2015–2018.
The time series of daily seismic energy and the temporal distributions of earthquakes
with different magnitude ranges within 110–130◦E and in Regions A, B, and C are pro-
vided in Figure S1 in Supplementary Material S1. There were 123,505 seismic events with
M ≥ 2.5 in total worldwide, releasing a total seismic wave energy of 1.28 × 10 25 erg during
2015–2018. Table 1 shows that there were 8080 earthquakes with M ≥ 2.5 in 110–130◦E
during 2015–2018, with four M ≥ 7 earthquakes among them, among which one occurred
in Region A and three in Region B. The total seismic wave energy of the 8080 earthquakes
was 3.43% of the net seismic energy released worldwide during 2015–2018. Among the
three Regions A–C, Region B spans the widest latitude range and has the largest earthquake
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number and total seismic energy, while Region C has the smallest earthquake number
and energy.

Table 1. Earthquake number and energy of M ≥ 2.5 within 110–130◦E in 2015–2018.

EQK Number Total EQK
Number

Total Energy
Release (erg)

% of Global
EQK Number

% of Global
Energy ReleaseM < 5 5 ≤M < 6 6 ≤M < 7 7 ≤M < 8

All 7307 711 58 4 8080 4.40 × 1023 6.54% 3.43%

A 2652 244 26 1 2923 1.37 × 1023 2.37% 1.07%

B 3392 343 21 3 3759 2.66 × 1023 3.04% 2.07%

C 1000 93 10 0 1103 3.26 × 10 22 0.89% 0.25%

Note: The earthquake catalog: USGS (https://earthquake.usgs.gov/earthquakes/search/, last accessed on
26 January 2022).

2.2. GIM TEC

TEC is the integral of electron density along the signal path from the global navigation
satellite system (GNSS) satellite to the receiver. Since the signal path to the ground-based
receiver is tilted, the following measured TEC is called slant TEC (STEC):

STEC =
∫ Rx

Sat
Neds, (2)

where Ne is the electron density and Sat and Rx are the locations of the GNSS satellite and
ground-based receiver, respectively. As the satellite’s zenith angle changes, the length of the
path of the signal through the ionosphere changes, and hence, STECs have to be converted
into vertical TECs (VTECs) to eliminate the zenith angle effect. The GIM TECs provided by
CODE are generated by using data from approximately 300 GNSS sites worldwide using
spherical harmonics expansion. The GIM covers a range of ±87.5◦N latitude and ±180◦E
longitude, with spatial resolutions of 2.5◦ and 5◦, respectively. During the study period,
the CODE GIM provides 24-h global TEC distributions (from 00 to 23 UT) each day [25].
Please note that the accuracy of GIM is lower over the ocean areas. However, the GIM
data are suitable statistical data for global analysis and to investigate the possible obvious
and prolonged SIPs. The global distribution of GIM TEC at 1800 UT on 21 March 2018, is
displayed in Figure 1.

2.3. TEC Anomalies

We use the method used in Liu et al. [8] and Chen et al. [13] to define anomalies in the
GIM TEC variations. For an observation (O) at a certain time and location (GIM grid), the
median TEC and the corresponding first and third quartiles, denoted by M, LQ, and UQ,
respectively, are computed based on the TECs of the previous 15 days at the same time and
location. The upper bound (UB) and lower bound (LB) are defined as the following:

UB = M + k(UQ−M),
LB = M− k(M− LQ).

(3)

We set k to be 1.5 [8–10,13]. If O > UB (O < LB), then an anomalous increase (decrease)
in the TEC observation at this time and location is declared. Under the assumption of
a normal distribution, the probability of an observed TEC in the interval (LB, UB) is
approximately 69%. The occurrence times of the increase anomaly and decrease anomaly
and the sum of the two are counted separately for each day. The daily occurrence times of
TEC anomalies (the maximum is 24 times), together with the daily seismic wave energy
release, are used to compute the correlation coefficients.
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2.4. Removing Storm Effects and Other Experimental Designs

When magnetic disturbances or magnetic storms occur, the ionospheric electron density
is perturbed and could anomalously increase and/or decrease relative to that in a quiet time
period. Liu et al. [26] showed that storm-related ionospheric perturbations can last as long
as 4 days after storm onset. The Dst index, obtained from the average of the horizontal
component of the low-latitude magnetic field, can be used to identify storm onset. The
Dst temporal variations from the World Data Center (WDC) for Geomagnetism in Kyoto
(http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html, last accessed on 24 January 2022) during
the study period were employed. In this study, we refer to Zhu et al. [27], and if Dst < −40 nT
or the absolute value of the Dst difference from the previous 1-h value > 40 nT, the occurrence
times of TEC anomalies from 1 day before to 4 days after this UT day (6 days in total) were
not considered. Figure S1 in Supplementary Material S1 shows the days that were not
considered in this study.

To investigate the temporal correlation, the time series of occurrence times of TEC
increase anomalies, decrease anomalies, and both anomalies together at each GIM grid
were shifted ±15 days forward and backward relative to the time series of daily seismic
energy release. Therefore, the correlation coefficients between the daily seismic wave
energy release within 110–130◦E in Regions A, B, and C and the occurrence times of TEC
anomalies in each GIM grid prior to and after energy release could be computed. During
the study period, the average sample size used in calculating correlation coefficients is
905 days (with a minimum of 893 and a maximum of 917 days depending on the day shifts)
after removing the storm effects by using the Dst index.

To test whether the two variables are correlated (population correlation coefficient
$ 6= 0), the t-test was applied. The t-value (t) is given by the following:

t = r
√

n− 2
1− r2 , (4)

where r is the correlation coefficient and n is the sample size. The null hypothesis is that $ is
not significantly different from zero, i.e., there is not a significant linear relationship between
the occurrence times of TEC anomalies and the earthquake energy in the population [28].
Setting a significance level (α) of 0.01, the critical value tα = 0.01 for the two-tailed test
with a sample size of 905 is approximately 2.581, and the associated r is 0.086. If r > 0.086
(r <−0.086), we consider the occurrence times of TEC anomalies to be positively (negatively)
correlated with the earthquake energy. In addition, the p value (p), which is defined as the
probability that t is greater than the observed t with a degree of freedom of n − 2, was also
computed. The minimum p was found to further examine the spatial relationships between
the positive correlations and earthquakes.

Since larger earthquakes are more likely to produce SIPs [13,14], for Regions A, B,
and C, the sample pairs with daily seismic wave energy < 1.1220 × 10 20 erg (equivalent
to an M5.5 earthquake) were removed in the following analyses. In addition, a 1-unit
difference in M corresponds to a difference of approximately 32 times in earthquake energy,
and 2 units correspond to 1000 times (Equation (1)). Thus, there could be effects from the
outliers. In the analyses of Regions A, B, and C, the outliers were found from seismic wave
energies that were ≥M5.5 by using a 1.5 interquartile range above or below the associated
two quartiles, and the associated sample pairs were further removed to eliminate the
possible effects from outliers. The outliers were removed, and the ranges of seismic energy
were fixed before eliminating the storm effects. Table 2 lists the parameters of the samples
with daily seismic wave energy release ≥M5.5 with/without outliers in Regions A, B, and
C. The threshold of the correlation coefficient is α = 0.01 (rα = 0.01), and maximum daily
seismic wave energy releases for samples with energy release ≥M5.5 and with/without
outliers for Regions A, B, and C are computed. The parameters vary depending on whether
the storm effect is significant when the days are shifted.
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Table 2. Parameters for daily energy release equivalent to M ≥ 5.5 earthquakes.

Region

With Outliers Without Outliers

Sample Size rα = 0.01
Max. Daily Energy

Release in M Sample Size rα = 0.01
Max. Daily Energy

Release in M

A 34–44 0.384–0.436 6.906–7.000 29–37 0.418–0.471 6.480–6.512
B 41–52 0.354–0.398 7.300–7.505 35–45 0.380–0.430 6.201–6.201
C 14–20 0.561–0.661 6.429–6.701 10–16 0.623–0.765 6.154–6.200

Note: The rα = 0.01 represents the threshold value of r at significance level α = 0.01.

3. Results
3.1. 110–130◦E

In this section, we briefly describe the results of the correlation analyses. The results
are presented in Supplementary Material S2. The figures which are of more importance
or could be used as examples are also shown in the paper. Figures 2–4 (Figures S1–S3
in Supplementary Material S2) show the temporal and spatial distributions of r between
the daily released seismic wave energy within 110–130◦E (all the earthquakes in Figure 1
were considered) and its associated occurrence times of TEC anomalies 15 days before
and after the energy release. Panels from left to right denote the days from daily energy
release (D); for example, D = −7 represents the 7 days before the energy release. The main
focus of the study is over 120◦E longitude. However, we also wanted to examine whether
similar variations existed in other longitude sectors for the same selected earthquakes.
From top to bottom, the four longitude sectors of 120 (the study area of earthquakes), 30,
−60, and −150◦E, with a width of ±20◦ and separated by 90◦, are displayed. Each panel
displays an area of a 40◦ longitude range (x-axis) and a ±90◦N latitude range (y-axis).
Note that the results of the −150◦E sector have a lower accuracy since most areas in this
sector are ocean areas, and the results are provided for comparisons and references. For
the decrease anomaly (Figure 2), a larger area of positive correlation is seen in the 120◦E
sector from approximately 30–60◦N at D = −13, and many positive correlations appear
in northern higher latitudes and other latitudes at approximately D = −14 to −7. The
positive correlations are more apparent from D = −6 to −1 over the 120 and 30◦E sectors
with changing latitudes. After the energy release, there were fewer positive correlations
in the four longitudinal sectors. For the increase anomaly (Figure 3), positive correlations
mainly appear at approximately D = 3 to 12, with D = 3 to 7 in the southern higher latitudes
and D = 8 and 9 in all four sectors. For the occurrence times of both increase and decrease
anomalies (Figure 4), positive correlations are relatively rare and sporadic in time and space.
There are only a few negative correlations for all three types of anomalies in Figures 2–4.

3.2. Region A

Figure 5 shows the temporal and spatial distributions of r between the daily seismic
wave energy released within Region A and its associated occurrence times of TEC decrease
anomalies in ±15 days. Positive correlations are evident mainly in the northern mid- and
high latitudes, and roughly during D =−14 to−10,−7 to−5, and−3 to 0 in Figure 5. There
are only a few correlations for D > 0. In contrast, the distributions of the positive correlation
for the increase anomalies are relatively irregular, and the possible precursory information
is not as clear as shown in Figure S5, which is provided in Supplementary Material S2. In
addition, no specific feature in the temporal and spatial distribution of the correlation for
both increase and decrease anomalies counted together could be identified. The results
for using all energy releases available within Region A are provided as Figures S4–S6 in
Supplementary Material S2.
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Figure 2. Temporal and spatial distributions of correlation coefficient between daily seismic wave
energy release within 110–130◦E and occurrence times of TEC decrease anomalies. Panels from left to
right represent−15 to 15 days from the seismic wave energy release (D). Top to bottom panels display
four selected longitude sectors centered over 120, 30, −60, and −150◦E, respectively, each with a
width of ±20◦. The x-axis of each panel denotes the 40◦ longitude range, and the y-axis denotes
latitude. The contour denotes rα = 0.01 = ±0.086.
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Figure 6 shows the temporal and spatial distributions of r for samples with daily 
seismic wave energy ≥ M5.5 (1.1220 × 10 20 erg) released within Region A. As the sample 
size is reduced, the required correlation coefficients for significance at the 99% level in-
crease. On D = −13, there is a larger area of positive correlation for the occurrence times of 
decreasing anomalies around the northern mid-latitudes of the 120°E sector. Positive cor-
relations in the northern mid- and high latitudes can be seen when D = –7 to 0. They also 
appear at other latitudes and longitudes and after energy release. Figure 7 shows the re-
sults of the decrease anomaly when outliers of daily seismic wave energy ≥ M5.5 were 
removed. Positive correlations can be found in the mid- and high latitudes of both hemi-
spheres, as well as in the low latitudes, during D = −2 to 5. There are fewer correlations 

Figure 5. Temporal and spatial distributions of correlation coefficient between the daily seismic wave
energy release within Region A and the occurrence times of the TEC decrease anomalies. Panels from
left to right represent −15 to 15 days from the seismic wave energy release (D). Top to bottom panels
display four selected longitude sectors centered over 120, 30, −60, and −150◦E, respectively, each
with a width of ± 20◦. The contour denotes rα = 0.01 = ±0.086. The black box on the top first panel
indicates Region A.
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Figure 6 shows the temporal and spatial distributions of r for samples with daily
seismic wave energy ≥M5.5 (1.1220 × 10 20 erg) released within Region A. As the sample
size is reduced, the required correlation coefficients for significance at the 99% level increase.
On D = −13, there is a larger area of positive correlation for the occurrence times of
decreasing anomalies around the northern mid-latitudes of the 120◦E sector. Positive
correlations in the northern mid- and high latitudes can be seen when D = −7 to 0. They
also appear at other latitudes and longitudes and after energy release. Figure 7 shows
the results of the decrease anomaly when outliers of daily seismic wave energy ≥ M5.5
were removed. Positive correlations can be found in the mid- and high latitudes of both
hemispheres, as well as in the low latitudes, during D =−2 to 5. There are fewer correlations
and no obvious pattern for the TEC increase anomaly for energy release ≥ M5.5. After
removing outliers of larger energy releases and for increase anomalies, positive correlations
appear on D = −12 to −11 and −8 to −4 in the four sectors. The results for energy
releases ≥M5.5 with/without outliers within Region A are provided as Figures S7–S10.
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3.3. Region B

The temporal and spatial distributions of r between the seismic wave energy released
within Region B and the associated occurrence times of the TEC decrease anomalies and
increase anomalies in a period of±15 days are similar to those obtained from all the earthquakes
occurring within 110–130◦E during the four years, as shown in Figures 2 and 3. The correlation
features between the occurrence times of both increase and decrease anomalies counted
together and earthquake energy are fewer. The results are provided in Figures S11–S13 in
Supplementary Material S2.

Figure 8 shows the results for samples with an energy release ≥ M5.5 and for the
decrease anomalies. It is revealed that apparent positive correlations of the decrease anomaly
appear between D = −6 and 0. Correlations are also seen up to D = 6 after energy release.
After removing outliers with large energy releases, the apparent correlations from D = −6 to 0
in Figure 8 disappear. Positive correlations appear during D = −14 to −11, and the possible
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precursory information becomes less clear. The distributions of positive correlations of increase
anomalies with energy release ≥M5.5 are more similar to those in Figure 3 (apparent patterns
between approximately D = 3 and 12). After the outliers were removed, there were positive
correlations on D = −10 to −3, but the precursory information is less clear. The positive
correlations obtained with outliers shown in Figures 8 and S16 could be caused by the outlier
with a large energy release. The results for energy releases ≥ M5.5 with/without outliers
within Region B are shown in Figures S14–S17.
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Figure 7. Same as Figure 5 for the daily seismic wave energy release ≥M5.5 without outliers within
Region A and for the TEC decrease anomalies. The contour denotes rα = 0.01 according to sample size
at each D.

3.4. Region C

The temporal and spatial distributions of r for the seismic wave energy released within
Region C using all the samples available during the study period show that there is no clear
precursory information that could be directly identified for the TEC decrease anomalies and
increase anomalies since the positive correlations appear in the four sectors and after energy
release. There are also fewer precursory features associated with both the increase and decrease
anomalies counted together based on the correlation coefficients (Figures S18–S20).

The results for samples with an energy release ≥M5.5 with outliers and for decrease
anomalies and increase anomalies are presented in Figures 9 and 10, respectively, because
we also reference them in the following analyses. The sample size for an energy release
≥M5.5 in Region C is relatively small (14–20, see Table 2), and the correlation coefficients
could be very large. Figure 9 shows that positive correlations for the decrease anomalies
appear in large areas over the globe at approximately D =−13 to−11 and D =−5. There are
also positive correlations at approximately D = 9 to 15. On the other hand, Figure 10 shows
that more apparent positive correlations for the increase anomalies appear at approximately
D = −6 to 3 and on D = 7. After the outliers with large energy releases are removed, for the
decrease anomalies, positive correlations can be seen at approximately D =−11 to−7 in the
four sectors. For the increase anomalies, there are apparent correlations during D = −15 to
−14 and −6 to −2 in the four sectors. The results for energy releases ≥M5.5 with/without
outliers within Region C are provided in Figures S21–S24.
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Figure 8. Temporal and spatial distributions of correlation coefficient between the daily seismic wave
energy release≥M5.5 with the outliers within Region B and the occurrence times of the TEC decrease
anomalies. Panels from left to right represent −15 to 15 days from the seismic wave energy release
(D). Top to bottom panels display the four selected longitude sectors centered over 120, 30, −60, and
−150◦E, respectively, each with a width of ±20◦. The contour denotes rα = 0.01 according to sample
size at each D. The black box on the top first panel indicates Region B.
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Figure 9. Temporal and spatial distributions of correlation coefficient between the daily seismic wave
energy release≥M5.5 with the outliers within Region B and the occurrence times of the TEC decrease
anomalies. Panels from left to right represent −15 to 15 days from the seismic wave energy release
(D). Top to bottom panels display the four selected longitude sectors centered over 120, 30, −60, and
−150 ◦E, respectively, each with a width of ±20◦. The contour denotes rα = 0.01 according to sample
size at each D. The black box on the top first panel indicates Region C.
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3.5. Geographical Dependence

To further investigate the possible precursory information, the p value (p), which is
defined as the probability that t is greater than the observed t (Equation (4)) with a degree
of freedom of sample size–2 under the hypothesis of no correlation, was computed from
the r values of the decrease and increase anomalies shown in Supplementary Material S2,
and the minimum p values during D = −15 to 15 and over the global 71 × 73 (5183) GIM
grids were extracted. The D, location, and r of the minimum p were also extracted in order
to examine the possible geographical dependence (Table 3). The results reveal that the
minimum p of the decrease anomaly is D = −13 in the 120◦E sector and approximately
30–35◦N, when all samples available from 110–130◦E and Region A and those with energy
releases ≥M5.5 with outliers in Region A were used. In addition, the minimum p of the
decrease anomaly appears at D = −6 in the 120◦E sector for energy releases ≥M5.5 with
outliers in Region B. For energy releases in Regions A and B, the minimum p values, which
appear before the energy release and in the 120◦E sector, are not above the latitude ranges
of the two regions. We search for the minimum p and wish to find the time and locations
where the SIPs are most likely to appear, and also expect that it would be more efficient in
earthquake prediction by using GIM.

230



Remote Sens. 2022, 14, 1155

Table 3. The minimum p, associated D, locations, and r in analyses of this study shown in Supple-
mentary Material S2.

Min. p D Lat. Long. r

110–130 ◦E (all samples) Decrease anomaly 2.025 × 10−7 −13 35 135 0.169 *
Increase anomaly 8.448 × 10−7 8 15 −90 0.158 *

Region A

All samples Decrease anomaly 1.382 × 10−6 −13 30 135 0.156 *
Increase anomaly 7.497 × 10−6 −15 −87.5 30 0.144 *

E ≥M5.5
Decrease anomaly 8.411 × 10−9 −13 32.5 125 0.750 *
Increase anomaly 8.951 × 10−6 9 −12.5 70 0.650 *

E ≥M5.5
and outliers removed

Decrease anomaly 4.617 × 10−8 3 −45 165 0.764 *
Increase anomaly 1.741 × 10−5 −12 55 40 0.633 *

Region B

All samples Decrease anomaly 1.753 × 10−5 −5 −70 95 0.138 *
Increase anomaly 1.136 × 10−6 9 15 −70 0.156 *

E ≥M5.5
Decrease anomaly 2.295 × 10−7 −6 −40 110 0.689 *
Increase anomaly 9.674 × 10−7 8 62.5 −100 0.637 *

E ≥M5.5
and outliers removed

Decrease anomaly 1.641 × 10−6 1 −77.5 50 0.669 *
Increase anomaly 4.097 × 10−5 10 7.5 −160 0.553

Region C

All samples Decrease anomaly 6.410 × 10−9 15 −35 140 0.187 *
Increase anomaly 1.171 × 10−6 2 −5 90 0.156 *

E ≥M5.5
Decrease anomaly 1.454 × 10−8 −11 −35 65 0.947 *
Increase anomaly 1.624 × 10−7 −3 50 −80 0.902 *

E ≥M5.5
and outliers removed

Decrease anomaly 3.089 × 10−7 −9 −50 −165 0.940
Increase anomaly 2.102 × 10−8 −4 85 −65 0.944

Note: The minimum p during D = −15 to 15 and over the 5183 GIM grids were extracted for occurrence times of
the decrease anomalies and increase anomalies, respectively. The bold font denotes the minimum p appearing
before the energy release and in the 120◦E sector. The asterisk near r denotes that the associated r is the maximum
r during D = −15 to 15 and over the 5183 GIM grids.

4. Discussions

First, the positive correlations that appear before the earthquake energy release are
summarized. For all the samples of energy released within 110–130◦E longitude during
the years 2015–2018, the most apparent correlations for decrease anomalies are around
D = −6 to −1 over 120 and 30◦E sectors, and this pattern is similar to the results of Region
B. The minimum p of the decrease anomalies is found at D = −13 in the 120◦E sector. One
of the features of Region A is that positive correlations of decrease anomalies occur in
the northern, higher latitudes. The minimum p of the decrease anomalies is also found at
D = −13 in the 120◦E sector when using all samples and those with energy releases ≥M5.5
with outliers. In Region B, the apparent correlations of the decrease anomalies appear at
approximately D = −6 to −1 in the longitude sectors of 120 and 30◦E, as obtained with all
samples and those with energy releases ≥M5.5. These should be produced by the outliers
with large energy releases. The minimum p of decrease anomalies is found at D = −6 in the
120◦E sector for energy releases ≥M5.5 with outliers. For Region C, apparent correlations
of the decrease anomalies are seen in all four sectors for energy releases ≥M5.5 with and
without outliers. Positive correlations of the increase anomalies appear a few days before
energy releases for energy releases ≥M5.5 with and without outliers.

Since positive correlations appear in the four sectors and after energy release, the
possible precursory information cannot be confirmed. In addition, the minimum p values
occurring before energy release and in the 120◦E sector are characterized by samples
that have not been declustered and have outliers. In Supplementary Material S3, we
first examine the results of the declustered samples with energy releases of ≥M5.5 and
without outliers. The advantage of the declustering process is that is avoids the influence of
consecutive larger energy releases during a space weather event. The declustering method
was as follows: if there were two energy releases of ≥ M5.5 separated by ≤ 6 days, the
larger energy release was retained. Moreover, two methods were used to eliminate space
weather effects. The first one involved the Dst index, which was identical to that used in
the paper. The second method involved considering Kp and F10.7. The condition that for
days with at least one Kp > 3 (3o), the occurrence times of the TEC anomalies were not
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considered as set. In addition, five periods of strengthening solar activity were found by
using F10.7 and excluded (please see Supplementary Material S3 for details).

In Supplementary Material S3, Figures S1–S12 show that, for Region A (Figures S1–S4), one
obvious characteristic of the decrease anomalies is that a large area of positive correlation
appears at D = −2 around Region A when using Dst (the odd figures) and using Kp and
F10.7 (the even figures), which are also provided in Figures 11 and 12, respectively. The
apparent correlations of the increase anomalies mainly appear at D ≤ −4. When applying
Kp and F10.7, the minimum p of the decrease anomalies appears at D = −2 and in the
120◦E sector at −20◦N (Table 4; Table S2). For Region B, the precursory features of the
decrease and increase anomalies seem difficult to identify when using Dst and using Kp
and F10.7, since the correlations occur in the four sectors and after the energy release
(Figures S5–S8), and no minimum p of the decrease or increase anomalies appears before
the energy release in the 120◦E sector. For Region C, some of the temporal characteristics
of the positive correlation of decrease and increase anomalies are closer to the results
than the samples without the declustering process and including the outliers were used
(Figures S9–S12), as shown in Figures 9 and 10. When applying Kp and F10.7, the minimum
p of the increase anomalies appears at D = −1 in the 120◦E sector; however, at D = −1,
larger areas of correlation are also observed in the four sectors in the distributions of
Figure S12. The parameters for the declustered samples of energy release ≥M5.5 without
outliers are shown in Table S1 (similar to Table 2). The results of the declustered samples
of energy release ≥M5.5 and with outliers are provided in Supplementary Material S4
(Figures S1–S12 and Tables S1–S2). For daily seismic wave energy released within Regions
A, B, and C with the use of the Dst index to eliminate the space weather effects and within
Region C with the use of Kp and F10.7, the results for the decrease and increase anomalies
are similar to those of energy releases≥M5.5 with outliers in the paper and Supplementary
Material S2. When applying Kp and F10.7, the correlations of the decrease anomalies
improve between D = −13 and −6 in Region A (Figure S2), while in Region B, frequent
positive correlations can be seen in the northern higher latitudes at approximately D ≤ 2
(Figure S6). On the other hand, there is no explicit precursory information in the correlation
coefficients of the increase anomalies for Regions A and B (Figures S4 and S8). Only in
Region A with the use of the Dst index does the minimum p of the decrease anomalies
occur on D = −13 in the 120◦E sector (Tables 5 and S2).

Furthermore, the results of the declustered samples with energy releases ≥ M5.5
over the entire area of Regions A–C (13◦S–32.1◦N) are also examined in Supplementary
Material S3. The results of retaining and excluding the outliers, as well as using the same
two methods to remove the space weather effects, are presented in Figures S13–S20. In
addition, the results might show a large variability in the occurrence times of the TEC
anomalies when using k = 1.5 in the definition of TEC anomalies, and k = 3 (a probability of
0.043 for an increase or decrease anomaly under a normal distribution) was used for the
energy release within the entire area of Regions A–C. Figures S13–S16 show the results of
retaining the outliers. The distributions of the decrease anomalies and increase anomalies
are similar to or resemble some of the features found in Region B, as shown in Supple-
mentary Materials S2 and S4. After removing the outliers, more sporadic correlations
are shown in Figures S17–S20, and the minimum p values of the increase anomalies are
found at D = −4 and −15 in the 120◦E sector at −47.5◦N and −72.5◦N when using Dst and
using Kp and F10.7, respectively (Table S4). Nevertheless, in the associated distributions
of Figures S19 and S20, correlations also appear at higher latitudes in other sectors. The
parameters for the declustered samples with energy releases ≥M5.5 over the entire area of
Regions A–C are shown in Table S3.
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Table 4. The minimum p, associated D, locations, and r for the results of the declustered samples
with energy releases ≥M5.5 without outliers shown in Supplementary Material S3.

Min. p D Lat. Long. r

Region A
Using Dst index Decrease anomaly 2.929 × 10−5 4 −47.5 95 0.726

Increase anomaly 7.909 × 10−6 −12 55 40 0.750

Using Kp and F107 Decrease anomaly 3.391 × 10−7 −2 −20 135 0.847 *
Increase anomaly 7.988 × 10−7 −11 40 −45 0.879 *

Region B
Using Dst index Decrease anomaly 2.716 × 10−5 8 52.5 −15 0.677

Increase anomaly 1.607 × 10−6 10 27.5 55 0.698 *

Using Kp and F107 Decrease anomaly 1.589 × 10−5 2 −47.5 −20 0.692
Increase anomaly 3.129 × 10−8 13 5 25 0.763 *

Region C
Using Dst index Decrease anomaly 1.088 × 10−7 −11 −35 10 0.959

Increase anomaly 1.525 × 10−6 −4 47.5 −75 0.934

Using Kp and F107 Decrease anomaly 4.741 × 10−8 −12 −50 −170 0.965
Increase anomaly 1.236 × 10−7 −1 17.5 105 0.968

Note: The minimum p during D = −15 to 15 and over the 5183 GIM grids were extracted for occurrence times of
decrease anomalies and increase anomalies, respectively. The bold font denotes the minimum p appearing before
energy release and in the 120◦E sector. The asterisk near r denotes that the associated r is the maximum r during
D = −15 to 15 and over the 5183 GIM grids.

Table 5. Same as Table 4 for the results of the declustered samples with energy releases ≥M5.5 with
outliers shown in Supplementary Material S4.

Min. p D Lat. Long. r

Region A
Using Dst index Decrease anomaly 1.598 × 10−7 −13 32.5 125 0.783

Increase anomaly 6.166 × 10−5 −7 −32.5 95 0.704 *

Using Kp and F107 Decrease anomaly 4.036 × 10−6 −8 −17.5 65 0.756 *
Increase anomaly 7.127 × 10−7 7 0 95 0.823 *

Region B
Using Dst index Decrease anomaly 1.792 × 10−7 −4 −50 −130 0.756 *

Increase anomaly 2.243 × 10−7 8 −10 155 0.744 *

Using Kp and F107 Decrease anomaly 1.842 × 10−7 −4 60 35 0.706
Increase anomaly 7.943 × 10−14 13 7.5 −135 0.875 *

Region C
Using Dst index Decrease anomaly 4.196 × 10−10 15 −35 125 0.980 *

Increase anomaly 1.525 × 10−6 −4 47.5 −75 0.934

Using Kp and F107 Decrease anomaly 3.849 × 10−9 −11 −30 60 0.984
Increase anomaly 7.780 × 10−9 0 7.5 −145 0.988 *

Note: The minimum p during D = −15 to 15 and over the 5183 GIM grids were extracted for occurrence times of
decrease anomalies and increase anomalies, respectively. The bold font denotes the minimum p appearing before
energy release and in the 120◦E sector. The asterisk near r denotes that the associated r is the maximum r during
D = −15 to 15 and over the 5183 GIM grids.

Since the correlations appear frequently, to examine whether the possible precursory
information, such as the minimum p appearing before an energy release in the 120◦E sector,
could be accidental, we performed three times of random tests for Region A. The time
series of daily seismic wave energy releases for 2015–2018 within Region A were permuted
randomly. Then, the dates with energy release ≥M5.5 were selected, and the declustering
process and removal of outliers were implemented. The results show that regardless of
using Dst or using Kp and F10.7, there are positive correlations of TEC anomalies in the
four sectors and after energy release. The minimum p values are all quite small, the same
as those shown in Table 4, and the minimum p values could also appear in the 120◦E sector
and before energy release. These indicate that the precursory information in this study
might be accidental. The results of random permutations are shown in Figures S1–S12 and
Tables S1–S2 in Supplementary Material S5.

Although the precursory information could be coincidental, some interesting results
might be seen from this study. For example, the results of Region B show that larger areas
of correlation appear before energy release when including the outliers, and the minimum
p of decrease anomaly for energy releases ≥M5.5 with outliers occurs on D = −6 and in
the 120◦E sector (Table 3). This possibly indicates an SIP event has appeared with other
ionospheric disturbances. Another interesting result is that for Region A, the minimum p
values of the decrease anomaly are on D = −13 and in the 120◦E sector when including the
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outliers and using the Dst index, and the minimum p appears on D = −2 and in the 120◦E
sector for the declustered samples with energy releases ≥ M5.5 without outliers when
using Kp and F10.7. This possibly indicates that the SIPs might not only appear closer to
the epicenter region, but also occur along the earthquake longitude.

Linear regression models were fitted to samples for which the minimum p values
appear in the 120◦E sector and before energy release in Tables 3–5 and Table S4 in Supple-
mentary Material S3. The results are shown in Figure 13. The top panels, from left to right,
are the results of using all samples, energy releases ≥M5.5 with outliers, and declustered
samples with energy releases ≥M5.5 with outliers for Region A, respectively. The time and
locations of samples, anomaly types, and the methods used to eliminate the space weather
effects are indicated in the title. When using all samples, the R2 is merely 0.0244 (= r2),
because when the seismic energies are smaller, there are still larger occurrence times of the
TEC decrease anomaly. After removing samples with energy releases < M5.5, the R2 values
increase in the other two panels. There are four energy releases ≥M6.9 with the occurrence
times of the decrease anomaly ≥ 12 times on D = −13 and at (32.5◦N, 125◦E). The result of
declustered samples with energy releases ≥M5.5 without outliers within Region A, and us-
ing Kp and F10.7, shows that the R2 is the greatest (0.7168) among six panels on D = −2 and
at (–20◦N, 135◦E) for the decrease anomaly (bottom left panel). For energy releases ≥M5.5
with outliers within Region B, there is an energy release of approximately M7.3 that has
20 occurrence times of the decrease anomaly (bottom middle panel). The regression line is
affected by the sample, with an energy release of approximately M7.3. However, since the
possible precursory information shown in this study cannot be confirmed to be related to
the earthquakes, the regression models can only be provided as references.

Because the CODE GIM has provided TEC maps of 1-h resolution since 19 October
2014 (day of year 292), the period around 2015–2018 was selected as the study period.
Earlier and later years of data might be included in the analysis to include a greater number
of earthquakes and larger earthquakes. Moreover, the earthquake depth is one of the factors
that possibly influences SIPs. The earthquake depth could be considered in future studies.
Since there are positive correlations at higher latitudes, removing possible high-latitude
effects might also be considered.

The TEC derived from the Jet Propulsion Laboratory (JPL) GIM was used to examine
the daily occurrence times of TEC anomalies during a 30-day period from 21 July to
19 August 2018. The time resolution of JPL GIM is 2 h. During this period, there were six
M ≥ 6.0 earthquakes occurring on the four days, and two events with M6.9 among the six
earthquakes, which occurred on 5 August and 19 August, respectively. Figure 14 shows
the temporal variations of Dst, Kp, and F10.7 between 16 July and 23 August 2018. The
Kp index reveals that the geomagnetic disturbances with Kp ≥ 3o occurred around 17,
21, and 24–25 July and 7, 11, and 15–20 August. The Dst variations show that a weaker
magnetic storm occurred on 14 August. Figures 15 and 16 show the daily occurrence times
of the TEC decrease anomaly and increase anomaly from JPL with k = 1.5, respectively.
Frequent ionospheric positive effects are observed in the associated periods with Kp ≥ 3o
at higher latitudes and over the globe, which are followed by the ionospheric negative
effects. These effects should be associated with the magnetic disturbances. On the other
hand, despite the ionospheric negative effects over the northern higher latitudes on 23 July
(D = −13 for the M6.9 earthquake on 5 August), larger occurrence times of the decrease
anomaly also appear in the southeast of Region A and the associated conjugate point. In
addition, on 6 August (D = 1 and D = −13 for another M6.9 event on 19 August), greater
occurrence times of the decrease anomaly appear between approximately 120 and 180◦E
in the northern mid-latitudes. It is noted that the greater occurrence times of the increase
anomaly are seen between 29 July and 4 August (D = −7 to −1) around Region A. In fact,
the TEC increase and decrease anomalies with k = 1.5 tend to appear globally. The larger
occurrence times of TEC anomalies observed prior to the earthquakes might be only the
natural variability; however, there is also the possibility of existence of the earthquake
effects.
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methods used to eliminate the space weather effects are indicated in title. The sample size (N), r,
equation of best fit line (x: occurrence times of TEC anomaly, y: daily seismic wave energy release in
erg), RMSE (in erg and magnitude), and R2 are shown in each panel. The unit of y-axis is erg, and the
values and ticks are displayed with the corresponding magnitudes.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 26 
 

 

latitudes and over the globe, which are followed by the ionospheric negative effects. These 
effects should be associated with the magnetic disturbances. On the other hand, despite 
the ionospheric negative effects over the northern higher latitudes on 23 July (D = –13 for 
the M6.9 earthquake on 5 August), larger occurrence times of the decrease anomaly also 
appear in the southeast of Region A and the associated conjugate point. In addition, on 6 
August (D = 1 and D = –13 for another M6.9 event on 19 August), greater occurrence times 
of the decrease anomaly appear between approximately 120 and 180°E in the northern 
mid-latitudes. It is noted that the greater occurrence times of the increase anomaly are 
seen between 29 July and 4 August (D = –7 to –1) around Region A. In fact, the TEC in-
crease and decrease anomalies with k = 1.5 tend to appear globally. The larger occurrence 
times of TEC anomalies observed prior to the earthquakes might be only the natural var-
iability; however, there is also the possibility of existence of the earthquake effects. 

 
Figure 14. Temporal variations of Dst, Kp, and F10.7 during 16 July to 23 August 2018. The blue 
lines denote the time of six earthquakes during the period (1. M6 at 17:07:23 on 28 July, 7.10°S, 
122.73°E. 2. M6.4 at 22:47:38 on 28 July, 8.24°S, 116.51°E. 3. M6.9 at 11:46:38 on 5 August, 8.26°S, 
116.44°E. 4. M6.5 at 15:35:01 on 17 August, 7.37°S, 119.80°E. 5. M6.3 at 04:10:22 on 19 August, and 
8.34°S, 116.60°E. 6. M6.9 at 14:56:27 on 19 August, 8.32°S, 116.63°E.). The time of the earthquake 
catalog is in UTC. 

Figure 14. Temporal variations of Dst, Kp, and F10.7 during 16 July to 23 August 2018. The blue lines
denote the time of six earthquakes during the period (1. M6 at 17:07:23 on 28 July, 7.10◦S, 122.73◦E.
2. M6.4 at 22:47:38 on 28 July, 8.24◦S, 116.51◦E. 3. M6.9 at 11:46:38 on 5 August, 8.26◦S, 116.44◦E.
4. M6.5 at 15:35:01 on 17 August, 7.37◦S, 119.80◦E. 5. M6.3 at 04:10:22 on 19 August, and 8.34◦S,
116.60◦E. 6. M6.9 at 14:56:27 on 19 August, 8.32◦S, 116.63◦E.). The time of the earthquake catalog is in
UTC.
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Due to the conjugate effects of the ionospheric variations observed prior to the earth-
quakes, the electric field perturbations could be important. The origin of the electric field
perturbations might be associated with the neutral wind modification. For example, Oyama
et al. [17] proposed that the internal gravity waves (IGWs) of extremely small amplitude
produced by small-amplitude ground motion before a large earthquake could be one of
the possible origins. The IGWs interact with planetary-scale waves below 10 km and are
amplified. When the amplified IGWs propagate to the dynamo region, they modify the
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wind system or conductivity and, in turn, modify the electric field. Due to the frequent
occurrences of ionospheric anomalies, the earthquake signals must constantly interact
with the ionosphere. In addition, the statistical results in this study show a possibility
of earthquake effects at higher latitudes; therefore, the area of neutral wind modification
should be quite large. To understand the ionospheric variability, it is required to apply more
parameters to the analyses and investigate the possibility of connections with earthquakes.

5. Conclusions

In conclusion, the temporal and spatial correlation between the seismic wave energy
releases within the three low geomagnetic latitude regions in 110–130◦E and the occurrence
times of the ionospheric TEC anomalies have been examined. Four longitude sectors of 120,
30, −60, and −150◦E are investigated, and there is no clear difference in the distributions
of correlation coefficients between 120◦E and the other sectors. Although the statistical
results do not show sufficient evidence for the specific SIPs for the three study regions, the
greater occurrence times of the TEC decrease anomaly are found on D = −13 prior to two
M6.9 earthquakes in August 2018 in the southeast of Region A and the conjugate point by
using JPL GIM, according to the results of statistical investigations. Therefore, it is required
to apply more parameters to analyze the causes of the ionospheric TEC variations and
investigate the possible connections with earthquakes.
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Abstract: Global navigation satellite system (GNSS) differential code bias (DCB) is one of main errors
in ionospheric modeling and applications. Accurate estimation of multiple types of GNSS DCBs is
important for GNSS positioning, navigation, and timing, as well as ionospheric modeling. In this
study, a novel method of multi-GNSS DCB estimation is proposed without using an ionospheric
function model and global ionosphere map (GIM), namely independent GNSS DCB estimation
(IGDE). Firstly, ionospheric observations are extracted based on the geometry-free combination of
dual-frequency multi-GNSS code observations. Secondly, the VTEC of the station represented by the
weighted mean VTEC value of the ionospheric pierce points (IPPs) at each epoch is estimated as a
parameter together with the combined receiver and satellite DCBs (RSDCBs). Last, the estimated
RSDCBs are used as new observations, whose weight is calculated from estimated covariances,
and thus the satellite and receiver DCBs of multi-GNSS are estimated. Nineteen types of multi-
GNSS satellite DCBs are estimated based on 200-day observations from more than 300 multi-GNSS
experiment (MGEX) stations, and the performance of the proposed method is evaluated by comparing
with MGEX products. The results show that the mean RMS value is 0.12, 0.23, 0.21, 0.13, and 0.11 ns
for GPS, GLONASS, BDS, Galileo, and QZSS DCBs, respectively, with respect to MGEX products, and
the stability of estimated GPS, GLONASS, BDS, Galileo, and QZSS DCBs is 0.07, 0.06, 0.13, 0.11, and
0.11 ns, respectively. The proposed method shows good performance of multi-GNSS DCB estimation
in low-solar-activity periods.

Keywords: differential code bias (DCB); global navigation satellite systems (GNSS); multi-GNSS
experiments (MGEX); total electron content (TEC)

1. Introduction

Global navigation satellite system (GNSS) differential code bias (DCB) is the difference
between a hardware delay bias of two code observations [1,2]. According to the frequency
of two code observations, DCBs can be divided into inter-frequency and intra-frequency
DCBs, which are the error sources in the GNSS ionospheric modeling and the application
of positioning, navigation, and timing [3–6]. Generally, the intra-frequency DCBs can be
directly determined by the mean value of differences between the corresponding code
observations [7]. However, the inter-frequency DCBs are the parameters of the ionospheric
observation equation obtained through dual-frequency code observations, which need to
be estimated through the corresponding methods. Therefore, most of the attention on DCB
is focused on inter-frequency DCB [8]. Similarly, the estimated DCB in this study is referred
to as the inter-frequency DCB.

Generally, mainly two approaches are used to calculate the DCB parameter. The
first method is to model regional or global total electron content (TEC) through a definite
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mathematical function, e.g., a spherical harmonic function for global TEC modeling and
a generalized triangular series function or polynomial function for regional TEC model-
ing [7,9–13]. Then the DCB parameter can be obtained together with the TEC modeling. The
second method is to eliminate the TEC parameter through the existing global ionospheric
map (GIM) [3,14,15], and then we can calculate the DCB. Because of the high correla-
tion between DCB and TEC, DCB, as a by-product of ionosphere modeling, is regularly
produced along with the GIM by the International GNSS Service (IGS) Analysis Center
(IAC) [1,10,16–18]. These IACs, e.g., the Center for Orbit Determination in Europe (CODE),
mainly provide the DCB products of GPS and GLONASS through the first method men-
tioned above. Due to the good coverage of GPS and GLONASS satellites, more observations
can be used, and the estimated satellite DCBs present good stability. Thus, the monthly
DCB products, including GPS P1-P2 (C1W-C2W) DCB and GLONASS P1-P2 (C1P-C2P)
DCB, are provided by CODE.

In recent years, the rapid development of multi-GNSS accounts for the strong demand
for multiple types of DCBs, instead of just a single type from GPS and GLONASS [19–23].
In the current IACs, only two agencies, namely, the Chinese Academy of Sciences (CAS) and
Deutsches Zentrum Für Luft-und Raumfahrt (DLR), provide multi-GNSS (GPS, GLONASS,
BDS, Galileo, and QZSS) DCB products [7,15]. In terms of the DCB estimation method,
the CAS produces the MGEX DCB products through the IGGDCB method proposed by
Li et al. [24], in which single-station TEC modeling based on a generalized triangular series
function was used [7], whereas MGEX DCB from DLR was estimated through the second
method mentioned above [15]. Their products can be obtained from ftp://cddis.gsfc.nasa.
gov/pub/gps/products/mgex/dcb/ (accessed on 1 June 2020). The information on MGEX
DCB products provided by CAS and DLR is listed in Table 1, which includes 19 types of
DCBs in total. It should be noted that GPS C1W-C2W DCB and GLONASS C1P-C2P DCB
are not directly provided by DLR, whose value can be derived from the combined value of
the other two types of DCBs [25], i.e., DCBC1W−C2W = DCBC1C−C2W − DCBC1C−C1W and
DCBC1P−C2P = DCBC1C−C2P − DCBC1C−C1P.

Table 1. Information on the MGEX DCB products provided by CAS and DLR.

No. System Bias Type CAS DLR No. System Bias Type CAS DLR

1

GPS

C1C-C2W X X 10

Galileo

C1X-C5X X X
2 C1W-C2W X 11 C1X-C7X X X
3 C1C-C5X X X 12 C1X-C8X X X
4 C1C-C5Q X X 13 C1C-C5Q X X
5

GLONASS
C1C-C2P X X 14 C1C-C7Q X X

6 C1P-C2P X 15 C1C-C8Q X X
7 C1C-C2C X X 16

QZSS

C1X-C2X X X
8

BDS
C2I-C7I X X 17 C1X-C5X X X

9 C2I-C6I X X 18 C1C-C2L X X
10 19 C1C-C5Q X X

In terms of most DCB estimation methods, including those currently used in the
CAS and DLR, the ionospheric observations are extracted based on the geometry-free
combination of dual-frequency code measures, since the extraction method is simple to
implement without relying on other external products. In addition, some studies on DCB
estimation through the precise point-positioning (PPP) method have also been carried
out [5,19,25,26]. However, these methods of DCB estimation rely on ionospheric function
models and global ionosphere maps.

In this study, to estimate multi-GNSS DCB efficiently and accurately, a new method
of multi-GNSS DCB estimation is proposed without relying on the ionospheric function
model and existing global ionosphere map (GIM). In the following, the proposed new
method is described in detail in Section 2. In Section 3, 200 days of observations from more
than 300 multi-GNSS experiment (MGEX) stations are collected for the estimation of the
types of multi-GNSS satellite DCBs. The estimated DCBs are compared with the MGEX
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DCB products for validation and evaluation. Finally, the corresponding discussion and
conclusion are given in Sections 4 and 5, respectively.

2. Methods and Data
2.1. A New Method of Multi-GNSS DCB Estimation

The GNSS satellite and receiver DCB is the parameter to be estimated in the ionospheric
observation equation together with the ionospheric TEC. The ionospheric observation
equation can be obtained based on the geometry-free linear combination of dual-frequency
GNSS code observations. Generally, the code observation is smoothed through the carrier
phases, since it is susceptible to noises and multipath errors [1,27]. The smoothed code
observation equation can be expressed as:





P4,r,k = RSj
r,k +

1
Fk
·VTECk + ε

RSi
r,k = c ·

(
DCBj + DCBr

) (1)

where P4,r,k is the smoothed code observation of epoch k at station r; c is the speed of light;
RSi

r,k is the combined value of satellite and receiver DCB of epoch k at station r; DCBj and
DCBr are the satellite and receiver DCB, respectively; VTECk is the vertical total electron
content (VTEC) of the corresponding the ionospheric pierce point (IPP) at epoch k; ε is
the ionospheric observation error; Fj

k = f 2
1 · f 2

2 /(40.28× ( f 2
1 − f 2

2 )) ·M(z), where f1 and
f2 are the first and second frequency of the observations, respectively; and M(z) is the
mapping function used to convert the slant total electron content (STEC) to the VTEC. The
mapping function used in this study is the modified single-layer model (MSLM), which
can be expressed as [1]:

M(z) = cos
(

arcsin
(

R
R + H

sin(az)
))

(2)

where R is the mean radius of the Earth (R = 6371 km), H is the height of the assumed
single-layer ionosphere (H = 506.7 km), a is a correction factor (a = 0.9782), and z is the
satellite zenith angle of a satellite at the receiver.

According to Equation (1), there are two parameters, namely, RS and TEC, in the
observation equation of each available epoch. Thus, it is impossible to obtain the solution of
parameters directly through the least-square adjustment. As mentioned above, two meth-
ods, namely, TEC function modeling for regional or global and TEC eliminating through
existing global ionosphere maps, can also be adopted to estimate the DCBs. Concerning
Equation (1), the DCB parameter can be obtained directly if the TEC parameter can be
determined. In fact, the VTEC of IPPs can be converted into the VTEC of a station if the
relationship between them is established. As can be seen from the sketch of the IPP distri-
bution shown in Figure 1, the red dot represents the station and the black dots represent
IPPs, and the location of the station can be regarded as the center of the limited distribution
area of the IPPs. This means that the variation of TEC in this area is relatively small, and
the TEC value of the IPP is close to that of the station when the distance between them is
short. Thus, the VTEC of the station and the IPPs can be expressed as follows:

∆j
k = VTECs

k −VTECj
k (3)

where VTECs
k is the VTEC of the station at epoch k, VTECi

k is the VTEC of ith IPP at epoch k,

and ∆j
k is the difference between them. Obviously, the difference is small when the distance

between them is small. Thus, it can be regarded as a virtual observation close to 0.
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Combining Equations (1) and (3), a joint observation equation can be obtained:




LPj
r,k = Fj

k · RSj
r,k + VTECs

k + ∆j
k + εLP

L∆j
k = ∆j

k + εL∆

(4)

where LPj
r,k = Fj

k · P
j
4,r,k is regarded as the original observation, L∆j

k is the virtual ob-

servation and L∆j
k = 0, and εLP and εL∆ are the original and virtual observation error,

respectively. The weight of the original observation can be determined by the height angle,
and the weight of virtual observation is related to the distance, since the weight is larger
when the distance between them is very close, which means that the estimated ∆j

k is close
to 0 when the weight is larger. In this paper, we considered that the TEC difference between
the IPPs and the station is relatively small in a single-station area. Thus, the used weight
is set as a large value. In other words, the second formula of Equation (4) does not act in
the adjustment. Thus, the VTEC of the station is represented by the weighted mean VTEC
values of the IPPs.

In fact, the TEC difference between the IPPs and the station is not equal to 0, and there
may be a large difference among some IPPs far away from the station, especially for those
stations located at a low latitude. However, Equation (4) is still available, which can be
adjusted with priori right obtained by an inverse ratio of distance. Note that the priori
right is an empirical value that needs to be further analyzed. It should be noted that a lager
TEC difference may occur at low-latitude stations through our method. Our purpose is to
estimate DCB rather than TEC. Stations with large error may remove or reduce their role in
the adjustment through the variance of estimation introduced later.

Moreover, the variation in TEC of the station is slow among adjacent epochs. Thus,
a random walk can be used to describe the variations, which is regarded as a virtual
observation equation to add into the adjustment solution.

LSk = VTECs
k+1 −VTECs

k + εLS (5)

where LSk is the virtual observation and LSk = 0, k = 1, 2, · · · , and ε is the random error.
The weight of virtual observation is an empirical value and used to balance the random
walk and the observations’ contribution to the adjustment solution [28]. The value is set as
1/0.03 TECu for all its elements in this study, which is proper in our text experiment.
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Considering multi-GNSS observation and combining Equations (4) and (5), it can be
expressed in the matrix as:





A · X = L

A =
[

ALP AL∆ ALS
]

X =
[

RS VTECs ∆
]T

L =
[

LP L∆ LS
]T

(6)

Based on Equation (6), the RS and VTEC can be solved through the least-square
adjustment. Then, the covariance of the parameters can be obtained as:

DXX =

[
DRS

DVTEC

]
(7)

The correlation between parameters was not considered in Equation (7). Therefore,
the combined value of satellite and receiver DCB of multi-GNSS and its covariance for each
station can be obtained. Then, satellite and receiver DCB of multi-GNSS can be separated
based on the RS value of all stations. The separation of satellite and receiver DCB can be
expressed in the matrix as: 




RS = ARS · XDCB

XDCB =
[

XR XS
]

ARS =
[

AR AS
] (8)

where ARS is the design matrix of DCB and consists of AR and AS, and XDCB is the DCB
estimate and consists of satellite DCB XS and receiver DCB XR. Considering the different
accuracy of the combined value of satellite and receiver DCB obtained at different stations,
a weight is used in the adjustment of Equation (8), which can be defined as:

PRS = D−1
RS (9)

Because of the correlation between receiver and satellite DCBs, a zero-mean satellite
reference needs to be added to the adjustment of Equation (8), which can be expressed as:





0 = C · XDCB

XDCB =
[

XR XS
]

C =
[

0 eS
] (10)

Thus, by combining Equations (8)–(10), the satellite and receiver DCBs of multi-GNSS
can be obtained. According to the above derivation, the new method can be implemented
in three steps. The first step is to extract ionospheric observations through the approach
of carrier smooth pseudo-distance with the geometry-free linear combination of dual-
frequency multi-GNSS code observations. Then, the VTEC of the station, represented by
the weighted mean VTEC values of the IPPs of each epoch, is estimated as a parameter
together with the combined value of satellite and receiver DCBs at the epoch. Last, the
previously estimated RS DCBs are used as new observations, whose weight is calculated
with the use of the estimated covariances, and then the satellite and receiver DCBs of
multi-GNSS are estimated. The corresponding flowchart of the new method of multi-GNSS
DCB estimation is illustrated in Figure 2.
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For convenience in the following analysis, the proposed method is named IGDE
(independent GNSS DCB estimation), which can be found to determine the satellite and
receiver DCB values by estimating VTEC directly, instead of modeling TEC by function or
eliminating TEC parameters by GIM. In addition, in order to reduce multipath error and
mapping function error, a 20◦ cutoff elevation is used in this IGDE method. It is feasible to
represent the VTEC of the station by the average value of the VTEC of the IPP, because we
consider that the VTEC value is not much different in the limited area, and the position of
the station can be regarded as the center of the area. The observations of multi-GNSS can
be marked as full use through the IGDE method, and the observations from GPS as well as
GLONASS with a good quality can be used to strengthen the adjustment.

2.2. Experimental Data

In order to better verify the performance of the new method proposed in this study,
more than 300 MGEX stations were selected, which are shown in Figure 3. It can be clearly
seen that these stations roughly show the global distribution. It was sufficient to use these
MGEX stations for DCB estimation. Figure 4 shows the number of available stations for
different DCB type estimation. The serial numbers of the x-axis in the figure corresponds to
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the serial number in Table 1—e.g., 1 corresponds to C1C-C2W of the GPS in Table 1. As is
shown in Figure 4, the number of stations tracking the GPS was the largest, whereas that
of stations tracking QZSS was the smallest. Due to the wide distribution of GPS tracking
stations, all selected stations could be used to track the C1C-C2W observations of GPS.
About 290 and 170 stations were available for GLONASS and BDS, respectively. However,
the number of stations available for GAIEO and QZSS was smaller than 100. A total of
200 days (DOY 001 to 200, 2019) of data from selected MGEX stations were collected in this
study. In addition, the corresponding DCB products provided by CAS, DLR, and CODE
were downloaded for verification and comparison.
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3. Results and Analysis

In this section, the proposed new method is first verified, in which the estimated VTEC
value of station is compared with that provided by CODE. Then, a difference analysis
between the estimated DCB and the MGEX DCB product is implemented. The stability
of multi-GNSS DCB through the proposed new method and the MGEX DCB product are
finally compared.
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3.1. Validation of the New Method

In the proposed new method, the VTEC value of the station can be obtained together
with the combined value of the satellite and receiver DCB for each station. Therefore, the
evaluation of the VTEC of the station can reflect the performance of the proposed method.
Taking four stations as an example, i.e., ZIMJ, RDSD, MAYG, and KERG, the VTEC of the
station obtained by IGDE and CODE are compared on DOY 011, 2019. Figure 5 shows the
VTEC series value of the IGDE and CODE product at the four stations, two of which are
located in the Northern Hemisphere, and the other two in the Southern Hemisphere. In
terms of latitude, two of them at a middle latitude and the others are at a low latitude.
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As can be seen from Figure 5, the series value of VTEC obtained by IGDE and CODE
showed the same trend throughout the whole day, which indicates that the VTEC of the
station obtained by IGDE can show the variation in TEC at the station. However, the
performance of IGDE may have been different at different stations. It is obvious that for
stations ZIMJ and KERG, the RMS of VTEC was within 1.5 TECU. However, the RMS
of RDSD and MAYG was larger than that of other stations, mainly since they are in the
equator area with active ionospheric variation. Figure 6 shows the mean difference and
RMS of VTEC between the IGDE and CODE product at all MGEX stations on DOY 011,
2019. For most stations, the mean difference and RMS were within ±3 TECu and 3 TECu,
respectively. However, the stations located in the low-latitude area, whose mean difference
and RMS showed a larger value, showed the same phenomenon, as depicted in Figure 5.
Moreover, some large values also appeared at high latitudes, which may be related to the
few observations at those stations. The accuracy of TEC from CODE was 2–8 TECu [10],
and the mean values of the difference and RMS were −0.25 and 2.28 TECu for all stations,
respectively, indicating good performance of the proposed method in VTEC estimating for
those stations.
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3.2. Difference Analysis between Estimated DCB and MGEX DCB Product

As mentioned above, 19 types of multi-GNSS DCBs, which were from GPS, GLONASS,
BDS, Galileo, and QZSS, needed to be estimated and analyzed. In order to verify the
accuracy and reliability of the DCBs estimated by IGDE, a difference analysis between
estimated DCB and the MGEX DCB product was performed in this section. The MGEX DCB
products were from CAS and DLR, and the GPS C1W-C2W DCB and GLONASS C1P-C2P
DCB provided by CODE were also used as the reference for a better comparison. Because
the different satellite DCB reference datum may be used for different DCB estimation
methods, the corresponding satellite DCB reference datum needed to be unified before
DCB comparison. Different reference benchmarks mean that the number of satellites
participating in the zero-mean constraint is different, so they needed to be unified [4,29]. In
the following analysis, the mean difference and standard deviation (STD) of multi-GNSS
DCB between IGDE and MGEX products are shown in Figures 7–11, and the corresponding
root mean square (RMS) values are listed in Table 2.
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Table 2. Mean RMS value of all DCBs between IGDE and MGEX products.

System DCB Type CAS DLR CODE System DCB Type CAS DLR

GPS

C1C-C2W 0.07 0.10

GAL

C1X-C5X 0.11 0.11
C1W-C2W 0.10 0.20 0.14 C1X-C7X 0.11 0.11
C1C-C5X 0.12 0.14 C1X-C8X 0.11 0.12
C1C-C5Q 0.10 0.10 C1C-C5Q 0.13 0.13

GLO
C1C-C2P 0.12 0.17 C1C-C7Q 0.12 0.12
C1P-C2P 0.27 0.33 0.28 C1C-C8Q 0.12 0.12
C1C-C2C 0.16 0.21

QZSS

C1X-C2X 0.07 0.12

BDS
C2I-C7I 0.25 0.14 C1X-C5X 0.10 0.12
C2I-C6I 0.24 0.22 C1C-C2L 0.08 0.13

C1C-C5Q 0.18 0.11

For GPS, four types of DCB, namely, C1C-C2W, C1W-C2W, C1C-C5X, and C1C-C5Q,
were compared with CAS, DLR, and CODE. It should be noted that the value of all
four types of daily DCB can be provided by CAS and just C1W-C2W daily DCB values
can be provided by CODE, whereas the C1W-C2W DCB of DLR can be obtained from
DCBC1W−C2W = DCBC1C−C2W − DCBC1C−C1W and the other three types of DCBs from
DLR can be obtained directly. As can be seen from the mean difference in Figure 7, the
value of four types of DCBs with respect to the products from CAS, DLR, and CODE was
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mostly with ±0.4 ns, the largest value of which was near −0.6 ns. Especially for C1W-C2W
DCB, the mean difference with respect to CAS and CODE was within ±0.2 ns, and the
mean RMS values were 0.10 and 0.14 ns, respectively. As is shown in Table 2, the mean RMS
values were 0.07/0.09, 0.12/0.14, and 0.10/0.10 ns for C1C-C2W, C1C-C5X, and C1C-C5Q,
respectively, with respect to CAS/DLR.

According to the comparison results of GLONASS DCB shown in Figure 8, three types
of DCBs (C1C-C2C, C1P-C2P, and C1C-C2C) were compared with CAS, DLR, and CODE.
Similar to GPS C1W-C2W, C1P-C2P DCB was also compared with CODE, and the products
from DLR were also derived from DCBC1P−C2P = DCBC1C−C2P − DCBC1C−C1P. The other
two types of DCBs were compared with CAS and DLR, whose products can be obtained
directly. Obviously, the value of difference in GLONASS DCBs was larger than those of
the GPS, which may be related to the use of frequency division multiple access (FDMA)
technology through GLONASS [7]. The mean difference between C1C-C2P and C1C-C2C
DCB with respect to CAS/DLR was mostly within ±0.4 ns, whose mean RMS values were
0.12/0.16 and 0.15/0.21 ns, respectively. For C1P-C2P, the mean difference with respect to
CAS, DLR, and CODE was within ±0.8, ±1.2, and ±0.4 ns respectively, whose mean RMS
values were 0.27, 0.33, and 0.28 ns, respectively.

For BDS, only two types of DCB (C2I-C7I for BDS-2 and C2I-C6I for BDS-2 and BDS-3)
observations could be tracked by satellites based on the current MGEX network. The
corresponding DCB products could be obtained from CAS and DLR, and the comparison
result is shown in Figure 9. It can be seen that the mean difference between two types of
DCB with respect to CAS and DLR was within ±0.6 ns. For C2I-C7I and C2I-C6I, there was
a mean RMS of 0.25/0.14 and 0.24/0.22 ns, respectively, with respect to CAS/DLR.

For Galileo, there were six types of DCBs compared with CAS and DLR, including
C1X-C5X, C1X-C7X, and C1X-C8X, as well as C1C-C5Q, C1C-C7Q, and C1C-C8Q. Figure 10
shows the corresponding comparison result. As is shown in the figure, the mean difference
of all DCBs was within ±0.2 ns. The mean RMS values were 0.11/0.11, 0.11/0.11, and
0.11/0.12 ns, as well as 0.13/0.13, 0.12/0.12, and 0.12/0.12 ns, for C1X-C5X, C1X-C7X, and
C1X-C8X, respectively, and C1C-C5Q, C1C-C7Q, and C1C-C8Q, respectively, with respect
to CAS/DLR.

For QZSS, only four satellites could be tracked in the current MGEX network, and
four types of DCBs, namely, C1X-C2X, C1X-C5X, C1C-C2L, and C1C-C5Q, needed to be
estimated. All DCB products could be obtained by CAS and DLR, and the comparison
result is shown in Figure 11. It can be seen that the mean difference of all DCBs for all
satellites (except J07) with respect to CAS/DLR was within ±0.2 ns. The mean RMS values
of the four types of DCBs with respect to CAS/DLR were 0.07/0.12, 0.10/0.12, 0.08/0.13,
and 0.18/0.11 ns, respectively.

As is shown in the above results, the mean difference among most types of DCB with
respect to CAS/DLR was within ±0.4 ns. The comparison results of 19 types of DCBs
estimated by IGDE show good agreement with the MGEX DCB products, indicating good
performance of IGDE in multi-GNSS DCB estimating. Especially for GPS C1W-C2W and
GLONASS C1P-C2P DCB, the difference with our estimated DCB and CODE products was
small, whose value was less than that between IGDE and CAS/DLR products. This may
be related to the larger number of stations used in DCB estimation of GPS and GLONASS.
In addition, some difference in the mean, with a larger value for GPS C1W-C2W and
GLONASS C1P-C2P DCB with respect to DLR, could be found, e.g., the value of G06 near
−0.6 ns and that of R10 near 1 ns, mainly due to the fact that the two types of DCB of DLR
product could not be obtained directly but were calculated based on the other DCBs. In
terms of BDS DCB, there seemed to be some difference in mean of a large value for GEO
satellites, e.g., a value of C2I-C7I for C05 and that of C2I-C6I for C01 near −0.6 ns, which
may be due to the fact that GEO satellite observations are more susceptible to multipath
errors. As can be seen from the STD of the difference, the value of GPS and GLONASS
was obviously smaller than that of BDS, Galileo, and QZSS, mainly since more continuous
observations could be observed through GPS and GLONASS. Some larger STDs could be
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found in BDS-3, Galileo, and QZSS, e.g., C37 of BDS, E33 of Galileo, and J07 of QZSS, which
is mainly related to the fact that fewer observations could be tracked from those satellites.
Overall, mean RMS values were 0.12, 0.22, 0.21, 0.12, and 0.12 ns, for GPS, GLONASS, BDS,
Galileo, and QZSS DCBs, respectively, with respect to MGEX products.

3.3. Stability Analysis of Multi-GNSS DCB

As two important indicators of comparison between the proposed method (IGDE)
and MGEX products, the mean difference and STD were analyzed in the previous section,
between which good agreement was found. In this section, we mainly analyze the stability
of DCBs estimated through different methods, as the stability of DCBs reflects the stability
and reliability of DCB estimation to a certain extent, which can be expressed as [7,29,30]:

Sj =

√√√√∑D
d=1 (b

j
d − b

j
)

2

D− 1
(11)

where Sj is the stability of DCB for satellite j, bj
d is the daily DCB of satellite j on day d, b

j
is

the mean DCB of satellite j, and D is the number of days.
Figure 12 shows the stability of GPS satellite DCBs obtained by IGDE, CAS, DLR, and

CODE. The C1W-C2W DCB of CODE was relatively stable, whose stability was within 0.05
ns, which is mainly due to the observations at about 300 IGS stations for three consecutive
days used by CODE for DCB estimation. The stability of C1W-C2W DCB from IGDE, CAS,
and DLR was within 0.1 ns. In terms of the other three types of DCB, the stability of the
DCB obtained by IGDE, CAS, and DLR was almost same, with values mostly within 0.1 ns,
indicating reasonable stability of GPS DCBs estimated by IGDE.
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For GLONASS, the comparison of DCB stability through IGDE, CAS, and DLR is
shown in Figure 13. Note that the stability of C1P-C2P DCB through CODE could not be
obtained due to just the monthly mean value that can be provided by CODE. Obviously,
the overall stability of GLONASS DCB satellite was not as good as that of GPS satellite, and
the values of three types of DCB were within 0.2 ns. However, some larger values could

253



Remote Sens. 2022, 14, 2002

be seen, e.g., the values of R07, R10, and R16, mainly because few observations could be
tracked through these satellites.
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Figure 14 shows the stability of BDS DCB obtained by IGDE, CAS, and DLR, including
the results of two types of DCB for BDS-2 and C2I-C6I DCB for BDS-3. As is shown in the
figure, the stability of DCB estimated by IGDE was basically consistent with that of the DCB
provided by CAS and DLR. The stability of the two types of DCB were mostly within 0.2 ns,
with the value of some satellites, including the GEO satellite and some BDS-3 satellites,
seeming larger than 0.2 ns, which is mainly related to the observation from the satellite.
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For Galileo and QZSS, the comparison of DCB stability with IGDE, CAS, and DLR is
shown in Figures 15 and 16. The DCB stability of most satellites was around 0.1 ns, except
for a few satellites, i.e., E33 of Galileo and J07 of QZSS. In particular, the DCB stability of
E33 from the DLR product presented a larger value, which may be related to its solution.
The value of DCB stability of J07 was larger than that of other satellites, which is mainly
related to the few observations of J07.
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Figure 16. Stability of the QZSS DCB obtained by IGDE, CAS, and DLR.

It can be seen from the above analysis results that the stability of multi-GNSS DCB
through the proposed estimation method (IGDE) and the MGEX DCB product was at the
same level. The mean values of stability of DCB estimated by IGDE were 0.07, 0.06, 0.13,
0.11, and 0.11 ns, for GPS, GLONASS, BDS, Galileo, and QZSS, respectively. The good
performance of the stability of multi-GNSS DCB estimated by IGDE can be concluded
based on the above comparison results.

4. Discussion

A new method is proposed in this study to estimate multi-GNSS DCB based on the
consideration that TEC variation is small in single-station areas. A total of 200 days of
observations from more than 300 MGEX stations in low-solar-activity periods was collected
for experimentation. The verification results from the TEC station in Figures 3 and 4
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indicate that good performance of the proposed method was shown at most stations. Thus,
it can be said that the processing strategy for the TEC of IPPs in the proposed method is
feasible. Although we directly used the TEC of the station instead of the TEC of the IPPs
for estimation, many observation data can play the role of adjustment for each station.
This means that the TEC of the station is represented by the weighted mean TEC values
of the IPPs. However, if the station is in the low-latitude area with active ionospheric
variations or there is less observation data from the station, there may be a large deviation
in estimated TEC. Since the variance can play a controlling role in the next DCB estimation,
the role of the data from these stations may be removed or reduced in the adjustment.
Thus, the proposed method shows good performance in multi-GNSS DCB estimation in
low-solar-activity periods.

For different systems, the stability of estimated satellite DCB was obviously different;
there were also some satellites with large values of stability of DCBs that can be found in
the figures, e.g., G04, R10, C01, C04, E13, E33, and J07, which may mainly have been caused
by the quality and quantity of data from the satellites.

However, we also tested the DCB estimation during the period of high solar activity
in 2015. The result of the estimated GPS DCB is shown in Figure 17; the bias was larger
than that in 2019, especially for C1C-C5X. In addition to GPS, DCB estimation of other
systems may have had some deviations on some days, which may mainly have been caused
by insufficient observation data, because some data were removed due to the failure of
the TEC estimation. The method proposed in this paper will continue being studied and
improved in the next step to fit the DCB estimation in periods of high solar activity.
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5. Conclusions

In recent years, the rapid development of multi-GNSS has accounted for the strong
demand for multiple types of DCBs, instead of just a single type of them from GPS and
GLONASS. To estimate multi-GNSS DCB efficiently and accurately, a new method of
multi-GNSS DCB estimation without relying on the ionospheric function model and GIM
is proposed, which can be implemented in three steps. The first is to extract ionospheric
observations based on the geometry-free combination of dual-frequency multi-GNSS code
observations. Then, the VTEC of the station represented by the weighted mean VTEC value
of the ionospheric pierce points (IPPs) at each epoch is estimated as a parameter together
with the combined receiver and satellite DCBs (RSDCBs). Last, the estimated RSDCBs are
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used as new observations, whose weight is calculated with the use of estimated covariances,
and thus the satellite and receiver DCBs of multi-GNSS are estimated.

Nineteen types of multi-GNSS satellite DCBs are estimated based on 200-day observa-
tions from more than 300 multi-GNSS experiment (MGEX) stations, and the performance
of the proposed method is evaluated by comparing with MGEX products. The results show
that the mean RMS values were 0.12, 0.23, 0.21, 0.13, and 0.11 ns for GPS, GLONASS, BDS,
Galileo, and QZSS DCBs, respectively, with respect to MGEX products, and the stability
of estimated GPS, GLONASS, BDS, Galileo, and QZSS DCBs as 0.07, 0.06, 0.13, 0.11, and
0.11 ns, respectively. The proposed method shows a good performance in multi-GNSS DCB
estimation in low-solar-activity periods. The method proposed in this paper will continue
being studied and improved in the next step to fit the DCB estimation in periods of high
solar activity.
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Abstract: The redistribution of surface mass (e.g., atmosphere, soil water, oceans, and groundwater)
can cause load responses, resulting in vertical deformations of the crust. Indeed, the global navigation
satellite system (GNSS)-based continuously operating reference stations (CORS) are able to accurately
measure the vertical deformation caused by surface mass loads. In this study, the CORS was used to
invert groundwater storage anomalies (GWSA), represented by the equivalent water height (EWH),
after removing the effect of the non-groundwater surface mass load (atmospheric, groundwater, and
non-tidal oceanic loads) from the vertical deformation monitored by CORS. In addition, the global
and regional high-resolution surface mass models were combined to calculate the high-precision
load deformation field in in western Yunnan using the remove–restore method, thereby obtaining
more accurate surface mass load data and improving the accuracy of the inverted GWSA results.
In order to assess the feasibility of the CORS inversion for the GWSA used, 66 CORS stations in
western Yunnan Province were considered, presenting weekly GWSA data from 10 January 2018 to
31 December 2020. The results revealed significant seasonal variation in GWSA in the study area,
showing an amplitude range of −200–200 mm. This approach is based on the already-established
CORS network without requiring additional set-up costs. In addition, the reliability of CORS
inverse results was assessed using Gravity Recovery and Climate Experiment (GRACE) inverse
results and actual groundwater monitoring data. According to the obtained results, GWSA can be
monitored by both CORS and GRACE data; however, CORS provided a more effective spatiotemporal
resolution of GWSA. Therefore, the CORS network combined with surface mass load data is able
to effectively monitor the spatiotemporal dynamics of GWSA in small-scale areas and provides
important references for the study of hydrology.

Keywords: ground water storage; surface mass load; groundwater monitoring station; GNSS;
remove-restore method

1. Introduction

As a densely populated country, China is relatively poor in water resources per
capita [1]. Moreover, China is characterized by an uneven spatiotemporal distribution of
water resources due to the impacts of climatic and topographic characteristics. The GWSA
(groundwater storage anomalies) aims to estimate groundwater storage, thereby maintain-
ing the ecological balance of groundwater systems. The overexploitation of groundwater
resources has seriously restrained sustainable development in many regions [2,3]. There-
fore, the assessment of the spatiotemporal distribution of regional GWS (groundwater
storage) is of great scientific importance for studying water circulation and groundwater
allocation as well as for preventing groundwater droughts [4,5].
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At present, the two main GWS monitoring approaches consist of in situ monitoring
of groundwater level fluctuations and using Gravity Recovery and Climate Experiment
(GRACE) and Global Land Data Assimilation System (GLDAS) data to invert the spa-
tiotemporal characteristics of GWS [6,7]. In fact, consecutive groundwater level data, with
relatively high accuracies, can be obtained at monitoring well stations using the first ap-
proach. However, this approach is costly since it requires several monitoring stations
with high density to ensure accurate regional monitoring. Moreover, most well stations
can be located in plains regions, making it challenging to monitor groundwater storage
in mountainous areas. Meanwhile, due to the complex regional geological structures,
some parameters (e.g., specific yield) are difficult to determine, making it difficult to ef-
fectively assess GWSA using discretely distributed well stations. On the other hand, the
GRACE and GLDAS data-based approach is often applied to large-scale regional GWSA
monitoring [8,9]. Although the quality of gravity satellite data is relatively high, there is
considerable interference upon high-order spherical harmonic coefficients, resulting in low
spatial resolutions. Furthermore, these satellite data have been lacking since 2011, with a
data gap of nearly one year between GRACE/GRACE Follow-on (GRACE-FO), explaining
the inability of GRACE data to provide high-resolution continuous monitoring the GWSA
data in small-scale regions [10,11]. Therefore, given the complex physical conditions, high
cost of monitoring groundwater storage through well stations, and the low-resolution
GRACE monitoring data, the continuously operating reference system (CORS) inversion
method for GWSA in small-scale areas requires further study and discussion.

The CORS is a ground observation system based on the global navigation satellite sys-
tem (GNSS) observation system. These data are derived from long consecutive monitoring
data of satellite navigation signals, providing real-time and periodic data through commu-
nication facilities. The CORS can monitor the dynamics of regional geodetic heights and
their consecutive long-time series [12,13]. Indeed, several researchers have demonstrated
the ability of the CORS network to obtain real-time information from selected monitoring
stations in certain regions, providing references for monitoring spatial dynamics as well
as comprehensive continuous regional observation data [14–16]. In addition, the load-
deformation theory demonstrated that changes in the surface environmental mass (e.g.,
atmosphere, surface water, groundwater, and ocean) lead to load vertical deformation,
thereby influencing the seasonal periodic signals in the geodesic height variations of CORS
stations [17–19]. Argus [20] used the seasonal signals of GNSS vertical data to invert the
terrestrial water storage anomalies (TWSA) in California, showing consistent spatial dis-
tribution data with that inverted using GRACE. In addition, He [21] inverted the changes
in the TWSA in Yunnan Province from 2010 to 2014 and compared the GNSS data with
those of GRACE and GLDAS, discussing the possibility of GNSS to separately operate and
monitor the TWSA. Several studies have revealed consistent findings with the hypothesis
that the seasonal vertical displacement of GNSS is strongly related to the load-deformation
caused by TWSA and have assessed the reliability of GNSS data to invert the TWSA [22–28].
However, studies on groundwater inversion have only assessed the correlation between
seasonal GNSS and GWSA data due to the complexity of seasonal signals of GNSS vertical
displacements, while only a few studies have inverted GWSA data using the CORS.

To address this challenge, this study aims to verify the feasibility and reliability
of the combined CORS high-resolution surface mass load inversion for GWSA based
on an already-established CORS network, thus avoiding additional establishment costs.
Moreover, the density of CORS stations and their continuous and immediate high-precision
observation make it possible to perform high-resolution GWSA monitoring in a small-
scale region. Yunnan Province in China has experienced a severe water shortage and
continuous drought. Indeed, the GWSAs have directly affected the regional economy and
local ecological environment in Yunnan Province. Therefore, assessing the spatiotemporal
distribution characteristics of the GWSA can provide important reference significance for
human production activities as well as for relevant decision-makers in the regions. In
order to improve the precision and stability of the CORS inversion, the global and regional
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high-resolution surface mass models were combined in this study to calculate the high-
precision load deformation field in Yunnan Province based on the remove-restore method.
Indeed, researchers have eliminated three surface mass loads (atmospheric, soil water,
and non-tidal oceanic loads) from the non-linear time series of CORS geodetic heights
through data processing, and then the CORS data were used to invert the GWSAs based
on load deformation theory and inversion models [29,30]. To assess the applicability of the
method, researchers have used data from 66 CORS stations in Western Yunnan Province and
high-resolution surface mass load results and performed a weekly GWSA grid in the study
area from 10 January 2018 to 31 December 2020 to assess the effectiveness and reliability of
CORS inverse results using GRACE inverse results and groundwater monitoring station data.

2. Materials and Methods
2.1. Data Used
2.1.1. CORS Network Data

As is shown in Figure 1, the study region is circled by red lines. The data were collected
from 66 CORS stations located in the study region, covering the 2018–2020 period. In
addition, 15 international GNSS service (IGS) stations were selected in this study to obtain
high-precision CORS coordinate time series and to resolve the solution of CORS data. The
longitude and latitude coordinates of the IGS stations are reported in Table 1. GAMIT and
GLOBK were also used in this study to process the collected data [31]. On the other hand,
by correcting the daily errors of GNSS data for each station, a solution was achieved in
some zones of the study region through GAMIT (Table 2). GLOBK was used for a global
adjustment of the network and to present the time series of station coordinates in the
international terrestrial reference frame (ITRF) [32]. As is shown in Table 2, the CORS data
solution removed the influences of the solid, sea, and atmospheric tides, while the influences
of non-tidal elements (e.g., atmosphere pressure, soil water, and sea level) were maintained.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 22 
 

 

and local ecological environment in Yunnan Province. Therefore, assessing the 
spatiotemporal distribution characteristics of the GWSA can provide important reference 
significance for human production activities as well as for relevant decision-makers in the 
regions. In order to improve the precision and stability of the CORS inversion, the global 
and regional high-resolution surface mass models were combined in this study to 
calculate the high-precision load deformation field in Yunnan Province based on the 
remove-restore method. Indeed, researchers have eliminated three surface mass loads 
(atmospheric, soil water, and non-tidal oceanic loads) from the non-linear time series of 
CORS geodetic heights through data processing, and then the CORS data were used to 
invert the GWSAs based on load deformation theory and inversion models [29,30]. To 
assess the applicability of the method, researchers have used data from 66 CORS stations 
in Western Yunnan Province and high-resolution surface mass load results and performed 
a weekly GWSA grid in the study area from 10 January 2018 to 31 December 2020 to assess 
the effectiveness and reliability of CORS inverse results using GRACE inverse results and 
groundwater monitoring station data. 

2. Materials and Methods 
2.1. Data Used 
2.1.1. CORS Network Data 

As is shown in Figure 1, the study region is circled by red lines. The data were 
collected from 66 CORS stations located in the study region, covering the 2018–2020 
period. In addition, 15 international GNSS service (IGS) stations were selected in this 
study to obtain high-precision CORS coordinate time series and to resolve the solution of 
CORS data. The longitude and latitude coordinates of the IGS stations are reported in 
Table 1. GAMIT and GLOBK were also used in this study to process the collected data 
[31]. On the other hand, by correcting the daily errors of GNSS data for each station, a 
solution was achieved in some zones of the study region through GAMIT (Table 2). 
GLOBK was used for a global adjustment of the network and to present the time series of 
station coordinates in the international terrestrial reference frame (ITRF) [32]. As is shown 
in Table 2, the CORS data solution removed the influences of the solid, sea, and 
atmospheric tides, while the influences of non-tidal elements (e.g., atmosphere pressure, 
soil water, and sea level) were maintained. 

 
Figure 1. Geographic location of the study region. 

Figure 1. Geographic location of the study region.

261



Remote Sens. 2022, 14, 4032

Table 1. The 15 IGS sites used for the calculation of the CORS network in Western Yunnan Province.

IGS Longitude
and Latitude IGS Longitude

and Latitude IGS Longitude
and Latitude

AIRA 130.59/31.82 ARTU 58.56/56.42 BJFS 115.89/39.60
DAEJ 127.37/36.39 HYDE 78.55/17.41 IISC 77.57/13.02
IRKJ 104.31/52.21 KIT3 66.88/39.13 LHAZ 91.10/29.65

NVSK 83.23/54.84 PIMO 121.07/14.63 POL2 74.69/42.67
TCMS 120.98/24.79 TIXI 128.86/71.63 YSSK 142.71/47.02

Table 2. The main parameters used in the GAMIT calculation.

Parameters Processing Modes

Sampling interval data 15 s
Satellite elevation cut-off angle (◦) 10
Baseline processing mode BASELINE
Ionosphere delay model LC_AUTCLN
Satellite clock error model Precise clock offset and orbit products of IGS
Tropospheric model Saastamoinen + GPT2w + estimation
Solar radiation pressure model ECOMC model
Solid tide model IERS2010
Ocean tide model FES2004(otl_FES2004.grid)
Atmospheric mapping function VMF1
Inertial framework J2000
Framework of prior coordinates ITRF2014
PCO/PCV IGS14 atx
Ambiguity resolution LAMBDA method
A priori IGS station coordinates Coordinates under ITRF20008

2.1.2. Atmospheric Pressure Data

In order to calculate the effect of atmospheric load, the global atmospheric pres-
sure data were derived in this study from ECMWF’s (European Centre for Medium-
Range Weather Forecasts) re-analysis of the 0.25◦ × 0.25◦ ERA-interim surface pres-
sure product data (https://www.ecmwf.int/, accessed on 15 May 2021), covering the
3 January 2018–30 December 2020 period [33]. The original data were averaged by week,
which is reported by Wednesday of each week. Similar to the solutions of non-tidal oceanic
and soil water loadings, the weekly grid time series of atmospheric loading were obtained
using Equations (1) and (2).

On the other hand, the regional high-resolution atmospheric pressure data were down-
loaded from the CLDAS-V2.0 data (CLDAS Atmospheric Driving Field) product of the
China Meteorological Administration Land Data Assimilation System (CLDAS) from the
China Meteorological Data Network (http://data.cma.cn/, accessed on 15 May 2021). The
product data consist of temperature, pressure, humidity, wind speed, precipitation, and
other meteorological parameter data. The hourly product data cover the Asian region
(0◦~65◦N, 60◦~160◦E), with a spatial resolution of 0.0625◦ × 0.0625◦. The dataset includes
data observed at over 2400 and 40,000 national and regional automatic meteorological
stations, respectively, for operational assessment. By combining global and regional at-
mospheric pressure data, a high-resolution atmospheric loading deformation field of the
study area was determined using the remove–restore method. The soil water loading was
calculated using the same method.

2.1.3. Sea Level Anomaly Data

In order to calculate the effect of Non-tidal ocean load, the daily global sea-level
anomaly (SLA) data were derived from the 0.25◦ × 0.25◦ archiving validation and interpre-
tation of satellite oceanography (AVISO) data (https://www.aviso.altimetry.fr/, accessed
on 15 May 2021), covering the 2 January 2018–30 December 2020 period. The AVISO data
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integrate not only multi-satellite-derived sea-level data (e.g., TOPEX/Poseidon, Jason-1/2,
and Envisat) but also the associated geophysical correction, including tidal and inverse
barometer corrections, thereby representing the effects of non-tidal ocean loading [34,35].

2.1.4. Soil Water Data

Calculation of soil water load requires soil water data. In this study, the V2.1 GLDAS/
Noah model, provided by the National Aeronautics and Space Administration (NASA) and
National Centers for Environmental Prediction (NCEP), was used to obtain the soil water
data, with a spatial resolution of 0.25◦ × 0.25◦ (https://mirador.gsfc.nasa.gov, accessed on
15 May 2021) [36]. The GLDAS model takes into account soil water, canopy water, and snow
water (ranging from 0 to 200 cm), while groundwater is excluded. The temporal resolutions
of the data are 3-hourly and monthly. In this study, the 3-hourly resolution GLDAS data,
from 3 January 2018 to 30 December 2020, were first downloaded, then averaged by week
to obtain weekly soil water data. These data were used to determine the influence of soil
water loading, whereas the monthly soil water data covered the January 2018–December
2020 period. Indeed, the monthly GLDAS data combined with the monthly GRACE data
can be used to determine GWSA as well as to assess the validity and feasibility of the CORS
inversion for GWSA.

On the other hand, the regional high-resolution surface water height data were
downloaded in this study from the CLDAS data product of the China Meteorological
Data Network, which consists of hourly soil moisture data covering the Asian region
(0◦–65◦N, 60◦–160◦E), with a spatial resolution of 0.0625◦ × 0.0625◦.

2.2. GRACE-FO Mascon Solutions

To compare and analyze the CORS and GRACE inverse results for GWSA, GRACE-FO
RL06 mascon solutions, provided by the Center for Space Research (CSR) with a spatial reso-
lution of 0.25◦ × 0.25◦, were used to reflect the monthly changes in terrestrial water storage
(http://www2.csr.utexas.edu/grace/RL06_mascons.html, accessed on 15 May 2021) [37].
The data covered the October 2018–December 2020 period. The collected data were cor-
rected for degree-1, C20 (degree 2 order 0), C30 (degree 3 order 0), and GIA to reflect the
dynamics of terrestrial water storage (Table 3). It should be noted that in comparison
with GRACE, the GRACE-FO data processing added the C30 correction into its procedure.
Therefore, the regional GWSA could be calculated through the combination of monthly
data of terrestrial water storage and the monthly data of soil water provided by GLDAS.

Table 3. The main corrections used in Mascon solutions.

Corrections Processing Mode

C20 Replacement C20 solutions from SLR in TN14
C30 Replacement C30 solutions from SLR in TN14

Degree 1 Corrections Estimated value in TN-13a
GIA Correction ICE6G-D Model

2.3. Groundwater Monitoring Station Data

The daily data observed at 15 groundwater monitoring stations (Figure 1) from
26 September 2018 to 25 November 2020 were used in this study to assess the accuracy of
the CORS inverse results for the GWSA. The collected data were averaged by week. The
applicability and reliability of the integrated solution method can be assessed by comparing
the observed data with those of the CORS inversion for the GWSA.

2.4. Precipitation Data from Weather Stations

To analyze the influences of precipitation on the spatiotemporal distribution of GWSA
in the study region, daily precipitation data observed at eight weather stations in Yunnan
Province from (Figure 1) 1 January 2018 to 31 December 2020 were used in this study
(http://data.cma.cn, accessed on 15 May 2021).
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3. Method
3.1. High-Resolution Surface Mass Load Based on the Remove–Restore Method

The spherical harmonic analysis method was expressed using Equation (1), reflecting
the medium- and long-wave components at global scales, while Equation (2) is the load
Green’s function method, which mainly reflects the short-wave components at small scales.
Since equivalent water height (EWH) can reflect the changes in the mass of the surface
environment (e.g., atmosphere, soil water, oceans, and groundwater) based on the load
theory of spherical harmonic coefficients, the changes in geodetic heights caused by loads
can be calculated using the following equation [17,38]:

H(ϕ, λ, t) = 3
ρw

ρe

GM
γR ∑L

l=2

h′l
2l + 1∑l

m=0

[
∆Cq

lm cos mλ + ∆Sq
lm sin mλ

]
Plm(sin ϕ) (1)

where ρe ≈ 5.5 × 103 kg·m−3 denotes the average density of the solid earth; G is the
gravitational constant; and γ is the average gravity of the ground.

On the other hand, the changes in the geodetic heights of CORS stations resulting
from the changes in surface mass load can be expressed using the load Green’s function
equation [17,38]:

H(ϕ, λ, t) =
∫ 2π

0
dλ′

∫ π

0
ρw∆hwG(ψ)a2 sin λ′dϕ′ (2)

where H(ϕ, λ, t) denotes the geodetic height; t represents time; (ϕ, λ) denotes the longitude
and latitude of the calculated point; and (ϕ′, λ′) denotes the load point on the ground.
The density of water was considered as ρw ≈ 103 kg·m−3; ψ denotes the spherical angular
distance between the calculated and load points; G(ψ) denotes the green function of the
radial loads; and R denotes the average earth radius.

The green function of the radial loads can be expressed as follows [17,38]:

G(ψ) =
Rh′∞

2M sin(ψ/2)
+

a
M

N

∑
n=0

(h′l − h′∞)Pn(cos ψ) (3)

where h′l is radial load Love number; M denotes the earth mass; and Pn denotes the
Legendre function.

In this study, the global and regional high-resolution models were combined to calcu-
late the high-precision load deformation field in the study area using the remove–restore
method. Figure 2 shows the procedure used in this study [12,19].

First, the global EWH model was used to estimate the reference EWH and load vertical
deformation in the study area using the spherical harmonic analysis method, thus obtaining
the spatial long-wave component information. Second, the high-resolution regional EWH
model was encrypted into a 1′ × 1′ grid before removing the reference EWH grid from the
regional high-resolution EWH grid to obtain the residual EWH using the remove method.
Third, the load impact of the residual EWH change on the geodetic height was estimated
using the load Green’s function method, introducing the short wave components of the
study area. Finally, the load impacts obtained in the first and third steps were added using
the restore method. By using these steps, the high-resolution and high-precision load
deformation field of the study area was obtained. This approach not only introduces the
short-wave component of the study area and improves the applicability of the model in the
small-scale study area but also effectively removes the truncation error generated during
the spherical harmonic expansion and reduces the calculation uncertainties.
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3.2. GWSA Inversion Using the Combined CORS and Surface Mass Load Method

EWH was used in this study to reflect the mass changes in the surface environment
(atmospheric pressure, sea level, soil water, and groundwater levels) [17]. Based on load
deformation theory, the normalized expansion formula of the spherical harmonic load was
determined using the load-deformation theory, according to the following equations [17,38,39]:

∆hw(ϕ, λ) = R∑L
l=1 ∑l

m=0

[
∆Cq

lm cos mλ + ∆Sq
lm sin mλ

]
Plm(sin ϕ) (4)

where (ϕ, λ) denotes the geocentric latitude and longitude of the ground calculation point;
∆Cq

lm, ∆Sq
lm are the load sphere harmonic coefficients, with l degree and m order; and

Plm(sin ϕ) denotes the associated Legendre function, with l degree and m order.
Different thicknesses and radius disks of the same mass were placed on the surface.

Figure 3 shows the related load deformation and its relationship with distance, indicating
clear load responses near fields. The load-deformation was 1/10 of that of the center
at a distance from the center of the disk equal to three times its radius, while no load-
deformation was observed at a distance from the center of disk equation to 10 times its
radius. Therefore, the vertical displacement and load-deformation were mainly influenced
by the load points within a limited distance range. The use of GNSS in the inversion of the
regional GWS showed that stations on the edges of the study area tended to be simultaneously
influenced by the inside and outside loads of the study area. By neglecting the influence
of the outside mass changes, the outside loads can be restrained to the border region, thus
leading to false inversion on the edges of the study area, explaining the larger inverted region
than the study area. The expansion should consider the sensitive range of load responses.
Therefore, the 66 CORS stations covered the study region and its peripheral areas.
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The inversion model of Argus [20] used in this paper:

((Ax− b)/σ)2 + β2(L(x))2 → min (5)

where σ denotes the standard deviation of the observation value vector of geodetic height
changes; A denotes the coefficient matrix of the green function, which can be calculated
using Equation (3); x is the EWH of the corresponding grid point; b denotes the observation
value of the GNSS geodetic height changes of CORS stations; β denotes the smoothing
factor; and L denotes the Laplace operator.

Due to the limited number of GPS observation stations in the study area, the number of
equations is smaller than the number of unknowns, resulting in a rank loss of the coefficient
matrix of the normal equation. The inversion of the equivalent water height changes
using GNSS observation data is, therefore, an ill-posed equation problem. To address this
challenge, the ridge estimation reported by Hoerl [40] was used in this study, which is a
classical regularized approach, to determine the solution of β in Equation (5). Indeed, the
L-curve method was used in previous studies to select the best-regularized parameters [41].

The influence of surface mass changes was calculated using the load-deformation
theory in Equation (1). Besides the impact of groundwater changes, atmospheric pressure,
sea level, and soil water changes were considered in the present study, while other less
influential factors (e.g., rivers, lakes, and reservoirs) were neglected. Based on the weekly
geodetic height values, the non-linear time series of each CORS station were obtained.
After removing the influences of the non-groundwater data, the residual time series were
obtained, including load and non-load vertical deformations of groundwater. Afterward,
Equations (2) and (5) were used to invert GWSA from the residual time series. The method
used is illustrated in Figure 4. In this study, the integral radius of the load Green’s function
and the smoothing factor (β) were set to 2◦ and 0.01, respectively.

266



Remote Sens. 2022, 14, 4032

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 22 
 

 

used is illustrated in Figure 4. In this study, the integral radius of the load Green’s function 
and the smoothing factor (β) were set to 2° and 0.01, respectively. 

 
Figure 4. Flowchart of CORS inversion for GWSA. 

3.3. GWSA Inversion Using GRACE Product Data 
The terrestrial water storages (TWS ) are the summation of soi l water, groundwater, 

surface runoff, snow, and canopy water. Contrary to soil water and groundwater, the 
contributions of surface runoff and canopy water changes to TWS are minor, and thus 
they can be neglected. Indeed, TWS in the study region is mainly affected by soil water, 
snow water, and groundwater [10]. GWSΔ  was calculated in this study using the 
following formula: 

( )GWS TWS SM SWEΔ =Δ − Δ +Δ  (6)

where G W SΔ  is the groundwater storage; T W SΔ  denotes the changes in TWS 
obtained from GRACE data; SMΔ  and S W EΔ  denote the changes in soil water and 
snow water, respectively, obtained from GLDAS product data. 

4. Results 
4.1. GWSA Inversion Results Using CORS Data 

The time series of non-linear geodetic height changes were first processed using gross 
error detection and linear item removal, as shown by the red points in Figure 5. The black 
curve in Figure 5 shows the time series of geodetic heights after the periodic fast Fourier 
transformation (FFT) reconstruction. According to the magnitude of the power spectral 
density, this paper uses the first eight periodic signals to reconstruct [42,43]. Indeed, the 
periodic FFT reconstruction is a low-pass filtering method used to decrease or inhibit the 
high-frequency noise of the time series, thus improving the stability of the inversion 
results. The geodetic heights of CORS stations corresponded to the temporal resolution of 
surface mass loads. In order to improve the accuracy of the CORS inversion, the influences 
of high-resolution surface mass loads, including atmospheric, soil water, and non-tidal 
oceanic loads, were removed from the reconstructed time series of non-linear geodetic 
heights, as shown by the purple, blue and green curves in Figure 5. The residual time 

Figure 4. Flowchart of CORS inversion for GWSA.

3.3. GWSA Inversion Using GRACE Product Data

The terrestrial water storages (TWS) are the summation of soi l water, groundwater,
surface runoff, snow, and canopy water. Contrary to soil water and groundwater, the contri-
butions of surface runoff and canopy water changes to TWS are minor, and thus they can be
neglected. Indeed, TWS in the study region is mainly affected by soil water, snow water, and
groundwater [10]. ∆GWS was calculated in this study using the following formula:

∆GWS = ∆TWS− (∆SM + ∆SWE) (6)

where ∆GWS is the groundwater storage; ∆TWS denotes the changes in TWS obtained
from GRACE data; ∆SM and ∆SWE denote the changes in soil water and snow water,
respectively, obtained from GLDAS product data.

4. Results
4.1. GWSA Inversion Results Using CORS Data

The time series of non-linear geodetic height changes were first processed using gross
error detection and linear item removal, as shown by the red points in Figure 5. The black
curve in Figure 5 shows the time series of geodetic heights after the periodic fast Fourier
transformation (FFT) reconstruction. According to the magnitude of the power spectral
density, this paper uses the first eight periodic signals to reconstruct [42,43]. Indeed, the
periodic FFT reconstruction is a low-pass filtering method used to decrease or inhibit the
high-frequency noise of the time series, thus improving the stability of the inversion results.
The geodetic heights of CORS stations corresponded to the temporal resolution of surface
mass loads. In order to improve the accuracy of the CORS inversion, the influences of
high-resolution surface mass loads, including atmospheric, soil water, and non-tidal oceanic
loads, were removed from the reconstructed time series of non-linear geodetic heights, as
shown by the purple, blue and green curves in Figure 5. The residual time series obtained
after the removal process, according to Equations (2) and (5), can therefore be used to invert
GWSA within the coverage of the CORS network, which is reflected by EWH.
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Figure 6 shows the annual differences between the maximum and minimum values of
the reconstructed geodetic height time series at the 66 CORS stations, ranging from 15 to
35 mm. According to Figure 5, the atmospheric and soil water loads revealed the highest
effects among the three types of loads. The results revealed that the vertical deformation,
caused by the soil water loads, ranged from −8 to 8 mm, while non-tidal oceanic load
showed the lowest effect, with a vertical deformation range of −2–2 mm.
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Surface mass loads, namely atmospheric, non-tidal oceanic, and soil water loads,
showed different correlations with the geodetic height time series of CORS stations, demon-
strating the influences of these surface mass loads. Therefore, in order to compare the
obtained results, the influences of loads were first removed, then the WRMS ratio of the
GNSS time series was calculated according to the following formula [44]:

WRMS(%) =
WRMSGNSS −WRMSGNSS−load

WRMSGNSS
(7)
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where WRMSGNSS is the WRMS of the reconstructed GNSS geodetic height time series.
Positive and negative values of WRMS(%) indicate a decrease and increase in the WRMS of
the GNSS time series, respectively. It should be noted that the absolute value of WRMS(%)
can reflect the load influences on the GNSS’s non-linear geodetic height time series.

On the other hand, the Pearson correlation coefficient (R) was computed in this study
according to the following equation. It is widely used to measure the degree of correlation
between two variables [45,46]:

R =
Cov(X, Y)√

Var(X), Var(Y)
(8)

where X = (x1, x2, · · · , xN) denotes the reconstructed time series of the observed GNSS
geodetic heights; Y = (y1, y2, · · · , yN) denotes the time series of the vertical deformation
caused by surface mass loads. The R values range from −1 to 1, indicating strong negative
and positive correlations, respectively, between the periodic phases of the two series.

In total, 12 stations were selected to assess the influences of the three surface mass
loads on the reconstructed time series of CORS geodetic heights using R and WRMS values
(Table 4). Unlike the non-tidal oceanic load, the R and WRMS values of atmospheric and
soil water loads were all positive. According to the obtained results, the R and WRMS
values of the atmospheric load ranged from 0.50 and 0.66 and 7.61 to 12.80%, respectively,
whereas the R and WRMS values of the soil water load ranged from 0.64 to 0.81 and
20.54 to 34.80%, respectively. On the other hand, the non-tidal oceanic load was negatively
correlated with the reconstructed time series of the CORS geodetic heights, which is
consistent with the reported by Munekane and Nordman [47,48]. However, the absolute
WRMS value of the non-tidal oceanic load ranged from 3.24 to 6.39%, suggesting a low
influence on the CORS geodetic heights. This result was due to the offsetting effects
of the atmospheric and soil water loads, making the influence of the non-tidal oceanic
load difficult to reflect in the time series of the CORS geodetic heights. In other words,
atmospheric and soil water loads exhibited stronger influences than that of the non-tidal
oceanic load. The R and WRMS values of total loads ranged from 0.81 to 0.89 and 33.84
and 43.93%, respectively (Table 4). On the other hand, by removing the surface mass loads,
decreases in the WRMSGNSS−load values were observed. This finding demonstrates not
only the reliability of the reconstructed CORS geodetic height time series and surface mass
load deformations but also the effectiveness of the integrated solving process used in the
present study.

Table 4. Correlation coefficient and WRMS values between different loads and the reconstructed
geodetic height time series.

CORS
Stations

Atmospheric Load Soil Water Load Non-Tidal Ocean Load Total Load

R WRMS (%) R WRMS (%) R WRMS (%) R WRMS (%)

XIAG 0.60 11.03% 0.66 24.08% −0.62 −4.31% 0.82 37.70%
YNCX 0.62 12.80% 0.64 20.50% −0.66 −5.10% 0.84 34.31%
YNGM 0.61 12.63% 0.67 21.27% −0.54 −3.24% 0.81 33.84%
YNJD 0.58 8.53% 0.69 24.99% −0.58 −3.81% 0.82 34.04%

YNLC 0.66 10.26% 0.71 25.91% −0.52 −4.25% 0.86 38.74%
YNLJ 0.62 9.45% 0.79 34.80% −0.63 −6.39% 0.87 43.93%
YNRL 0.56 7.46% 0.77 33.74% −0.61 −5.77% 0.87 43.85%
YNSD 0.62 10.22% 0.75 30.08% −0.60 −4.96% 0.88 40.58%
YNTC 0.50 7.61% 0.81 33.56% −0.66 −5.53% 0.89 39.35%

YNYA 0.58 9.01% 0.78 30.98% −0.63 −5.97% 0.86 38.71%
YNYL 0.66 10.24% 0.77 27.73% −0.63 −5.27% 0.86 36.43%
YNYS 0.64 10.88% 0.78 31.82% −0.62 −4.42% 0.87 41.48%
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In order to ensure the reliability of the inversion and reduce the influence of the low-
quality CORS data, the quality of each CORS dataset was first evaluated before inversion,
and then different weights were assigned to CORS stations. The initial weight of every
station was set at 1, while the weight of the low-quality stations was decreased based on
the entire time series data and their RMS values.

It was demonstrated earlier that the integration solution of the CORS data revealed
a weekly GWSA grid over the 3 January 2018–30 December 2020 period was established,
with the GWSA expressed in EWH. As is shown in Figure 7, the GWSA showed significant
spatial and seasonal variations. The results revealed decreases in GWS from February to
June each year, which might be due to the significant seasonal and spatial decreases in
groundwater recharge (e.g., rainfall infiltration). From August to the next January, however,
increases in GWS were observed in the study area from August to January due to the
increase in rainfall amounts. In addition, the inverted GWS using the CORS network
showed a relatively high spatial resolution (Figure 7).
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The errors generated from the GNSS data processing, the surface mass model, and the
uncertainty in the CORS inversion model may affect the accuracy of the GWSA inversion.
The inverse distance weight interpolation method was used in this study to map the time
series of the GWSA of CORS stations. Table 5 shows the statistical results of the interpolated
GWSA time series of 12 CORS stations. The maximum and minimum values of the inverted
GWSA were−200 and 200 mm, respectively. In addition, there were some differences in the
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amplitude variation of GWSA at different CORS stations, indicating that the CORS inverse
results had a high resolution. The mean and standard deviation (SD) values of GWSA
at all CORS stations ranged from 3.16 to 15.03 mm and 55.87 to 110.39 mm, respectively.
The reliability of the CORS inverse results was assessed in the subsequent part using the
GRACE inverse results and groundwater monitoring station data.

Table 5. Statistics of CORS inverse results for GWSA (mm).

Max Min Mean SD

XIAG 221.65 −254.34 12.05 95.30
YNCX 194.21 −187.55 3.16 83.02
YNGM 195.89 −220.71 3.71 98.74
YNJD 238.94 −163.37 9.32 86.38
YNLC 269.79 −196.11 15.03 98.91
YNLJ 177.70 −117.27 8.25 61.45
YNRL 247.96 −106.43 12.97 55.87
YNSD 184.97 −141.54 9.58 65.27
YNTC 228.84 −129.08 12.70 69.09
YNYA 234.34 −251.67 3.17 110.39
YNYL 184.23 −179.98 6.39 76.58
YNYS 269.98 −222.53 7.96 106.81

In order to further analyze the temporal features of GWSA based on the sequence
data of the GWSA grids, the study area was first divided into four sub-study areas, namely
the eastern (BCHU, SYUN, and NJIA), northern (BAIS, YNYL, and JCHU), western (SUDI,
YINJ, and TOBG), and southern (CHA3, MENT, and YNSD) sub-study areas, and then four
CORS stations were selected randomly as examples. In Figure 8, the curves show the time
series of GWSA at the corresponding stations, while the bar charts indicate the precipitation
amounts in certain sub-study areas observed at nearby weather stations (Figure 1). In
comparison with Figure 7, Figure 8 more directly reflects the temporal features of GWSA.
The GWSA dynamics in different sub-study areas were relatively similar. Indeed, since
groundwater recharge is derived mainly from precipitation in the study region, GWSA
was strongly correlated with precipitation and exhibited significant seasonal differences.
According to the obtained results, GWS exhibited main wave crest shapes. From February
and March of each year, GWS showed the lowest values from February/March to June/July,
then increased significantly from July to October due to the significant increase in the
precipitation amounts, followed by a decrease in GWS in December and January. Therefore,
precipitation was the main influencing factor on the GWSA in the study region.

In order to quantitatively analyze the groundwater drought in the study area within 3
years, the groundwater severity index (DSI) [49] was used in this study. This index was
calculated using the following formula:

CORS− DSIi,j =
GWSAi,j − GWSAj

σj
(9)

where i denotes the year from 2018 to 2020; j represents the month from January to Decem-
ber; CORS−DSIi,j represents the groundwater drought index DSI; GWSAj and σj represent
the mean and standard deviation of GWSA, respectively. The classification results of ground-
water drought, derived from DSI, are reported in Table 6. As reported above, the monthly
GWSA data were obtained from the monthly average of the weekly GWSA time series.
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Figure 8. GWSA at Different CORS stations and precipitation amounts in different sub-study areas.

Figure 9 shows the temporal variation of CORS-DSI in the study area from 2018 to 2020.
The results showed a significant seasonal variation in CORS-DSI. In addition, the CORS-DSI
values in the eastern and northern sub-regions of the study area were above 0.8 in most
months, while only a few months showed CORS-DSI values slightly below 0.8, indicating a
mild groundwater drought (Figure 9a,b). On the other hand, the western and southern sub-
regions of the study area showed several months with CORS-DSI values below −0.8, while
the southern sub-region exhibited relatively significant groundwater drought, with CORS-
DSI close to −1.3 over the November 2018–February 2019 and April 2020–August 2020
periods (Figure 9c,d). It is worth noting that the groundwater drought analysis requires
more than 10 years of observation data, while only 3 years of CORS station data were
used in this study to invert the GWSA. Therefore, to obtain more detailed and accurate
drought analysis results, it is suggested to consider long-term observation data in future
groundwater drought analyses.
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Table 6. Correlation coefficients and WRMS (%) between different mass surface loads and the
reconstructed geodetic height time series.

Drought Ranges Drought Severity CORS-DSI Range Values

L1 No drought [−0.79, −0.50]
L2 Mild drought [−1.29, −0.80]
L3 Moderate drought [−1.59, −1.30]
L4 Severe drought [−1.99, −1.60]
L5 Extreme drought ≤2.0

4.2. Comparison with GRACE Data

In order to assess the reliability of the CORS inverse results for GWSA, the GRACE
inverse results for GWSA and the observed groundwater level data were used in this study.
EWH is considered in the GRACE data to reflect the TWS. GWSA can be computed by
removing soil water storage provided by the GLDAS data product. In this study, the period
between October 2018 and December 2020 was considered due to the loss of data between
GRACE and GRACE-FO. The monthly GRACE data were compared in this study with the
monthly inverted CORS-based GWSA data during the year 2019. The obtained results are
shown in Figure 10.
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Feng [50] showed a delay in the GRACE-based land water storage changes by 2 months
compared to precipitation changes. Therefore, a 2-month phase delay was performed for
the GRACE time series. As can be seen from Figure 10, relatively consistent GRACE- and
CORS-based GWSA trends were obtained following the phase delay correction.

In total, 15 CORS were selected randomly as examples. The values in Table 7 indicate
the correlation coefficients of the CORS- and GRACE-based GWSA results. Due to the
missing data in 2018, the correlation coefficients were computed in this study based on the
2019 data. Compared with the inversion CORS-based data, the GRACE data had a 2-month
phase delay. After phase delay correction, the coefficients were significantly improved.
Except for FGON, LJGC, and YNRL, showing correlation coefficients of 0.68, 0.69, and 0.65,
respectively, the correlation coefficients of all other stations were above 0.7. The highest
correlation coefficient was 0.85 in YNJD, indicating a strong correlation. The computed
correlation coefficients showed a spatial variation due to the low spatial resolution of the
inversion GRACE-based on data. As is shown in Figure 10, the interpolation method
used in this study resulted in relatively consistent trends of GRACE monitoring results at
different sites without showing significant spatial differences. In addition, the CORS-based
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GWSA results were based on long-term monitoring GNSS data. Indeed, the density of the
CORS stations in the study region allowed us to obtain a higher spatial resolution (Figure 7),
showing clear differences in the GWSA time series that are also clearer (Figure 10).

Table 7. Correlation coefficients between CORS and GRACE inverse results.

CORS
Stations

GRACE
CORS

GRACE
CORS

GRACE

Raw Data Correction Raw Data Correction Raw Data Correction

BAIS 0.44 0.73 FGON 0.36 0.68 LJGC 0.23 0.69
XIAG 0.57 0.76 YNCX 0.53 0.79 YNGM 0.66 0.75
YNJD 0.56 0.85 YNLC 0.53 0.81 YNLJ 0.19 0.80
YNRL 0.33 0.65 YNSD 0.59 0.74 YNTC 0.37 0.72
YNYA 0.36 0.70 YNYL 0.61 0.72 YNYS 0.11 0.72

Figure 11 shows the annual variation in CORS- and GRACE-based GWSA from 2018
to 2020. The spatial distribution characteristics of the two monitoring results were slightly
consistent, showing relatively large annual changes in GWSA in the eastern and southern
parts of the study area. The main spatial differences between the two monitoring results
were observed in the south-central part of the study area. Overall, the amplitude of the
annual variation in CORS-based GWSA was greater than that of GRACE-based GWSA.
This finding may be due to the different monitoring methods of the two data products.
Indeed, GRACE measures the integrated regional effect of mass redistribution. Its low
spatial resolution makes it difficult to comprehensively reflect the effective information of
the small-scale region, whereas the CORS data product is based on GNSS measurement
methods, which provides real-time geometric deformation information at different locations
in the study area, thereby fully reflecting the signal changes in the region.
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In summary, both inverse results reflected the changes in GWSA. The results indicate
that the GNSS-based CORS data are more sensitive to GWSA, showing obvious local spatial
characteristics compared to those of the GRACE data.

4.3. Comparison with Groundwater Monitoring Data

In order to further assess the reliability of CORS-based GWSA results, the inverted
GWSA data were interpolated and compared to groundwater levels observed at groundwa-
ter monitoring stations. The daily groundwater level data were collected from September
2018 to December 2020. These data were processed for gross error detection and weekly
averaging. In order to quantitatively compare the groundwater level data with GWSA, it is
necessary to convert the groundwater level data to equivalent water height by considering
the specific yield of the area [10]. The specific yield value for the study area was set to
0.05 [51,52].

The blue curves in Figure 12 indicate the CORS-based GWSA results observed in four
stations, while the red line indicates the result of multiplying the groundwater level by the
specific yield value. Both results are the average values of data observed over the year 2019.
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The results revealed consistent trends of CORS-based GWSA and groundwater levels,
showing the same order of amplitude changes. On the other hand, the correlation coeffi-
cients between the two data ranged from 0.62 to 0.82, indicating strong positive correlations
(Table 8). Therefore, the results demonstrated that the combined CORS and high-resolution
surface mass load data effectively invert GWSA in small-scale areas, providing accurate
seasonal trends for GWSA.
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Table 8. Correlation coefficients between CORS-based GWSA and observed GWSA at groundwater
monitoring stations.

Station Correlation
Coefficient Station Correlation

Coefficient Station Correlation
Coefficient

Site 01 0.82 Site 02 0.63 Site 03 0.74
Site 04 0.82 Site 05 0.62 Site 06 0.62
Site 07 0.64 Site 08 0.64 Site 09 0.64
Site 10 0.69 Site 11 0.66 Site12 0.65
Site13 0.63 Site14 0.67 Site15 0.66

5. Discussion

Considering the difficult physical conditions and high cost of constructing ground-
water monitoring stations, as well as the low-resolution problem of the GRACE inversion
results, the present study aims to assess the feasibility and reliability of CORS for GWSA
inversion. Numerous studies have analyzed the correlation of TWSA or GWSA with GNSS
vertical displacement [24,26,27]. In addition, He [21] inverted TWSA using GNSS verti-
cal displacement. However, few studies have directly inverted GWSA using the CORS
data product. Therefore, to improve the accuracy and stability of the inversion results,
global and regional high-resolution surface mass models were combined to determine
the high-precision load deformation field in western Yunnan using the remove–restore
method. In addition, the reliability of CORS-based GWSA results was assessed using the
observed groundwater levels. Although the obtained results showed accurate GWSA and
demonstrated the validity and reliability of the methods used in this study, there are still
some challenges to address. Data covering a period longer than 2.5 years were observed
only at 15 stations among the 66 CORS stations, thereby affecting the accuracy of the
inverse results for some months. Since the data processing is complicated, the study period
considered in this study was only 3 years, resulting in non-obvious drought characteristics
and trends. Therefore, this study focused mainly on the seasonal variation in GWSA in the
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study area. In addition, the specific yield in this study was set to 0.05 for the entire study
area. It should be noted that the specific yield can vary significantly depending on the
depth of groundwater wells and the lithological characteristic of the aquifers. Therefore,
different specific yield values need to be provided for different groundwater wells to obtain
more accurate GWSA results using groundwater monitoring data.

The correlation coefficients between GRACE- and CORS-based GWSA were above
0.65 following the 2-month delay phase correction. The variation in the EWH of GRACE-
and CORS-based GWSA showed a consistent magnitude of variation. In addition, the
annual variation in CORS-based GWSA results was slightly larger than that of GRACE-
based GWSA results. Although the principles of GRACE and CORS methods used in
the GWSA inversion are different, the results suggested that both methods can effectively
reflect the seasonal trend of GWSA in the study area. Indeed, GRACE product data
are based on remote sensing techniques to comprehensively reflect the regional effects
with redistributed mass, resulting in a low spatial resolution and difficulties in effectively
transmitting small-scale regional information. Moreover, the filtering process used in the
GRACE data processing might affect the real signal. On the other hand, the CORS data
product is derived from GNSS-based monitoring data, allowing us to obtain in real time
the geodetic height changes at a certain location, thus assuring faster response and better
performance in reflecting the inter-region signal dynamics. Both methods can reflect the
GWSA trends. However, the signal intensity and GRACE trend monitoring results at
different locations can be basically the same in small-scale areas, while the differences in
CORS network monitoring results are more obvious. GRACE is ineffective in determining
features of small-scale study areas due to its limited spatial resolution, while CORS network
monitoring results exhibit higher spatiotemporal resolution, with continuous and high-
precision observation data, making the CORS method advantageous. Moreover, the CORS
method can capture local area signals that are difficult to monitor by remote sensing
techniques (e.g., GRACE). In summary, the CORS-based GWSA results revealed higher
spatiotemporal resolution than that of GRACE-based GWSA results and are more sensitive
to groundwater storage changes.

6. Conclusions

The present study aims to invert GWSA in western Yunnan using CORS and high-
precision surface mass load data. This approach is based on the already-established CORS
network without requiring extra construction costs. This approach is, indeed, able to
provide a high-resolution GWSA grid sequence within the coverage of the CORS network
due to the high density of CORS stations and consecutive high-precision GNSS monitoring
data. Western Yunnan Province was considered in the present study to assess the validity
of the approach used. The results demonstrated that the approach is able to independently
and effectively invert a high-resolution GWSA grid within the CORS network. In addition,
the spatiotemporal distribution characteristics of GWSA were analyzed in this study using
the precipitation data observed at meteorological stations in western Yunnan. Moreover, to
test the reliability of the obtained results, the GRACE and groundwater monitoring data
were used in the present study. The main conclusions are as follows:

1. The correlation coefficients between the CORS geodetic height time series and the
vertical deformation of the surface mass loads were all above 0.8, indicating strong
positive correlations. In addition, the percentage of WRMS decreased from 33.84
to 43.93% following the load removal, demonstrating the effectiveness of the data
processing used in the present study and the feasibility of CORS inversion for GWSA.
The vertical deformations caused by surface mass loads contributed significantly
to the seasonal signals of CORS geodetic height changes. Among the three surface
mass loads, atmospheric and soil water loads were more influential, with an ampli-
tude ranging from −8 to 8 mm, while the non-tidal oceanic load showed the lowest
influence with an amplitude range of −2–2 mm.
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2. The GWSA results exhibited clear seasonal variations in the study area from January
2018 to December 2020. In addition, GWS values decreased and increased from
February to July and from July to September due to the significant decrease and
increase in precipitation, respectively, observed during these periods. These findings
indicated that precipitation is the major factor influencing GWS in the study region.
In addition, the GWSA trends were similar in the different sub-study areas, while
differences were mainly observed in the annual variation magnitude of GWSA. The
largest annual variation was observed mainly in the eastern part of the study area,
reaching 450 mm.

3. After performing a 2-month phase delay correction for GRACE inverse results, the
correlation coefficient between GRACE- and CORS-GWSA results was over 0.65. Both
methods were able to reflect the dynamics of GWSA in the study area. However, the
CORS-based GWSA results reflected more accurately the GWSA changes in the study
area, with a higher spatiotemporal resolution than those obtained using the GRACE
data product.

4. The CORS-based GWSA showed high positive correlations with those determined using
groundwater monitoring stations, with a correlation coefficient range of 0.62–0.82. The
amplitudes of both GWSA results were on the same order of magnitude. These findings
demonstrated the effectiveness and reliability of the CORS inversion for GWSA.
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Abstract: The currently available triple-frequency signals give rise to new prospects for precise point
positioning (PPP). However, they also bring new bias, such as time-varying parts of the phase bias
in the hardware of receivers and satellites due to the fact that dual-frequency precise clock products
cannot be directly applied to triple-frequency observation. These parameters generate phase-based
inter-frequency clock bias (PIFCB), which impacts the PPP. However, the PIFCBs of satellites are not
present in all GNSSs. In this paper, various IF1213 PPP models are constructed for these parts, namely,
the triple-frequency PIFCB (TF-C) model with PIFCB estimation, the TF inter-frequency bias (IFB) (TF-F)
model ignoring the PIFCB, and the TF-PIFCB-IFB (TF-CF) model with one system PIFCB estimation.
Additionally, this study compares these IF1213 PPP models with the dual-frequency ionosphere-free
(DF) model. We conducted single system static PPP, dual-system static and kinematic PPP experiments
based on BDS/GPS observation data. The GPS static PPP experiment demonstrates the reliability of
the TF-C model, as well as the non-negligibility of the GPS PIFCB. The BDS static PPP experiment
demonstrates the reliability of the TF-F and TF-CF models, and that the influence of the BDS-2 PIFCB
can be neglected in BDS. The BDS/GPS PPP experimental results show that the third frequency does
not significantly improve the positioning accuracy but shortens the convergence time. The positioning
accuracy of TF-C and TF-CF for static PPP is better than 1.0 cm, while that for kinematic PPP is better
than 2.0 cm and 4.0 cm in the horizontal and vertical components, respectively. Compared with the DF
model, the convergence time of the TF-C and TF-CF models for static PPP is improved by approximately
23.5%/18.1%, 13.6%/9.7%, and 19.8%/12.1%, while that for kinematic PPP is improved by approximately
46.2%/49.6%, 33.5%/32.4%, and 35.1%/36.1% in the E, N and U directions, respectively. For dual-system
PPP based on BDS/GPS observations, the TF-C model is recommended.

Keywords: GPS; BDS; triple-frequency signals; IFCB; PPP

1. Introduction

In the late 1990s, precise point positioning (PPP) technology was proposed by Zum-
berge et al. [1] and implemented [2]. With the modernization of GPS and the completion
of BDS, an increasing number of navigation satellites provide signals at three or more fre-
quencies, and the research and application of triple-frequency PPP has become increasingly
extensive and in depth [3–6]. The available triple-frequency signals create new prospects
for integrity monitoring [7], for facilitating cycle slip detection and repairing [8,9], for fast
ambiguity resolution (AR) [10] and for ionospheric analysis [11]. While triple-frequency
signals have many benefits, new bias has also been introduced. Montenbruck et al. [12]
first demonstrated the existence of a bias between L1/L2 and L1/L5 in ionosphere-free
(IF) combination, including a periodic line bias between the satellite and the signal, based
on geometry-free and ionosphere-free (GFIF) phase combination. The inconsistency of
L1/L2/L5 was defined as inter-frequency clock bias (IFCB) [13]. Precise clock estimation
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(PCE) is obtained through dual-frequency IF combination. When using signals of different
frequencies for the dual-frequency IF combination PCE, the satellite clock estimation will
have a bias, which is the IFCB [14]. The bias consists of the receiver and satellite code
hardware bias and phase hardware bias time-varying components, which generate the
code-based IFCB (CIFCB) and PIFCB, respectively. The PIFCB consists of a satellite PIFCB
and a receiver PIFCB. However, not all satellites of constellations have PIFCB, e.g., BDS-3,
Galileo and QZSS constellations could ignore the satellite PIFCB [15,16].

GPS Block IIF satellite PIFCB varies throughout the day, with peak-to-peak amplitudes
of a few to several tens of centimeters [13]. Pan et al. [14] proposed a satellite PIFCB
estimation method for triple-frequency PPP for GPS and established an uncombined
(UC) and IF123 PPP model with satellite PIFCB estimations followed by corrections. The
experimental results showed that after GPS satellite PIFCB corrections, the corresponding
positioning accuracy of the UC123 and IF123 PPP models could be improved to 5, 4, and
9 mm and 4, 3, and 10 mm in the E, N and U directions, respectively. For BDS-2, there
was a small bias in B1I/B2I/B3I, and its satellite PIFCB varied throughout the day with a
peak-to-peak amplitude of approximately 2 cm [17,18]. Fan et al. [19] proposed a GNSS
IFCB estimation and correction generic model, which was implemented and validated
using BDS-2 and BDS-3 data. It was experimentally demonstrated that the BDS-2 satellite
PIFCB showed a periodic variation and with some of the satellites corrected by PIFCB, the
mean root mean square error (RMS) value of the GFIF phase combination was 5 mm, which
was an improvement of 50%. Gong et al. [20] and Pan et al. [21] systematically studied the
long-term characteristics of the GNSS satellite PIFCB through GFIF phase combination.

In addition to the study of the characteristics of the satellite PIFCB, a number of
researchers have analyzed different triple-frequency PPP models based on the consider-
ation of the satellite PIFCB [3,22]. Guo et al. [23] conducted a systematic study of the
UC123, IF1213 and IF123 PPP models based on BDS-2 B1I/B2I/B3I triple-frequency ob-
servation data. Pan et al. [24] systematically analyzed different triple-frequency PPP
models based on GPS triple-frequency observation data. Different studies have shown that
triple-frequency PPP positioning performance considering satellite PIFCB could reach the
level of dual-frequency PPP. As GPS, GLONASS, BDS and Galileo continue to improve
and modernize, an increasing number of researchers are focusing on multi-constellation
combinations [25–28], while multi-constellation multifrequency PPP is also a new trend.
Li et al. [29] investigated the performance of BDS/Galileo for triple-frequency PPP AR, and
Li et al. [10] investigated the performance of GPS/Galileo/BDS-2 for triple-frequency PPP
AR. Different studies have shown that multi-GNSS positioning performance is not only
better than single GNSS, but further improves position estimation and can be applied to
complex environmental conditions.

In summary, the short- and long-term characteristics of the satellite PIFCB have been
studied, as well as the triple-frequency PPP in the case of satellite PIFCB correction. In
this study, we focus on the precision modeling of the dual-system triple-frequency IF1213
PPP and validate it using GPS and BDS observations. First, the IF1213 PPP models with
different treatments for the PIFCB are presented, namely, triple-frequency PIFCB (TF-C)
with the PIFCB estimation, triple-frequency IFB (TF-F) ignoring the PIFCB, and the triple-
frequency PIFCB-IFB (TF-CF) model without the full estimation of PIFCB, which only
estimates the PIFCB in one system. Additionally, we also present the IF1213 PPP model
using the IGMAS [30] product corrected by the satellite PIFCB, namely, the triple-frequency
IFB-product (TF-FP). The relationships between these models are also analyzed. Next,
the deduced models are validated using BDS and GPS triple-frequency observations,
respectively. GPS triple-frequency observations are also used to validate the influence of
GPS PIFCB. BDS triple-frequency observations are also used to validate the influence of
BDS-2 PIFCB in BDS. Static and kinematic experiments are then conducted using BDS/GPS
triple-frequency data. Finally, the main conclusions are given.
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2. Materials and Methods

In this section, the functional models of three IF1213 models (TF-C, TF-F, and TF-CF)
are described based on the general observation model. Additionally, the TF–FP model is
also presented. For convenience, the three frequencies are numbered 1, 2 and 3. The specific
frequencies indicated by the numbers are shown in Table 1, and the values in parentheses
are in MHz. For BDS-3, the IF combination of B1I/B1C causes the noise amplification factor
to be much larger than that of B3I/B1C. Therefore, the IF13 combination utilizes the IF
combination of B3I/B1C; this means that for BDS-3, the IF combination is IF1223 in the
experiment, but it is still noted as IF1213 during the derivation of the model below for ease
of expression.

Table 1. BDS/GPS frequency number.

Number GPS BDS-2 BDS-3

1 L1 (1575.42) B1I (1561.01) B1I (1561.01)
2 L2 (1227.60) B3I (1268.52) B3I (1268.52)
3 L5 (1176.45) B2I (1207.14) B1C (1575.42)

2.1. General Observation Model

The code and carrier phase observations on a single frequency are as follows [31]:




ps,Q
r,j = µs,Q

r · x + dtr − dts,Q + ms,Q · Zr + γj · Is,Q
r,1 + dr,j − ds,Q

j + εs,Q
r,j

ls,Q
r,j = µs,Q

r · x + dtr − dts,Q + ms,Q · Zr − γj · Is,Q
r,1 + Ns,Q

r,j + ϕr,j − ϕs,Q
j + ξs,Q

r,j

(1)

where the superscript s, Q and subscript r represent the satellite, constellation and receiver,
respectively; in this paper Q can be G, C2, C3 and C for GPS, BDS-2, BDS-3 and BDS,
respectively, where BDS means that BDS-2 and BDS-3 are considered as one constellation;
ps,Q

r,j and ls,Q
r,j are the code and phase observed-minus-computed (OMC) values, respectively;

j denotes the frequency (j = 1, 2, 3); µs,Q
r is the unit vector of direction; x represents the

vector of position correction to the a priori position; and dtr and dts,Q indicate the receiver
and satellite clock offsets, respectively. Furthermore, Zr is the wet troposphere delay
at zenith; γj = f 2

1 / f 2
j is the ionospheric factor; f indicates the carrier phase frequency;

Is,Q
r,1 denotes the slant ionospheric delay at the first frequency; and Ns,Q

r,j represents the

integer phase ambiguity. The parameters dr,j and ds,Q
j are the code hardware delays from

the receiver and satellite, respectively. ϕr,j and ϕs,Q
j are the receiver-dependent and satellite-

dependent carrier phase hardware delays, respectively. εs,Q
r,j and ξs,Q

r,j are the measurement
noise of the code and carrier phase, respectively. Other error items include the phase
center offset (PCO) and variation (PCV), dry slant troposphere delay, phase wind-up, and
relativistic effect. For simplicity, they are precisely corrected with their corresponding
models and are not listed in the equations. It should be noted that in the case of lacking the
precise PCO/PCV information of the third frequency, we use the PCO/PCV corrections of
the first frequency instead due to the adjacent frequency.

For code and phase hardware bias, the code hardware bias is generally considered to
be relatively stable and can be considered constant over the course of a day [32]. The phase
hardware bias has a clear time-varying character and can be decomposed into a constant
part and a time-varying part [13,14].

{
ϕr,j = ϕr,j + δϕr,j

ϕs,Q
j = ϕs,Q

j + δϕs,Q
j

(2)

where ϕr,j and ϕs,Q
j are the phase hardware bias constant parts of the receiver and satellite,

respectively; δϕr,j and δϕs,Q
j are the corresponding time-varying parts. The constant part
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can be completely absorbed by the ambiguity Ns,Q
r,j = Ns,Q

r,j + ϕr,j + ϕs,Q
j . Moreover, the

following variables are defined herein for ease of expression:




αij =
f 2
i

f 2
i − f 2

j

βij = −
f 2
j

f 2
i − f 2

j

DCBr,ij = dr,i − dr,j

DCBs,Q
ij = ds,Q

i − ds,Q
j

DPBr,ij = δϕr,i − δϕr,j

DPBs,Q
ij = δϕs,Q

i − δϕs,Q
j

DCBs,Q
r,ij = DCBr,ij − DCBs,Q

ij

DPBs,Q
r,ij = DPBr,ij − DPBs,Q

ij

(3)

where i, j are the phase frequencies (i, j = 1, 2, 3; i 6= j), αij and βij are the coefficients of the

IF combination; DCBr,ij and DCBs,Q
ij are the differential code biases (DCBs) of the receiver

and satellite; and DPBr,ij and DPBs,Q
ij are the differential phase biases (DPBs) of the receiver

and satellite.

2.2. IF1213 Observation Model

The IF combination can eliminate the ionospheric first-order term from the original
observation equation. Using the IF combination and ignoring the ionospheric second-order
term and above, the number of parameters that need to be estimated in the equation can be
effectively reduced. A single-system dual-frequency IF combined observation equation is
formed by Equation (1), which can be expressed as follows:




ps,Q
r,IFij = αij · ps,Q

r,i + βij · ps,Q
r,j

= µs,Q
r · x + dtr − dts,Q + ms,Q · Zr + dr,IFij − ds,Q

IFij + εs,Q
r,IFij

ls,Q
r,IFij = αij · ls,Q

r,i + βij · ls,Q
r,j

= µs,Q
r · x + dtr − dts,Q + ms,Q · Zr + Ns,Q

r,IFij + δϕr,IFij − δϕs,Q
IFij + ξs,Q

r,IFij

(4)

where 



dr,IFij = αij · dr,i + βij · dr,j

ds,Q
IFij = αij · ds,Q

i + βij · ds,Q
j

δϕr,IFij = αij · δϕr,i + βij · δϕr,j

δϕs,Q
IFij = αij · δϕs,Q

i + βij · δϕs,Q
j

Ns,Q
r,IFij = αij · Ns,Q

r,i + βij · Ns,Q
r,j

(5)

and dr,IFij and ds,Q
IFij are IF combinations of the code hardware bias of the receiver and

satellite, respectively. Furthermore, δϕr,IFij and δϕs,Q
IFij are the IF combinations of the phase

hardware bias time-varying part of the receiver and satellite, respectively. Ns,Q
r,IFij is the

ambiguity IF combination.
The IF1213 observation equation is based on Equation (4), which consists of the IF12

and IF13 observation equations and can be expressed as follows:
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ps,Q
r,IF12 = µs,Q

r · x + dtr − dts,Q + ms,Q · Zr + dr,IF12 − ds,Q
IF12 + εs,Q

r,IF12

ls,Q
r,IF12 = µs,Q

r · x + dtr − dts,Q + ms,Q · Zr + Ns,Q
r,IF12 + δϕr,IF12 − δϕs,Q

IF12 + ξs,Q
r,IF12

ps,Q
r,IF13 = µs,Q

r · x + dtr − dts,Q + ms,Q · Zr + dr,IF13 − ds,Q
IF13 + εs,Q

r,IF13

ls,Q
r,IF13 = µs,Q

r · x + dtr − dts,Q + ms,Q · Zr + Ns,Q
r,IF13 + δϕr,IF13 − δϕs,Q

IF13 + ξs,Q
r,IF13

(6)

2.3. TF-C: IF1213 PPP Model with PIFCB Estimation

The TF-C model is an IF1213 PPP model that fully considers the time-varying part
of the phase hardware bias of the receiver and satellite. The GNSS precise satellite clock
products are based on the dual frequency IF combined code and phase observations solved
for the first and second frequencies (e.g., GPS L1/L2 and BDS B1I/B3I) [33]. Thus, the
precise satellite clock is a linear combination of the time-varying components of the dual-
frequency code and phase hardware bias and is expressed as follows:

dts,Q
IF12 = dts,Q + ds,Q

IF12 + δϕs,Q
IF12 (7)

Combining Equation (6) with Equation (7) and considering the consistency of the
receiver clock difference, the TF-C model can be deduced after correcting for the satellite
clock difference





ps,Q
r,IF12 = µs,Q

r · x + dtr + ms,Q · Zr + B12 + εs,Q
r,IF12

ls,Q
r,IF12 = µs,Q

r · x + dtr + ms,Q · Zr + Ns,Q
r,IF12 + ξs,Q

r,IF12

ps,Q
r,IF13 = µs,Q

r · x + dtr + ms,Q · Zr + IFCBs,Q
r + B13 + εs,Q

r,IF13

ls,Q
r,IF13 = µs,Q

r · x + dtr + ms,Q · Zr − IFCBs,Q
r + Ns,Q

r,IF13 + ξs,Q
r,IF13

(8)

where




dtr = dtr + dr,IF12 + δϕr,IF12

Ns,Q
r,IFij = αij · Ns,Q

r,i + βij · Ns,Q
r,j + M1j

B1j =





β12 · DPBs,Q
r,12 − δϕs,Q

r,1 , j = 2

−β13 · DPBs,Q
r,13 + 2 · β12 · DPBs,Q

r,12 − δϕs,Q
r,1 , j = 3

M1j =





β12 · DCBs,Q
r,12 − ds,Q

r,1 , j = 2

−β13 · DCBs,Q
r,13 + 2 · β12 · DCBs,Q

r,12 − ds,Q
r,1 , j = 3

CIFCB = β12 · DCBs,Q
r,12 − β13 · DCBs,Q

r,13

PIFCB = β12 · DPBs,Q
r,12 − β13 · DPBs,Q

r,13

IFCBs,Q
r = CIFCB− PIFCB

(9)

and dtr and Ns,Q
r,IFij are the reparametrized receiver clock difference and ambiguity pa-

rameters, respectively. B1j is the combined time-varying part of the receiver and satellite
phase hardware bias, which can be absorbed by the code observation residuals, M1j is
the combined receiver and satellite code hardware bias, which is constant throughout
the day and will be completely absorbed by the ambiguity. IFCBs,Q

r denotes IFCB, which
consists mainly of CIFCB and PIFCB, corresponding to DCB synthesis and DPB synthesis
for receivers and satellites, respectively. Additionally, the time-varying part of the hardware
bias gives rise to PIFCB.
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All the estimated parameters in TF-C PPP models include

X = [x dtr Zr IFCBs,Q
r Ns,Q

r,IF12 Ns,Q
r,IF13] (10)

It is worth noting that the TF-C model does not need to be corrected by DCB, as the
CIFCB in IFCB contains the DCB of the satellite and the receiver.

2.4. TF-F: IF1213 PPP Model Ignoring the PIFCB

The TF-F model is an IF1213 PPP model that disregards the time-varying part of the
phase hardware bias of the receiver and satellite. The effect of the time-varying part of
the phase hardware bias of the receiver can be ignored, owing to its small magnitude [34].
In this case, the precise satellite clock including only the satellite code hardware bias is
expressed as follows:

dts,Q
IF12 = dts,Q + ds,Q

IF12 (11)

The code and phase hardware delay from the receiver and satellite were fully absorbed
by the receiver clock, ionosphere, and ambiguity parameter [35]. Combining Equation
(11) with Equation (6) and considering the consistency of the receiver clock difference,
the TF-F model was derived by correcting the satellite DCB product p̃s,Q

r,IF13 = ps,Q
r,IF13 +

β12 · DCBs,Q
12 − β13 · DCBs,Q

13 and then correcting the precise satellite clock product. TF-F is
expressed as follows:





ps,Q
r,IF12 = µs,Q

r · x + dtr + ms,Q · Zr + εs,Q
r,IF12

ls,Q
r,IF12 = µs,Q

r · x + dtr + ms,Q · Zr + N
s,Q
r,IF12 + ξs,Q

r,IF12

p̃s,Q
r,IF13 = µs,Q

r · x + dtr + ms,Q · Zr + IFBr + εs,Q
r,IF13

ls,Q
r,IF13 = µs,Q

r · x + dtr + ms,Q · Zr + N
s,Q
r,IF13 + ξs,Q

r,IF13

(12)

where 



IFBr = β12 · DCBr,12 − β13 · DCBr,13

N
s,Q
r,IF12 = Ns,Q

r,IF12 + ds,Q
IF12 − dr,IF12

N
s,Q
r,IF13 = Ns,Q

r,IF13 + ds,Q
IF12 − dr,IF12

(13)

and IFBr is the inter-frequency bias (IFB) between IF12 and IF13. All the estimated parame-
ters in the TF-F PPP models include the following:

X = [x dtr Zr IFBr N
s,Q
r,IF12 N

s,Q
r,IF13] (14)

2.5. TF-CF: IF1213 PPP Model without the Full Estimation of PIFCB

The TF-CF model, which is an IF1213 PPP model applied to a dual-system, was
constructed by considering that the time-varying part of the phase bias of the first system
cannot be ignored and the second one can be ignored. For inter-system bias (ISB), other
systems estimate the difference between the receiver clock of that system and the GPS
receiver clock used as a reference [36]. The TF-CF model can be expressed as follows:
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ps,Q1
r,IF12 = µs,Q1

r · x + dtr + ms,Q1 · Zr + εs,Q1
r,IF12

ls,Q1
r,IF12 = µs,Q1

r · x + dtr + ms,Q1 · Zr + Ns,Q1
r,IF12 + ξs,Q1

r,IF12

ps,Q1
r,IF13 = µs,Q1

r · x + dtr + ms,Q1 · Zr + IFCBs,Q1
r + εs,Q1

r,IF13

ls,Q1
r,IF13 = µs,Q1

r · x + dtr + ms,Q1 · Zr − IFCBs,Q1
r + Ns,Q1

r,IF13 + ξs,Q1
r,IF13

ps,Q2
r,IF12 = µs,Q2

r · x + dtr + ms,Q2 · Zr + εs,Q2
r,IF12

ls,Q2
r,IF12 = µs,Q2

r · x + dtr + ms,Q2 · Zr + N
s,Q2
r,IF12 + ξs,Q2

r,IF12

ps,Q2
r,IF13 = µs,Q2

r · x + dtr + ms,Q2 · Zr + IFBr + εs,Q2
r,IF13

ls,Q2
r,IF13 = µs,Q2

r · x + dtr + ms,Q2 · Zr + N
s,Q2
r,IF13 + ξs,Q2

r,IF13

(15)

All the estimated parameters in the TF-CF PPP models include the following:

X = [x dtr Zr IFCBs,Q1
r IFBr Ns,Q1

r,IF12 Ns,Q1
r,IF13 N

s,Q2
r,IF12 N

s,Q2
r,IF13] (16)

2.6. TF-FP: IF1213 PPP Model with IGMAS Product Correction

The TF-FP model, which is an IF1213 PPP model, can be applied to IGMAS PIFCB
product correction. In this case, the time-varying part of the phase hardware bias of the
receiver is ignored, and the satellite part is not. The precise satellite clock is the same as in
Equation (7). Combining Equation (7) with Equation (6) corrects the satellite DCB product
and the precise satellite clock. The TF-FP is expressed as follows:





ps,Q
r,IF12 = µs,Q

r · x + dtr + ms,Q · Zr + εs,Q
r,IF12

ls,Q
r,IF12 = µs,Q

r · x + dtr + ms,Q · Zr + N
s,Q
r,IF12 + ξs,Q

r,IF12

p̃s,Q
r,IF13 = µs,Q

r · x + dtr + ms,Q · Zr + IFBr + εs,Q
r,IF13

ls,Q
r,IF13 = µs,Q

r · x + dtr + ms,Q · Zr − pi f cbs,Q
r,IF13 + N

s,Q
r,IF13 + ξs,Q

r,IF13

(17)

where pi f cbs,Q
r,IF13 = δϕr,IF12− δϕs,Q

IF12− δϕr,IF13 + δϕs,Q
IF13 is the content of the IGMAS PIFCB

product. Other parameters are the same as described above. After correction by IGMAS
PIFCB products, Equation (17) is the same as Equation (12) in GPS.

2.7. Relationships in the IF1213 PPP Models

Both the TF-C and TF-F models are derived on the basis of the IF1213 observation
model. The TF-CF model is derived from the TF-C and TF-F models. The TF-C model is
applied to GNSS with the time-varying part of the phase hardware bias of the satellite,
but the TF-F model is not. The TF-C model parameterizes the part of the receiver and the
satellite named PIFCB, as well as the code hardware delays of the receiver and the satellite
named CIFCB, which contains the components of IFB. The TF-F model is applied to GNSS
without the satellite PIFCB and ignores the effect of the receiver PIFCB. The TF-CF model is
applied to a dual system, the first with satellite PIFCB and the second without it. The TF-FP
model is applied to GPS, which corrects the pi f cbs,Q

r,IF13 in the TF-FP model by means of the

IGMAS product. After the correction of the pi f cbs,Q
r,IF13, it is consistent with the TF-F model.

The three IF1213 PPP models have different parameters to estimate. The TF-C model
needs to estimate the IFCB parameters, the TF-F model needs to estimate the IFB parameters,
and the TF-CF model needs to estimate both of them. In addition, the three models do
not have exactly the same ambiguity parameters to be estimated. The TF-C model does
not require the DCB product and IFCB product to correct the corresponding deviation
terms. However, an increase in the number of parameters to be estimated may increase the
convergence time.
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3. Results and Discussion
3.1. Data Processing Strategies

This study used 60 stations provided by the MGEX of the IGS organization and the
observation data with a 30 s sample interval for a week-long period of day of the year
(DOY) 121–127, 2022. Figure 1 shows the geographical distribution of the selected stations.
Table 2 shows the GPS and BDS satellites that can broadcast triple-frequency observations,
including some GPS satellites and all BDS satellites, except for the experimental satellites.

Table 2. BDS/GPS satellites transmitting triple frequency signals.

System PRN Orbit Type

GPS G01, G03, G04, G06, G08, G09, G10, G14, G18, G23,
G24, G25, G26, G27, G30, G32. Medium Earth Orbit (MEO)

BDS-2

C01, C02, C03, C04, C05; Geostationary Earth Orbit (GEO)

C06, C07, C08, C09, C10, C13, C16; Inclined Geo-Synchronous Orbit (IGSO)

C11, C12, C14; MEO

BDS-3

C19, C20, C21, C22, C23, C24, C25, C26, C27, C28,
C29, C30, C32, C33, C34, C35, C36, C37, C41, C42,

C43, C44, C45, C46;
MEO

C38, C39, C40. IGSO

Table 3 provides an in-depth summary of the processing strategy of IF1213 PPP models,
including the DF PPP model. In static PPP, if the east (E) and north (N) directions are less
than 5 cm and the upwards (U) direction is less than 10 cm at the current epoch and the
following 20 epochs, the positioning error satisfies convergence. In the kinematic PPP, the
E and N directions are less than 10 cm, and the U direction is less than 20 cm. The time
taken to reach the first epoch that satisfies the convergence condition is defined as the
convergence time.

Table 3. Data-processing strategies.

Items Strategy

Model DF, TF-C, TF-F, TF-CF, TF-FP(GPS)
Satellite elevation mask 15◦

Estimator Kalman filter
Weighting scheme Elevation-dependent weight; 0.003 m and 0.3 m for raw phase and code, respectively

PCO/PCV igs14_2196.atx according to Schmid et al. [37]
Phase windup Corrected [38]

Satellite DCB corrections Corrected with MGEX DCB products except TF-C model
Satellite orbit and clock Products from WUM

Tropospheric delay Zenith Hydrostatic Delays (ZHD) are corrected using the Saastamoinen model, and
Zenith Wet Delays (ZWD) are estimated using random walk [39]

Tide effect Solid Earth, pole and ocean tide [40]
Relativistic effect Corrected [41]

Station coordinates Static: estimated using constants; kinematic: estimated using white noise process
Receiver clock Estimated using white noises

Receiver inter-frequency bias Estimated using random walk
Inter-frequency clock bias Estimated using random walk

Ambiguity Estimated using a constant
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3.2. Influence of the Satellite PIFCB

In this section, static experiments using single GPS and BDS data with the TF-C, TF-F,
and TF-CF models to carry out a comparison with the dual-frequency IF combination PPP
model (DF) of the first and second frequency are described. The main validations are the
reliability of the models, the influence of the GPS satellite PIFCB and the influence of the
BDS-2 PIFCB in BDS.

3.2.1. Influence of the GPS PIFCB

GPS satellites have significant time-varying characteristics of phase hardware bias [14,42].
This section describes the four GPS static PPP models for positioning. Figure 2 shows the static
positioning error curves of the stations KOUR and WIND on DOY127. It is observed that
the TF-F models perform slightly worse in the convergence process, compared to the other
triple-frequency PPP models. After convergence, the positioning error curves of the positioning
error curves of the three PPP models, except for the TF-F model, largely overlap. For the PIFCB
values throughout the day, the PIFCB estimated by the TF-C model was output, and Figure 3
shows the PIFCB values observed by the KOUR station on DOY121–127, where each color
represents a GPS triple-frequency satellite. It is observed that the PIFCB values can reach the
decimeter level [43]. Additionally, there are clear time-varying features within each day.

A boxplot of the distribution of positioning accuracy and convergence time for the 60
selected stations for different static PPP models within DOY121–127 is shown in Figure 4.
In the boxplot, the upper and lower edge line distributions represent the 99% and 0%
quantiles, and the upper and lower end lines of the rectangular box represent the 75%
and 25% quantiles, respectively. The inner lines of the rectangular box represent the
50% quantile. The median positioning accuracy and convergence times, representing the
positioning performance of this model, are presented in Table 4. From Figure 4, ignoring
the GPS PIFCB has a greater impact on the positioning accuracy, and the TF-F and TF-FP
models take longer to converge. The TF-FP model has a long convergence time, probably
due to the number of stations used by the IGMAS product and the fact that the stations are
not exactly the same as in the experiments. The reason for the long convergence time of
the TF-F model is that the GPS PIFCB cannot be neglected and also proves that the TF-F
model is not applicable to the GPS PPP. As shown in Table 4, the convergence accuracies
of DF and TF-C are similar: better than 1.0 cm in the E and U directions and better than
1.5 cm in the U direction. The convergence accuracy of the TF-FP model is slightly worse
than that of the TF-C model and better than that of the TF-F model. The convergence time
of the TF-FP model is significantly worse than that of the DF and TF-C models.

The PPP convergence accuracy of the DF and TF-C models is largely consistent. This
demonstrates that a reliable convergence accuracy can be obtained when the TF-C model is
applied to GPS PPP as demonstrated by the PPP results of the TF-FP model. The average
convergence time is 20.39 min for the DF model and 24.38 min for the TF-C model, which
is consistent with previous studies [43]. This phenomenon prolongs the convergence
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time, due to the higher number of parameters to be estimated in the TF-C model and
fewer degrees of freedom in the observation equation. The inclusion of triple frequency
observations did not improve the convergence accuracy, which is consistent with previous
studies [3]. However, its increased convergence time may be due to the increase in the
number of parameters to be estimated.
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Table 4. Statistics on the positioning results of the four GPS static PPP models.

Model
Convergence Accuracy (CM) Convergence Time (Min)

E N U E N U

DF 0.61 0.37 1.26 30.86 10.17 20.14
TF-F 1.56 0.94 3.00 86.36 40.64 54.43
TF-C 0.66 0.42 1.12 36.93 14.00 22.21
TF-FP 0.86 0.45 2.01 84.25 38.21 51.79

3.2.2. Influence of the BDS-2 PIFCB in BDS

BDS-2 satellites have time-varying characteristics of phase hardware bias [19]. How-
ever, this section demonstrates that the influence of BDS-2 PIFCB can be ignored when
BDS-2 and BDS-3 are used as BDS. The TF-CF model is shown in Table 3 with BDS-2 as the
first system and BDS-3 as the second system.

This section describes four BDS static PPP models for positioning. Figure 5 shows
the static positioning error curves of stations SUTH and ULAB on DOY127. It is observed
that the positioning error curves of the four PPP models largely overlap after convergence.
A boxplot of the distribution of positioning accuracy and convergence time for the 60
selected stations for different static PPP models within DOY121–127 is shown in Figure 6.
The median positioning accuracy and convergence times, representing the positioning
performance of this model, are presented in Table 5. From Figure 6, the positioning
performance of the four PPP models is similar. From Table 5, the accuracy of the four static
PPP models after convergence is better than 1.0 cm in the horizontal direction and 1.5 cm
in the elevation direction. The convergence accuracy of the TF-F, TF-C and TF-CF models
deviates from 0.05 cm, and the convergence time deviates from 2 min. The experimental
results demonstrate that the influence of BDS-2 PIFCB is negligible when BDS-2 and BDS-3
are used as the BDS.

Table 5. Statistics on the positioning results of the four BDS static PPP models.

Model
Convergence Accuracy (CM) Convergence Time (Min)

E N U E N U

DF 0.74 0.46 1.31 51.64 29.57 33.64
TF-F 0.93 0.54 1.46 47.59 21.69 30.36
TF-C 0.96 0.56 1.46 46.14 21.00 28.29

TF-CF 0.98 0.53 1.44 47.89 22.75 29.96
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3.3. BDS/GPS PPP Performance

This section describes the BDS/GPS dual-system experiment with the same data
sources as described in Section 3.1. The PPP models are the DF, TF-F, TF-C and TF-CF
models. In the TF-CF model, the GPS is the first system, and the BDS is the second system.
The other data-processing strategies are consistent with those given in Table 3.

3.3.1. Static Mode

This section gives four BDS/GPS static PPP models for positioning. Figure 7 shows
the static positioning error curves of stations CUSV, DGAR, GAMG, MIZU, SEYG and
MOBS on DOY121. The positioning accuracy of the TF-F model for the CUSV and DGAR
stations is less than their median, while it is greater than their median for the GAMG,
MIZU, SEYG and MOBS stations. It can be observed that the DF and TF-F models perform
slightly worse in the convergence process compared to the other three frequency models.
After convergence in the E, N and U directions, the positioning error curves of the four PPP
models basically coincide.

Figure 8 shows that, except for the TF-F model, the positioning accuracy of the sta-
tions does not improve significantly with the addition of the third frequency [34], but the
convergence time is slightly reduced. Table 6 demonstrates that the positioning accuracy is
better than 1.0 cm, except for the TF-F model’s U direction, and better than 1.5 cm for the
TF-F model’s U direction. In terms of convergence time, the convergence time of the TF-CF
model is improved by 18.1%, 9.7% and 12.1% in the E, N and U directions, respectively. The
convergence time of TF-C model is the shortest among the triple-frequency PPP models.
It is 28.43, 11.61 and 16.68 min in the E, N and U directions with improvements of 23.5%,
13.6% and 19.8%, respectively.

In contrast to the experiment above, in the dual-system static PPP experiment, ignoring
the GPS PIFCB had a slight effect on the PPP results; this is because the BDS plays a major
role in the PPP process, as the BDS can ignore the PIFCB [43].

Table 6. Statistics on the positioning results of the four BDS/GPS static PPP models.

Model
Convergence Accuracy (CM) Convergence Time (Min)

E N U E N U

DF 0.56 0.38 1.00 37.18 13.43 20.80
TF-F 0.81 0.49 1.39 35.18 15.04 19.54
TF-C 0.54 0.39 0.93 28.43 11.61 16.68

TF-CF 0.56 0.39 0.93 30.46 12.12 18.29
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3.3.2. Kinematic Mode

This section describes four BDS/GPS kinematic PPP models for positioning. In Fig-
ure 9, the kinematic PPP results differ from the BDS/GPS static PPP results. Ignoring the
GPS PIFCB significantly affects the convergence time. Additionally, the triple-frequency
PPP models in addition to the TF-F model make the convergence much faster than the DF
PPP model.
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Figure 10 and Table 7 show that the positioning performance of the models is similar,
except for the TF-F model, where the horizontal positioning accuracy is better than 2.0 cm
and the U-direction accuracy is better than 4.0 cm. In terms of convergence time, the TF-C
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model is improved by 46.2%, 33.5% and 35.1% in the E, N and U directions, respectively,
and the TF-CF model is improved by 49.6%, 32.4% and 36.1%, respectively.
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Table 7. Statistics on the positioning results of the four BDS/GPS kinematic PPP models.

Model
Convergence Accuracy (CM) Convergence Time (Min)

E N U E N U

DF 1.23 1.01 2.93 31.24 13.33 18.39
TF-F 2.75 2.08 5.17 23.07 12.13 17.47
TF-C 1.75 1.29 3.37 20.02 8.93 13.50

TF-CF 1.79 1.31 3.53 18.74 9.08 13.29

4. Conclusions

This study focuses on the precision modeling of the dual-system triple-frequency
IF1213 PPP based on BDS/GPS triple-frequency observations. The TF-C model is able to
estimate the IFCB. This was deduced by considering the time-varying part of the phase
hardware bias of the receiver and satellite. The TF-CF model is able to estimate the IFCB of
the first GNSS. This was deduced by considering that the time-varying part of the phase
bias of the receiver and the satellite in the first system, and the second one can be ignored.
The advantage of the TF-C model is that it does not require the DCB product and IFCB
product to correct the corresponding deviation terms. The disadvantage is that it has a
large number of parameters to be estimated, which can reduce the degrees of freedom of
the observation equation and lead to an increased convergence time when applied to GPS.
The reliability of the deduced models was demonstrated using static PPP experiments for a
single system. GPS PPP experiments demonstrated the reliability of the models, except for
the TF-CF model, and the fact that GPS PIFCB has a bad influence on the GPS PPP. The
BDS PPP experiments demonstrated the reliability of the TF-CF model and the negligible
effect of the BDS-2 PIFCB when BDS-2 and BDS-3 are used as the BDS.

Using one week of observation from 60 stations provided by the MGEX of the IGS
organization, we conducted a BDS/GPS dual-system static and kinematic experiment.
The results show that the GPS PIFCB had less of an influence in the static experiment,
while the influence was greater in the kinematic experiment. The performance of the DF,
TF-C and TF-CF models is similar; the positioning accuracy is better than 1.0 cm in the
three directions in the static experiment, and in the kinematic experiment, the horizontal
positioning accuracy is better than 2.0 cm, while the U directional positioning accuracy is
better than 4.0 cm. The addition of third-frequency data does not significantly improve
the positioning accuracy [34], but the convergence time is reduced. Compared with the
DF model, the TF-C model improves the convergence time by approximately 23.5%, 13.6%
and 19.8% in the E, N and U directions, respectively, and the TF-CF model improves
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by approximately 18.1%, 9.7% and 12.1%, respectively, in the static experiment. In the
kinematic experiment, the TF-C model improves by approximately 46.2%, 33.5% and 35.1%
in the E, N and U directions, respectively, and the TF-CF model improves by approximately
49.6%, 32.4% and 36.1%, respectively. The positioning performance of the TF-C model
is slightly better than that of the TF-CF model, probably because the IFCB parameters
in the TF-C model can absorb the residuals. However, one should be aware that the
positioning performance of IF1213 PPP models is limited due to the limitations of the float
ambiguity solution. Therefore, we will focus on finding a multi-frequency solution to
integer ambiguity in the future.

For dual-system PPP based on BDS/GPS observations, the TF-C model is the most
rigorous; therefore, the TF-C model is recommended.
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Abstract: Global Navigation Satellite System (GNSS) has drawn the attention of scientists and users
all over the world for its wide-ranging Earth observations and applications. Since the end of May 2022,
more than 130 satellites are available for fully global operational satellite navigation systems, such as
BeiDou Navigation Satellite System (BDS), Galileo, GLONASS and GPS, which have been widely
used in positioning, navigation, and timing (PNT), e.g., precise orbit determination and location-
based services. Recently, the refracted, reflected, and scattered signals from GNSS can remotely sense
the Earth’s surface and atmosphere with potential applications in environmental remote sensing.
In this paper, a review of multi-GNSS for Earth Observation and emerging application progress
is presented, including GNSS positioning and orbiting, GNSS meteorology, GNSS ionosphere and
space weather, GNSS-Reflectometry and GNSS earthquake monitoring, as well as GNSS integrated
techniques for land and structural health monitoring. One of the most significant findings from this
review is that, nowadays, GNSS is one of the best techniques in the field of Earth observation, not
only for traditional positioning applications, but also for integrated remote sensing applications. With
continuous improvements and developments in terms of performance, availability, modernization,
and hybridizing, multi-GNSS will become a milestone for Earth observations and future applications.

Keywords: GNSS; GNSS meteorology; GNSS ionosphere; GNSS-Reflectometry; GeoHazards

1. Introduction

The Global Navigation Satellite System (GNSS) has been developed rapidly and at-
tracted increasing global attentions for its wide-ranging Earth monitoring and investigatory
applications. Since the end of May 2022, more than 130 satellites of fully global operational
satellite navigation systems are available, such as China’s BeiDou Navigation Satellite
System (BDS) [1], the European Union’s Galileo [2], Russia’s GLObal NAvigation Satel-
lite System (GLONASS) [3] and the United States’ Global Positioning System (GPS) [4].
Furthermore, many other regional GNSS systems are available, e.g., the Indian Regional
Navigation Satellite System (IRNSS/NavIC), the Japanese Quasi-Zenith Satellite System
(QZSS), and the Regional South Korean Positioning System (KPS), which hold massive po-
tential applications in the scientific community. In terms of applications, the ground-based
and space-borne GNSS receivers can measure the ionospheric total electron content (TEC)
for the global ionospheric climate and space weather (GNSS-Ionosphere). The dense TEC
observations can record ionospheric perturbations, due to earthquakes, tsunamis, volcanos,
typhoons, or geomagnetic storms, and eclipses [5–7]. The GNSS Reflectometry (GNSS-R)
from a low Earth-orbiting satellite can retrieve environmental parameters over the sea ice,
lands, and oceans [8,9].

Nowadays, multi-GNSS represents one of the best techniques in the field of Earth
observations. Of course, with continuous improvements and developments in terms of
performance, availability, modernization, and hybridizing, GNSSs will be involved in
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more future applications. The aim of this review is to present the latest state of multi-
GNSS for Earth observations and emerging applications, including the following, not fully
exhaustive, troposphere and ionosphere observations; modeling and assimilation from
ground-based and space-borne GNSS observations; theory and methods of multi-GNSS
near real-time kinematic (RTK) positioning; precise point positioning (PPP) and PPP-RTK;
GNSS-Reflectometry applications; geohazard observation and warning from GNSS; errors,
systematic effects and noise in GNSS solutions; and surface-loading GNSS observations
from atmosphere, hydrology and loading.

In this paper, a review of multi-GNSS for Earth Observation and emerging application
progress is presented, including GNSS positioning and orbiting, GNSS meteorology, GNSS
ionosphere and space weather, and GNSS-Reflectometry as well as GNSS earthquake
monitoring and GNSS integrated techniques for land and structural health monitoring.
In Section 2, BDS/GNSS theory, methods and error resources are presented, as well as
multi-GNSS observations. GNSS emerging applications are reviewed in details in Section 3.
A summary and prospective are given in Section 4.

2. BDS/GNSS Techniques and Observations
2.1. BDS/GNSS Techniques

As it is widely known, GPS and GLONASS were the first two global positioning
systems used in different fields. Their Earth observation comes mainly from dual frequency
signals. Global Positioning System (GPS) was originally Navstar GPS, which is a satellite-
based radionavigation system by USA. GPS provides geolocation and time information
to a GPS receiver anywhere on or near the Earth with four or more GPS satellites. GPS
can provide precise positioning capabilities to military, civil, and commercial users around
the world. GPS uses code division multiple access (CDMA), while GLONASS uses fre-
quency division multiple access (FDMA). With the development of science, technology and
society, GPS and GLONASS were implemented with a new generation of satellites, and
three frequency signals were established. In particular, CDMA technology was used by
GLONASS for its new signals [10]. Moreover, Galileo, as the main provider of civil services,
has quickly developed in recent years to provide global services with multi-frequency
signals [11]. After three-step strategic developments, China’s BeiDou Global Navigation
Satellite System (BDS-3) has been able to provide global services with more signals [12,13].
All constellations of GPS, GLONASS and Galileo adopt the constellation of medium Earth
orbit (MEO), while the constellation of BDS is composed of MEO satellites, geostationary
orbit (GEO) satellites and inclined geosynchronous orbit (IGSO) satellites [1–4]. Based on
existing global services, BDS has improved service performances within the region and the
global. The number of GNSS satellites are shown in Table 1 with satellites types and signals.
Nowadays, multi-frequency multi-GNSS technology is used for Earth observation. Table 2
shows the GNSS multi-frequency signals from the Receiver Independent Exchange (RINEX)
format [14]. Note that this study only presents and discusses the publicly available signals.

Table 1. Number of multi-GNSS satellites in orbit (until 2022) [1–4].

System Block Signal Number of
Operational Satellites

GPS

IIR L1 L2 7
IIR-M L1 L2 7

IIF L1 L2 L5 12
III/IIIF L1 L2 5

GLONASS
M G1 G2 22
K G1 G2 G3 1

Galileo
IOV E1 E6 E5a/b/ab 3
FOC E1 E6 E5a/b/ab 19
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Table 1. Cont.

System Block Signal Number of
Operational Satellites

BDS-2
MEO B1 B2 B3 3
IGSO B1 B2 B3 7
GEO B1 B2 B3 5

BDS-3
MEO B1 B3 B1C B2 a/b 24
IGSO B1 B3 B1C B2 a/b 3
GEO B1 B3 2

Table 2. Multi-frequency multi-GNSS signals [14].

System Freq. Band Frequency/MHz Observation Codes

GPS

L1 1575.42 C1C C1S C1L C1X C1P C1W C1Y C1M

L2 1227.60 C2C C2D C2S C2L C2X C2P C2W C2Y
C2M

L5 1176.45 C5I C5Q C5X

GLONASS
G1 1602 + k × 9/16 k = −7 . . . + 12 C1C C1P
G2 1246 + k × 7/16 C2C C2P
G3 1202.025 C3I C3Q C3X

Galileo

E1 1575.42 C1A C1B C1C C1X C1Z
E5a 1176.45 C5I C5Q C5X
E5b 1207.140 C7I C7Q C7X

E5 (E5a + E5b) 1191.795 C8I C8Q C8X
E6 1278.75 C6A C6B C6C C6X C6Z

BDS-2 B2 1207.140 C7I C7Q C7X

BDS-2/3
B1 1561.098 C2I C2Q C2X
B3 1268.52 C6I C6Q C6X

BDS-3

B1C 1575.42 C1D C1P C1X
B1A 1575.42 C1S C1L C1Z
B2a 1176.45 C5D C5P C5X
B2b 1207.140 C7D C7P C7Z

B2 (B2a + B2b) 1191.795 C8D C8P C8X
B3A 1268.52 C6D C6P C6Z

2.2. GNSS Observation Equations

The GNSS pseudo-range and carrier phase observations can be expressed as [15]
{

ps
r,j = ρs

r + c(dtr − dts) + Ts
r + Is

r,j + c(dr,j − ds
j ) + εp

ϕs
r,j = ρs

r + c(dtr − dts) + Ts
r − Is

r,j + λjws
r + λjNs

r,j + λj(br,j − bs
j ) + εϕ

(1)

where the superscript s denotes a GNSS satellite; the subscript r and j denote the receiver
and the frequency; Ps

r,j denotes the observed pseudo-range on jth frequency in meters; ϕs
r,j

is the corresponding carrier phase; ρs
r denotes the geometrical range from phase centers

of the satellite to receiver antennas at the signal transmitting and receive time in meters;
c denotes the vacuum speed of light in meters per second; dtr is the receiver clock offset
in seconds; dts is the satellite clock offset in seconds; Ts

r is the slant tropospheric delay in
meters; Is

r,j is the ionospheric delay on jth frequency in meters; dr,j and ds
j are the code biases

of the receiver and the satellite in seconds; λj is the wavelength of carrier phase on the jth
frequency in meters; ws

r is the phase wind-up delay in cycles; Ns
r,j is the integer ambiguity

on the jth frequency in cycles; br,j and bs
j are the uncalibrated phase delays (UPDs) for

receiver and satellites in cycles, respectively; εp and εϕ are the pseudo range and carrier
phase observation noises including multipath in meters, respectively.
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In order to eliminate some parameters, the original observations of GNSS can be lin-
early combined. There are several common combinations, such as geometry-free (GF) [16],
ionosphere-free (IF) [17], wide lane (WL) and narrow lane (NL) [18] combinations. GF com-
bination eliminates the frequency independent parameters and it is used for ionospheric
modeling. The IF combination is often used for precise single point positioning, while WL
and NL combinations can be used for cycle-slip detection [16–18].

2.3. GNSS Positioning Methods

There are two common methods for GNSS positioning, namely differential position-
ing, and precise point positioning (PPP). Differential positioning is a relative positioning
technology, which needs to set up a reference station with a known position and observes
synchronously with the user [19]. PPP is an absolute positioning technique with removing
or estimating GNSS errors, which provides a high level of position accuracy by a single
receiver observation [20].

For GNSS differential positioning, there are four different types of position differen-
tials: pseudo range differential, carrier phase smoothing, pseudo range differential and
carrier phase differential. Real Time Kinematic (RTK), used to obtain precise positioning
results, adopts carrier phase differential technology. However, the base stations need to
be set up for RTK, so the operation mode is not flexible and the cost is relatively high.
Moreover, with increase of the distance between users and reference stations, its positioning
accuracy becomes significantly reduced. Comparing the two methods, since non-difference
observation is used in PPP, the latter provides more advantages in terms of operation mode
and cost [21,22].

The GNSS PPP method is based on three common models, the ionosphere-free com-
bination mode, the Uofc model and the uncombined model [23]. Among these, the most
used ionospheric-free model is able to eliminate the ionospheric parameters through the
combination of dual frequency pseudo range and carrier phase observations [17]:

{
PIF = α · ps

r,i + β · ps
r,j

ΦIF = α · ϕs
r,i + β · ϕs

r,j
(2)

where α = f 2
i /( f 2

i − f 2
j ), β = − f 2

j /( f 2
i − f 2

j ).
The Uofc model, based on the ionospheric-free model with two frequency phase

observations, involves the ionospheric free combination composed of phase and pseudo
range observations at each frequency [22–25]:





PUo f C,i = (ps
r,i + ϕs

r,i)/2
PUo f C,j = (ps

r,j + ϕs
r,j)/2

ΦUo f C,ij = ΦIF

(3)

The above two models both eliminate the ionospheric parameters through the com-
bination of observation equations, but also enlarge the observation errors. In the last
few years, the uncombined model, by using the original observation equation shown in
Equation (1), has received more attentions, and thus has been involved in several applica-
tions, such as positioning, timing, and tropospheric retrieval applications [26,27]. The three
PPP models are theoretically equivalent [22,25]. With the development of multi-frequency
and multi-GNSS, the ionospheric-free model and Uofc model have been extended to handle
multi-frequency signals. More PPP models can be extended based on the above three
models, considering ionospheric parameter corrections or weight [11,28–30].

2.4. Main Error Sources

The main errors in GNSS observations [31,32] are, for instance, those related to the
GNSS satellite, to the GNSS receiver, to signal propagation among others, as shown in
Figure 1, including satellite orbit error, satellite clock offset, phase center offset, receiver
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clock offset, receiver hardware delay, antenna phase center offset, ionospheric and tropo-
spheric delay, relativistic effect and multipath.

Figure 1. GNSS error source.

2.5. Multi-GNSS Observations

As a volunteer association, the International GNSS Service (IGS) has provided the
highest-quality GNSS data to users for the last twenty years. With the development of
newly established global and regional navigation satellite systems, IGS conducted the
multi-GNSS experiment (MGEX) project to collect and analyze observations of the new
systems and signals [33,34]. The MGEX network started in 2012, and grew rapidly in the
following years. In May 2022, the number of IGS and MGEX stations rose to more than 500
(Figure 2). All stations can track GPS, while about 450 stations are available for GLONASS.
There are approximately 370 and 310 stations to track Galileo and BDS, respectively. Table 3
summarizes the information of GNSS receivers in MGEX (until May 2022). As shown,
most of the available receivers can track multiple GNSS. These stations provide sufficient
guarantee for GNSS Earth observation data. Note that there are other public agencies
and some private vendors, which can provide single- or multi-GNSS observations, such
as the GPS Earth Observation Network System (GEONET), operated by the Geospatial
Information Authority of Japan (GSI).
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Figure 2. IGS/MGEX stations in May 2022.

Table 3. Information of GNSS receiver in MGEX (until May 2022).

ID Receiver Type Trackable Satellite Stations

1 ASHTECH UZ-12, Z-XII3, Z-XII3T GPS 16

4 CHC P5E GPS + GLO + GAL + BDS 1

5 JAVAD

TR_G3TH, TRE_3, TRE_3
DELTA, TRE_3L DELTA,

TRE_3N DELTA, TRE_G2T
DELTA, TRE_G3T DELTA,

TRE_G3TH DELTA,

GPS + GLO + GAL + BDS 74

6 JPS EGGDT, LEGACY GPS + GLO 7

7 LEICA GR10, GR25, GR30,
GR50, GRX1200 GPS + GLO + GAL + BDS 57

8 NOV OEM4-G2, OEM6, OEMV3 GPS 23

9 SEPT

ASTERX4, POLARX2,
POLARX3ETR, POLARX4TR,

POLARX5, POLARX5E,
POLARX5S, POLARX5TR,

GPS + GLO + GAL + BDS 153

10 STONEX SC2200 GPS + GLO + GAL + BDS 1

11 TPS LEGACY, NETG3, NET-G3A,
NET-G5 GPS + GLO 20

12 TRIMBLE 5700, ALLOY, NETR5,
NETR8, NETR9, NETRS, R9S GPS + GLO + GAL + BDS 160

Total 512

3. GNSS Emerging Applications
3.1. GNSS Positioning and Orbiting

Single-frequency GNSS Precise Point Positioning (PPP) can achieve a centimeter-
decimeter accuracy level and multi-frequency GNSS PPP can obtain a millimeter-centimeter
level when the carrier phase ambiguities converge. Figure 3 shows the errors of single-,
dual-, triple- and quad-frequency static BDS PPP at the iGMAS station KUN1 in the
north, east and vertical directions on DOY 16, 2019 [28]. The positioning performance
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was compared with the iGMAS products. From the comparison of single-, dual-, triple-
and quad-frequency BDS PPP performances, the multi-frequency BDS signals were able
to greatly improve the positioning performance, particularly for quad-frequency BDS
observations. It also showed that the positioning errors were decreased with increasing
observation time.

Figure 3. Errors of single-, dual-, triple- and quad-frequency BDS PPP at the iGMAS station KUN1 in
the north, east and vertical direction on DOY 16, 2019 [28].

Precise positioning and precise orbit determination (POD) can be estimated from
GNSS observations. For example, the potential periodicity of empirical acceleration in
the Haiyang 2B (HY-2B) POD was identified by spectral analysis. Using over one year
of satellite laser ranging (SLR) measurements, a 5.2% improvement in the orbit solution
of the refined model was demonstrated and validated. After application of the in-flight
calibration of the GPS antenna, a 26% reduction in the root mean square (RMS) of SLR
residuals was achieved for the reduced-dynamic (RD) orbit solutions, and the carrier phase
residuals were clearly reduced. The integer ambiguity resolution of HY-2B led to strong
geometric constraints for the estimated parameters, and a 15% improvement in the SLR
residuals could be inferred when compared with the float solution [35].

One year’s data collected by the Gravity Recovery and Climate Experiment Follow-
On (GRACE-FO) mission and GPS precise products provided by the Center for Orbit
Determination in Europe (CODE) were analyzed. The precise orbit, generated by the Jet
Propulsion Laboratory (JPL), independent SLR, and K-band ranging (KBR), measurements
were utilized to assess the orbit accuracy. More than 98% of single difference (SD) wide-
lane (WL) and 95% of SD narrow-lane (NL) ambiguities were fixed, which confirmed the
good quality of the bias products and the correctness of the SD ambiguity resolution (AR)
method [36,37].

3.2. GNSS Meteorology

Tropospheric delay is one of the most common GNSS positioning errors. Nowadays,
the zenith tropospheric delay (ZTD) can be estimated from GNSS observations, which
can be transferred into precipitable water vapor (PWV) for meteorological applications.
Recently, PWV was estimated and analyzed at 377 GNSS stations from the infrastructure
construction of national geodetic datum modernization and Crustal Movement Observation
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Network of China (CMONC), which is one of the most important Continuously Operating
Reference Station (CORS) networks in the world. Further PWV was obtained from GPS
observations and meteorological data from 2011 to 2019. The PWV had improved accuracy
when compared with the Bevis model. Bevis et al. [38] pioneered the concept of GPS
meteorology and obtained global surface temperature and weighted average temperature
from more than 8000 radiosonde stations in America. They also described the linear
relationship coefficient and the specific process of GPS water vapour inversion on the
ground. Furthermore, the daily and monthly average values, long-term trend, and change
characteristics of the PWV were analyzed, using the high-precision inversion model. The
results showed that the averaged PWV was higher in Central–Eastern China and Southern
China and lower in Northwest China, Northeast China, and North China (Figure 4). The
PWV was increasing in most parts of China, while some PWVs in North China showed a
downward trend [39].

Figure 4. Long-term variation trend of the GNSS PWV from 2011 to 2018 [39].

In addition, pressure, water vapor pressure, temperature, and weighted mean temper-
ature (Tm) play an important role in GNSS meteorological applications. A new approach
was introduced to develop an empirical tropospheric delay model, named the China Tropo-
spheric (CTrop) model, to provide meteorological parameters based on the sliding window
algorithm, using radiosonde data as reference values to validate the performance of the
CTrop model, which was compared to the canonical Global Pressure and Temperature
3 (GPT3) model. The accuracy of the CTrop model in regards to pressure, water vapor
pressure, temperature, and weighted mean temperature were 5.51 hPa, 2.60 hPa, 3.09 K,
and 3.35 K, respectively, achieving an improvement of 6%, 9%, 10%, and 13%, respectively,
when compared to the GPT3 model, as reported in [40].

3.3. GNSS Ionosphere and Space Weather

Ionospheric delay is an important and concerning error source in GNSS navigation
and positioning systems, which has been widely analyzed [41–44]. Even though it affects
the accuracy of GNSS navigation and positioning, it is well known that it can be modeled
by GNSS Earth observation [45]. The ionospheric delay can be parameterized as the total
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electron content (TEC) on the observation path. The relationship between ionospheric delay
and TEC can be expressed as [45]:

Iion =
40.28

f 2 TEC (4)

where Iion is the ionosohric delay and f is the frequency. In the ionospheric TEC modeling,
the code bias, generally represented by differential code bias (DCB), is an important error
affecting the accuracy of TEC. To estimate ionospheric TEC and DCB by GNSS observations,
two basic assumptions are established [45,46]. The first one is the single-layer model, in
which TEC is assumed to be concentrated in a thin layer between 300–500 km. The second
one is the zero-mean condition, in which the sum of satellite DCB is zero. Ionospheric
modeling can be divided into three steps. Firstly, the ionospheric slant TEC (STEC) is
extracted, then the STEC is transformed into vertical TEC by using an ionospheric mapping
function, and finally TEC and differential code bias are estimated. Therefore, ionospheric
TEC estimation and modelling are mainly focused on the following aspects, extraction
of the slant TEC observables, ionospheric thin layer height and mapping function, TEC
estimation and GNSS code bias handing [45,46].

The carrier-to-code leveling (CCL) method is the most used method to extract STEC [47]
due to its simple implementation. A modified CCL (MCCL) method was proposed
to retrieve ionospheric observables when considering the intra-day fluctuation of re-
ceiver DCB [48,49]. The MCCL method has also been extended to multi-frequency multi-
GNSS [49,50]. The GF combination of GNSS observation is used in the CCL method,
which affects the accuracy of TEC extraction. Therefore, the PPP method is used to im-
prove the accuracy [51–53]. The methods of extracting ionospheric observations by PPP
can be divided into single-, dual- and multi-frequency methods [54]. In addition, PPP
fixed-ambiguity solutions for extracting STEC has also been proposed, instead of the more
common PPP float-ambiguity solutions [55]. To take advantage of the high accuracy carrier
phase observation, a method of extracting STEC by using phase observations directly was
proposed [56].

Generally, for ionospheric TEC modeling, a fixed height of ionospheric thin layer and a
mapping function are commonly selected [45]. However, these selections affect the accuracy
of ionospheric modeling. An enhanced mapping function with ionospheric varying height
was proposed in [57]. Moreover, a multi-layer mapping function was analyzed in order to
reduce the ionospheric mapping errors in [58,59].

The ionospheric TEC is generally modeled through a definite mathematical function,
such as spherical harmonic function, for global, generalized triangular series function, or
polynomial function for regional. The DCB can be estimated together with the TEC model-
ing [60–63]. Moreover, the DCB can be obtained by using a global ionosphere map. Table 4
shows the mean RMS of estimated satellite DCB relative to the DCB products provided
by MGEX, in which the DCB was estimated by spherical harmonic function modeling
for global. Acronyms are given as: Chinese Academy of Sciences (CAS), Center for Orbit
Determination in Europe (CODE), and Deutsches Zentrum für Luft- und Raumfahrt (DLR).

To handle more types of differential code bias from multi-frequency multi-GNSS, the
observable-specific Signal Bias (OSB) was proposed. Several studies on the estimation and
processing of GNSS OSB have been carried out [64–66].

A very interesting case study has been developed regarding plasma-spheric total
electron content (PTEC). Its long-term variations have been estimated and studied from GPS
observations onboard the Constellation Observing System for Meteorology, Ionosphere, and
Climate (COSMIC). As it is known, the plasmasphere, or inner magnetosphere, is a region
of the Earth’s magnetosphere consisting of low-energy (cool) plasma and is located above
the ionosphere. The long-term variation in PTEC was further analyzed using a decade-
long dataset of COSMIC GPS observation data from 2007 to 2017 (Figure 5), and a high
correlation was found between PTEC and the solar flux (F10.7) in the range 0.88–0.93 [67].
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Table 4. The mean RMS of estimated satellite DCB relative to the DCB product provided by MGEX.

System DCB Type CAS DLR CODE System DCB Type CAS DLR

GPS

C1C-C2W 0.06 0.09

GAL

C1X-C5X 0.06 0.11
C1W-C2W 0.06 0.16 0.07 C1X-C7X 0.07 0.11
C1C-C5X 0.07 0.08 C1X-C8X 0.08 0.12
C1C-C5Q 0.10 0.13 C1C-C5Q 0.10 0.11

GLO
C1C-C2P 0.12 0.12 C1C-C7Q 0.07 0.10
C1P-C2P 0.14 0.22 0.15 C1C-C8Q 0.08 0.10

C1C-C2C 0.17 0.13

QZSS

C1X-C2X 0.07 0.16

BDS
C2I-C7I 0.15 0.14 C1X-C5X 0.07 0.10
C2I-C6I 0.19 0.13 C1C-C2L 0.11 0.12

C1C-C5Q 0.09 0.18

Figure 5. Monthly mean F10.7 index and monthly mean PTEC from January 2007 to December
2017 [67].

An analysis of the ionospheric TEC disturbances from global ionosphere maps (GIMs)
was conducted during earthquakes with magnitude ≥2.5, which occurred in 2015–2018, in
different latitude regions and, in particular, in A: 13◦ S–0.5◦ S (22.3◦ S–10◦ S geomagnetic),
B: 0.5◦ S–19.5◦ N (10◦ S–10◦ N geomagnetic), and C: 19.5◦ N–32.1◦ N (10◦ N–22.5◦ N
geomagnetic, Figure 6). The greater occurrence times of TEC decrease anomalies were
observed in the southeast in Region A [68].

The thin layer ionospheric height (TLIH) was further analysed, which plays a role
in mapping function (MF), and affects the accuracy of the conversion between the slant
total electron content (STEC) and vertical total electron content (VTEC). In particular, a
new method for determining the optimal TLIH was proposed [69], which compares the
mapping function values (MFVs) from the MF at different given TLIHs with the “truth”
mapping values from the UQRG global ionospheric maps (GIMs) and the differential TEC
(dSTEC) method, namely, the dSTEC- and GIM-based thin layer ionospheric height (dG-
TLIH) techniques. The optimal TLIH was determined using the dG-TLIH method based on
GNSS data over the Antarctic and Arctic. An innovative method was recently proposed
regarding multi-GNSS DCB estimation as one of the main errors in ionospheric modeling
and applications. This innovative method uses independent GNSS DCB estimation (IGDE),
without using the ionospheric function model and global ionosphere map (GIM). Firstly,
ionospheric observations are extracted, based on the geometry-free combination of dual-
frequency multi-GNSS code observations. Secondly, the VTEC of the station, represented
by the weighted mean VTEC value of the ionospheric pierce points (IPPs) at each epoch, is
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estimated as a parameter, together with the combined receiver and satellite DCBs (RSDCBs).
Finally, the estimated RSDCBs are used as new observations, the weights of which are
calculated from estimated covariances, and, thus, the satellite and receiver DCBs of multi-
GNSS are estimated. Nineteen types of multi-GNSS satellite DCBs are estimated based
on 200-day observations from more than 300 multi-GNSS experiment (MGEX) stations.
The performance of the proposed method was evaluated by comparing it with MGEX
products. The results showed that the mean RMS values were 0.12, 0.23, 0.21, 0.13, and
0.11 ns for GPS, GLONASS, BDS, Galileo, and QZSS DCBs, respectively, with respect to
MGEX products, and the stabilities of estimated GPS, GLONASS, BDS, Galileo, and QZSS
DCBs were 0.07, 0.06, 0.13, 0.11, and 0.11 ns, respectively, as reported on in [70].

Figure 6. Temporal and spatial correlations [68].

Other interesting progress concerns the greater opportunities for positioning offered by
Beidou (BDS) GNSS with precise ionospheric delay corrections. The BDS reflection signal
detects multiple moving targets under multiple-input and multiple-output (MIMO) radar
systems and proposes a series of methods to suppress multiple Doppler phase influences
and improve the range detection property. The simulation results showed restored target
peaks, which matched the RCS data more accurately, with the GNSS-R Doppler phase
influence removed, which proved the proposed method could improve target recognition
and detection resolution performance [71]. Many Differential Code Biases, DCBs and DCB
types of the new BDS-3 signals from 30-days Multi-GNSS Experiment (MGEX) observations,
were estimated and investigated. Compared with the DCB values provided by the Chinese
Academy of Science (CAS) products, the mean bias and root mean squares (RMS) error
of the new BDS-3 satellite DCBs were within ±0.20 and 0.30 ns, respectively. The satellite
DCBs were mostly within ±0.40 ns with respects to the Deutsches Zentrum für Luft- und
Raumfahrt (DLR). The four sets of constructed closure errors and their mean values were
within ±0.30 ns and ±0.15 ns, respectively. The mean standard deviation (STD) of the
estimated satellite DCBs was less than 0.10 ns (Figure 7). Of particular note was the fact
that the estimated satellite DCBs were more stable than DCB products provided by CAS
and DLR [72].
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Figure 7. Mean closure error of BDS-3 satellites DCBs and STD of recilver DCBs [72].

3.4. GNSS-Reflectometry

GNSS reflectometry (GNSS-R) is a very useful tool for remote sensing and plays a
key role in various applications. Signals reflected from the Earth’s surface are analyzed
to measure various geophysical parameters. Multipath delay is one of the main error
sources in GNSS navigation and positioning. The changes in the polarization characteristics,
amplitude, phase, and frequency of the reflected signal reflect the roughness of the reflecting
surface, such as changes in coastal water levels and snow thickness. Therefore, accurate
estimations of the multipath delay can invert the physical properties and geophysical
parameters of the reflecting surface. One of the available solutions is to use the upward-
facing GNSS right-handed antenna to receive the direct signal and the downward-facing
GNSS left-handed antenna to receive the reflected signal. Using GNSS precise single-point
positioning, the delay of the direct and reflected signals can be estimated, and then the
water level and snow thickness changes can be inversed. Another solution is to use the
signal-to-noise ratio (SNR) of GNSS observations to estimate soil and snow thickness
changes, but not all receivers have SNR observations. Qian and Jin [73] used geometry-
free linear combination of GNSS code and carry phase observations (L4 observations) to
estimate snow thickness. The L4 observations were not affected by geometrical factors
and contained multipath residuals, which could effectively represent the multipath. The
snow thickness was inverted according to the relationship between the changes of the
L4 observations and the measured snow thickness. The snow thickness obtained by
using the L4 observations was in good agreement with the results obtained from the
signal-to-noise ratio data. However, a single system sometimes has limited observation
satellites, and multiple systems improve space coverage. Qian and Jin [73] combined
GPS and GLONASS observations from the IGS station GANP (Slovenia) to estimate the
snow thickness variation in 2012 and 2013 from GNSS geometry-free linear combination
observations (L4 observations) and signal-to-noise ratio (SNR), respectively (Figure 8).
The accuracy was improved for a single system, but the L4 method needed to be further
improved when compared to the SNR method, because of ionospheric delay and other
unremoved errors.
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Figure 8. Snow thickness changes at IGS station GANP in 2012 and 2013 from the combined GPS
and GLONASS observations with geometric-free combination (L4) and signal-to-noise ratio (SNR),
respectively [73].

3.5. Earthquake Monitoring by GNSS

Traditional earthquake magnitude and rupture are inverted using seismograph or
accelerometer observation data. However, seismograph data often has missing saturation
and data, which cannot completely record the seismic co-seismic displacement ampli-
tude. Although the accelerometer data is not missing, the seismic displacement obtained
by integrating the accelerometer data can be distorted by the tilt and rotation of the in-
strument. Nowadays, GNSS can perform precise single-point positioning and estimate
absolute seismic displacement, as well as inverse the rupture, with high accuracy. For
example, using the 1 Hz GPS, BDS, GLONASS and Galileo observation data at the LASA
station provided by Beidou Experiment Tracking Station (BETS), the displacement of the
25 April 2015 Mw 7.8 Nepal earthquake was estimated and compared with the strong-
seismic records near the Tibet area. Figure 9 shows acceleration, velocity, and displacement
time series based on constant velocity (CV) dynamic PPP (CVDPPP) with BDS single
system, GPS single system, BDS + GPS dual system, GPS + GLONASS dual system and
BDS + GPS + GLONASS + Galileo four system during the 300 s period of the initial earth-
quake occurrence [74]. GNSS results showed high consistency with the displacement time
series obtained by the strong motion instrument. The seismic waves estimated by CVDPPP
were not affected by the distortion caused by the rotation and tilt of the instrument. By
combining multi-system observation data, the velocity and acceleration waves obtained by
the CVDPPP model were smoother, which also verified the advantages of multi-system
GNSS in monitoring earthquake co-seismic displacements.
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Figure 9. Acceleration, velocity, and displacement time series based on constant veloc-
ity (CV) dynamic PPP (CVDPPP) for BDS, GPS, BDS + GPS, GPS + GLONASS and
BDS + GPS + GLONASS + Galileo four system during 300 s after UTC 06:11:26 [74].

3.6. GNSS Integrated Techniques for Land and Structural Health Monitoring (SHM)

Real-time monitoring of the engineering structures safety is necessary, since these
structures play economic, social and environmental roles. The assessment of the coherence
between the expected displacements and those affecting the structures could provide feed-
back about their behavior in the elastic field, complying with safety regulations. GNSS mon-
itoring systems, used in combination with geotechnical, hydraulic, and structural systems,
could allow the monitoring of real-time displacements, with high accuracy, even remotely.

Among the emerging applications of GNSS, those related to monitoring through low-
cost mobile smartphone type instruments play a very important role because of the wide
availability of these instruments. With Xiaomi Mi8, the first GNSS dual-frequency smart-
phone embedded with the Broadcom BCM47755 GNSS chip, tests using both VADASE
(Variometric Approach for Displacement Analysis Stand-alone Engine) and VARION (Var-
iometric Approach for Real-Time Ionosphere Observations) algorithms were even able
to derive real-time STEC variations [75]. Other authors using smartphone accelerometer
(Bosch BMI160) and a low-cost dual frequency GNSS reference-rover pair (u-blox ZED-F9P)
have achieved high precision values (σ) of ±7.7, 8.1 and 9.6 mm in the East, North and Up
(ENU), respectively, which were comparable with the declared precision potential (σ) of
the smartphone accelerometer of ±8.8 mm [76].

The interaction between GNSS and Remote Sensing produces excellent results for
the monitoring of strategic structures, such as dams. Dam structures can be monitored
via traditional contact sensors (extensometers, accelerometers, tiltmeters), ground-based
methods (ground-based SAR, ground-based photogrammetry, terrestrial laser scanning,
robotic total stations), and GNSS. Remotely based methods include airborne Light Detection
and Ranging (LiDAR) and space-borne InSAR. The pros and cons of these methods are
summarized in [77].

Furthermore, other new techniques have been developed and tested. The first of
these was based on an unsupervised classification and was suitable for automating of the
process. The second was based on visual matching with contour lines, with the aim of
fully exploiting the dataset. Their performances were evaluated by comparison with water
levels measured in situ (r2 = 0.97 using the unsupervised classification, and r2 = 0.95 using
visual matching), demonstrating that both techniques were suitable to quantify reservoir
surface extension. However, ~90% of available images were analyzed using the visual
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matching method, and just 37 images are out of 58 using the other method. The evaluation
of the water level from the water surface, using both techniques, could be easily extended
to un-gauged reservoirs to manage the variations of the levels during normal operation.
In addition, during the period of investigation, the use of GNSS allowed the estimation
of dam displacements. By comparing results from both techniques, relationships between
the orthogonal displacement component via GNSS, estimated water levels via remote
sensing and in situ measurements were investigated. In fact, the moving average of the
displacement time series (middle section on the dam crest) showed a range of variability of
±2 mm (Figures 10 and 11). The dam deformation versus reservoir water level behavior was
different during the reservoir emptying and filling periods, indicating a kind of hysteresis
loop [78,79].

Figure 10. Water surface and level of a reservoir from different remote sensing approaches and
comparison with dam displacements evaluated via GNSS [78]. Top left: The Castello dam on
Magazzolo reservoir (37◦34′51′ ′ N, 13◦24′48′ ′ E, WGS84) with local reference system (T and S indicate
directions tangential and orthogonal to the dam) and temporal behavior of timely averaged GNSS
displacements of the central section along S-axis (black dots) with over imposed ± the standard
deviation within the 2-month moving window (blue bars). The black dot indicates ds occurring with
minimum the water. Top right: diachronic CSK false-color composition for increasing Hm, (281.10,
285.31 and 291.40 m represented in red, gran and blue color scales, respectively). Downwards: He,
and Hm, vs. ds. during the emptying (green circles) and filling (blue circles) phase, over-imposed
two interpolation curves (red continuous lines).
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Figure 11. Comprehensive dam monitoring with on-site and remote-retrieved forcing factors and
resulting displacements [79]. Top left: Daily water levels measured in situ, HIS (m a.s.l.). A linear
interpolation curve is superimposed–imposed (continuous line); Up left: the temporal behavior
of the water surface temperature, TW (K), retrieved by Landsat 8 data, using both 189-034 and
190-034 scenes. A sinusoidal interpolation curve (continuous dashed line) and a confidence band of
±2 × σXY between measured and interpolated values (dark grey lines) are reported to facilitate the
interpretation of the phenomenon. Center: hill shade of the dam–reservoir system derived from a
digital surface model by setting azimuth and elevation of the incident light at 315 and 45 degrees,
respectively). Superimposed the positions of the GNSS stations (red points). Top right: the temporal
behavior (DOY in x-axis) of the horizontal total displacements orthogonal to the dam (DTOT, mm) is
estimated via PS–InSAR (red dots). A sinusoidal interpolation curve (continuous dashed line) and
a confidence band of ±2 × σXY between measured and interpolated values (dark grey). Up right:
the temporal behavior (DOY in x-axis) of the horizontal total displacements orthogonal to the dam
(DTOT, mm) is estimated via Global Navigation Satellite System (GNSS) (grey dots). A sinusoidal
interpolation curve and confidence band of ±2 × σXY between measured and interpolated values
(dark grey lines) were reported to facilitate the interpretation of the phenomenon (continuous line).
The interpolation curves at the 10th and 90th percentiles of the raw data were reported (pale blue
band) as a measure of its variability.

Many studies have focused on the SHM of other composite structures, such as bridges.
Yigit and Gurlek [80] proposed some testing of a high-rate GNSS precise point positioning
(PPP) method for detecting dynamic vertical displacement response. In particular, the
usability of PPP for evaluating the dynamic displacement response of a structure was ana-
lyzed with different experiments on cantilever beam structures. Four cases with different
vibration frequencies between 0.94 and 2.90 Hz were selected to compare the PPP and
relative precise methods in the time, position and frequency domains. In addition, the
effects of the ultra-fast products and the final precise orbits on the PPP kinematic solution,
in terms of vertical oscillation detection, were examined. Xi et al. [81] used the BDS/GNSS
system to conduct an experiment on a bridge in China to evaluate the performance of BDS
through comparing with GPS, and found that the accuracy of BDS in static mode could be
up to 2–3 mm and 5–7 mm in the horizontal and vertical components. With the monitoring
data of a bridge, BDS had the same, or even better, monitoring performance and data
quality as GPS. Meng et al. [82] carried out a system for large bridge monitoring, while
Xi et al. [81] proposed a multi-GNSS integration processing method and presented a case
study on bridge monitoring using multi-GNSS observations (BDS, GPS and GLONASS)
with high cutoff heights. Based on the experiments conducted, it was shown that, with
more available satellites and stronger satellite geometry, the GPS/BDS/GLONASS combi-
nation showed the highest accuracy with 1–2 mm horizontal accuracy and 2–5 mm vertical
accuracy. With the integration of GPS/BDS/GLONASS, different cutoff values were set
in the data processing in the bridge monitoring application. The results showed that the
accuracy in the horizontal component could always reach 1–2 mm with increasing cutoff
elevation angles (10◦ to 40◦), even when the upper limit of 40◦ was selected [83]. More
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recently, Manzini et al. [84] evaluated the use of low-cost GNSS stations for SHM, through
different combinations of GNSS receivers and antennas. Several sets of parameters and
processing requirements were also evaluated using the open-source software RTKLib. The
performance of the proposed solution was evaluated through two dynamic experimental
scenarios, and results showed its ability to track rapid displacements of up to 4 mm and
oscillations of 1 cm with a frequency of up to 0.25 Hz with a 1 Hz receiver. Finally, a
two-week dataset, acquired from a network of low-cost GNSS stations distributed on a
suspension bridge, was used to validate the in-situ performance. The results showed good
agreement between GNSS time series, conventional displacement sensors and numerical
simulations [84]. A very interesting review has been published in recent years concerning
the use of GNSS with Based Dynamic Monitoring Technologies for SHM. For more details
the reader should refer to the work [85].

3.7. GNSS Congruence with Different Modes’ Solutions (NRTK, PPP, Static)

Other GNSS emerging applications are related to uses with different modes’ solu-
tions, such as Network Real Time Kinematic (NRTK) or PPP, or also static. As an example,
Baybura et al. [86] suggested examining the accuracy of Network RTK (NRTK) and Long
Base RTK (LBRTK) methods with repetitive measurements. The NRTK and LBRTK mea-
surements were performed on different days between 2015 and 2018 with various survey
campaigns, and considered the results of the static measurements as true coordinates. The
results of the NRTK and LBRTK methods showed that the LBRTK and NRTK methods
provided similar results for baseline lengths up to 40 km, with differences of less than
3 cm horizontally and 4 cm vertically. Lu et al. [87] compared static and dynamic PPP
measurements, and the numerical results during the static and dynamic tests showed that
the proposed positioning study could achieve a positioning accuracy of a few centimeters
within one hour. As expected, the positioning accuracy was significantly improved by the
combination of GPS, BeiDou and Galileo as a result of the larger number of satellites used
and the more uniform geometric distribution (DOP) of the satellites.

The evaluation of the coordinates from a GNSS survey (in Network Real Time Kine-
matic, Precise Point Positioning, or static mode) has been analyzed in several scientific
and technical applications, and many have been carried out to compare Precise Point Posi-
tioning (PPP), Network Real Time Kinematic (NRTK), and static modes’ solutions, using
the latter as the true, or the most plausible solution. Another study has been developed
using the Italian GNSS CORS of Sicily (Figure 12) to compare the GNSS survey methods
mentioned above, using some benchmark points. The tests were carried out by comparing
the survey methods in pairs to check their solution congruence. The NRTK and the static
solutions were referred to a local GNSS CORS network’s analysis. The NRTK positioning
was obtained with different methods, such as VRS, Flächen-Korrektur-Parameter (FKP),
Nearest (NEA) and the PPP solution, and calculated with two different software (RTKLIB
and Canadian Spatial Reference System CSRS-PPP). A statistical approach was performed
to check if the distribution frequencies of the coordinate’s residual belonged to the normal
distribution for all pairs. The results showed that the hypothesis of a normal distribution
was confirmed in most of the pairs and, specifically, the static vs. NRTK pair seemed to
achieve the best congruence. Involving the PPP approach, the pairs obtained with CSRS
software achieved better congruence than those involving RTKLIB software [88].
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Figure 12. Different solutions for GNSS NRTK, PPP or static positioning. Left: UNIPA GNSS CORSs
(black triangles) and GNSS reference benchmarks (IGM95 network benchmarks with white triangles;
Sicily network benchmarks with white squares; and local benchmarks with white circles). 20 km
buffer circles from the GNSS CORS are shown. Reference system UTM-WGS84 33N (ETRF2000-
RDN2008)-EPSG6708. Right: ∆h differences, pre- and post-outliers’ removal (dashed and continuous
lines, respectively) [88].

4. Discussion and Conclusions

A detailed review on multi-GNSS for Earth Observation and the progress of its emerg-
ing applications has been presented in this paper. One of the main findings from this
study is that, nowadays, the GNSS technique is involved not only in traditional positioning
applications, but more widely for remote sensing applications, which represents one of the
most used techniques in the field of Earth observations. As it has been deeply discussed
in the paper, with continuous improvements and developments, in terms of performance,
availability, modernization and hybridizing, multi-GNSS could become a milestone in the
future applications. So, what scenarios could we be looking at in the coming years? The an-
swer to this question is quite difficult, but, obviously, there are various fields of multi-GNSS
applications to be explored and analyzed. One of these is the use of GNSS for Autonomous
Space Navigation, since the use of GNSS for this purpose is crucial for space missions. In
fact, it can be performed directly on-board and in real time to enable autonomous guidance
with reducing or avoiding the delays in Earth-to-space communications and lack of signal
coverage. For this purpose, different technologies (GNSS and IMU) and algorithms can be
used with enabling, e.g., the precise spacecraft formation flights and landings required in
these operational areas.

Another investigation concerns GNSS atmospheric modeling. It is widely known that
multi-GNSS are influenced by the Earth’s atmosphere, including the ionosphere (electrically
charged), and the troposphere (neutral atmosphere), modeled with complex mathematical
equations [89–91]. Although atmospheric effects on GNSS signals are annoying parameters
for positioning and navigation applications, they can provide valuable information for
many applications, such as natural hazard monitoring or weather forecasting. Therefore, the
modeling of atmospheric effects on multi-GNSS positioning applications (GPS, GLONASS,
Galileo, BDS, QZSS and IRNSS) on the ground and in space needs to be deeply analyzed so
as to improve ZTD and TEC modeling at regional and global scales, as well as scintillation
and forecast models, ionosphere models and tropospheric gradient models.

Further interesting applications of satellite navigation are focused on GNSS-R emerg-
ing applications, such as methods and measurements techniques for Remote Sensing of Soil
Moisture Content (SMC). As it is known, SMC plays an important environmental role in the
assessment of climate change and environmental monitoring of areas prone to flooding,
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drought and evapotranspiration. SMC also allows the monitoring of water runoff and
surface erosion. By correlating other environmental variables, such as land surface tempera-
tures, land cover or precipitations, SMC is commonly used as an input parameter for many
climate models. In agriculture, SMC is a crucial indicator of plant growth and crop yield. In
recent decades, satellites closer to Earth equipped with GNSS-R receiver, active microwave
(ALOS-2, Sentinel-1, TerraSar-X) or passive microwave (AMSR2 and SMOS), have provided
an opportunity to detect SMC from space using a wide range of techniques and sensors.
A scientific treatment of the issues related to SMC (e.g., GNSS-R Techniques, Methods,
and Applications) has already recently developed with wide potential applications [92,93].
Another interesting investigation could be GNSS-R Earth Remote Sensing from SmallSats
and substantial economic development investments were carried out in so-called small
satellites in recent years, such as BuFeng-1 [94], CYGNSS [95], Fengyun-3 series [96], FSS-
Cat [97], HydroGNSS [98], PRETTY [99], and Spire CubeSats series [100]. Small satellites
are changing the Earth remote sensing parameters by exploiting innovative payloads. Thus,
the spatiotemporal sampling properties of GNSS-R could create new scenarios for studying,
specifically devoted to wind speed determination, SMC determination, vegetation water
content monitoring, and supporting sustainable soils developments. Additionally, GNSS-R
can be used for ocean monitoring, as presented in the work of [101–104].

In addition, GNSS can provide meaningful support to Precision Farming (PF). PF has
been widely implemented in almost all agricultural production systems over the past 20
years. Obviously, PF developments differ in the world according to technological, agro-
nomic, economic and cultural differences existing between countries. PF has been widely
used in developed agricultural countries. Considering benefits and limits of increasing PF
adoption all around the world, GNSS could provide innovative methods and applications
to optimize operating modes, particularly in developing agricultural economies [105–108].

The use of GNSS for forest and wetland hydrology is also developing. According to other
geomatics techniques (Remote Sensing, UAV/UAS and LiDAR), it can be considered a
resource for the assessing of climate-related environmental risks, such as fires, landslides,
epidemics of forest diseases, rapid deterioration of the quality of watercourses, and conver-
sion of forest wetlands to montane forests, due to the deposition of eroded soil [109–111].
Newer ECOSTRESS [112] and SMAP [113] satellite types, specifically designed to obtain
soil moisture information with dense forest cover, may be an important improvement in
this emerging study.

The use of ground-based GNSS and/or radio occultation techniques can also be useful
in the field of natural hazards, such as those related to the emission of hazardous gases and
ash into the atmosphere from volcanic clouds. Analysis of Signal Noise Ratio (SNR) data
can demonstrate daily repeatability and seasonal trends indicating the strong dependence
of multipath error on changes in the antenna environment, but can also be an indicator
of sudden changes in volcanic cloud composition and height [114–117]. GNSS interference
detection and spoofing provide an important area of exploration, since multipath and
Non-Line-Of-Signals (NLOS) are the main errors occurring in different GNSS applications,
e.g., civil (urban transport applications) and military uses [118–122].

Last, but not least, the massive deployment of multi-frequency GNSS CORS at global,
regional, and national scales has allowed the continuous use of time series data that is
mostly free of charge. Moreover, regarding the upcoming CORS upgrades to quadric
stellation (BDS, Galileo, GLONASS, GPS), these infrastructures can provide unlimited
potential for both technical and scientific applications, e.g., the evaluation of a global
reference system and its inconstancy, geodynamic analysis, PF, mining, SHM, surveying
and land cadastral management, soil moisture mapping, drought, snow depth, airborne
UAV, road and rail transport and logistics, maritime navigation and aviation [123–126].
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