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Abstract

The Global Navigation Satellite System-Reflectometry (GNSS-R) can estimate land surface soil moisture (SSM) as a viable and
promising approach. However, it has some large uncertainty in retrieving SSM. In this study, the SSM is retrieved from different Cyclone
GNSS (CYGNSS) SSM retrieval models formed with different SSM reference data products, including two blended microwave SSM
products from the European Space Agency’s Climate Change Initiative (CCI) and the National Oceanic and Atmospheric Administra-
tion’s Soil Moisture Operational Product System (SMOPS), and a single microwave sensor-derived Soil Moisture Active Passive (SMAP)
Level-3 product. The performance of the developed retrieval models, characterized by spatial resolutions of 36 km � 36 km and 0.25� �
0.25�, is evaluated using K-fold cross-validation. Furthermore, the accuracy of these models is validated against ground measurements
acquired from Chinese automated soil moisture observation network. In order to alleviate the impact of spatial mismatching between the
predicted gridded SSM and the point-scale in-situ measurements, a cumulative distribution function (CDF) rescaling strategy is applied.
The results indicated that all models are effective at capturing spatial variations in SSM, and the SMOPS-based model achieves the high-
est correlation coefficient (0.930) and the lowest root mean square error (RMSD, 0.028 cm3/cm3), followed by the CCI-based model
(0.906 and 0.042 cm3/cm3). The SMAP-based model performs poorly in the comparison. The suboptimal performance of models eval-
uated with Chinese automated soil moisture measurements is largely attributed to the insufficient calibration of the original reference
data in the region.
� 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Near-surface soil moisture (SSM) is a fundamental com-
ponent of the water cycle, and its precise measurement
holds paramount importance for a wide range of applica-
tions, such as weather forecasting, climate modeling, irriga-
tion practices, and monitoring crop health and
productivity (Conil et al., 2006). In past decades, the use
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of satellite remote sensing techniques to measure SSM
has become increasingly popular among the geoscience
and agriculture communities, as it allows for a better
understanding of the Earth’s systems and improved effi-
ciency and productivity of human activities (Wang and
Qu, 2009).

L-band satellite active and passive microwave sensors
are renowned for their efficacy in retrieving SSM, rendering
them reliable and vital instruments for acquiring SSM
dynamics on a global scale. This is attributed to the L-
band signal’s superior ability to penetrate the Earth’s sur-
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face and reach the soil layer, thereby facilitating accurate
measurements of moisture content (Hasan et al., 2014).
With the advancement of remote sensing technologies, sev-
eral dedicated SSM monitoring satellites have been
launched, such as Soil Moisture Active Passive (SMAP)
(Entekhabi et al., 2010) and Soil Moisture and Ocean
Salinity (SMOS) (Kerr et al., 2010) missions. However,
these dedicated monostatic active and passive remote sen-
sors are subject to certain limitations, primarily stemming
from their low measurement frequency, leading to a revisit
cycle of 2–3 days, and their relatively lower spatial resolu-
tion, typically ranging from 30 to 50 km. In-situ measure-
ments can provide the most accurate and higher temporal
resolution in comparison to satellite-based observations
(Tsegaye et al., 2004). However, the measured SSM infor-
mation is confined to a small area around the stations
and is generally sparse when considering large-scale
regions. For the calibration and validation of spaceborne
scatterometer and radiometer products, core validation
sites are employed. These validation networks comprise
many soil moisture stations within a single satellite foot-
print and adhere to specific quality control criteria
(Gruber et al., 2020). As a results, ground station measure-
ments primarily serve the purpose of calibrating and vali-
dating SSM products derived from satellite remote sensing.

Spaceborne Global Navigation Satellite System-
Reflectometry (GNSS-R) is a novel remote sensing tech-
nique that utilizes the signals transmitted by Global Navi-
gation Satellite Systems (GNSS), such as GPS, BeiDou,
GLONASS, and Galileo, reflected from the Earth’s surface
to measure various geophysical parameters (Clarizia et al.,
2014). This technique has several advantages over tradi-
tional dedicated active and passive remote sensing tech-
niques, such as radar and optical sensors, including wide
coverage, high resolution, low cost, and the ability to
repeat measurements over time. Additionally, it can be
used to measure a wide range of parameters including soil
moisture (Camps et al., 2016), ocean surface wind (Foti
et al., 2015), sea ice cover (Yan and Huang, 2016), and veg-
etation density (Camps et al., 2016). The receiver processes
the reflected GNSS signal in the form of a Delay-Doppler
Map (DDM), which serves as the fundamental observation
quantity in spaceborne GNSS-R. The DDM observables
were used as the basis for retrieving geophysical
parameters.

In the past decade, there has been a surge in spaceborne
GNSS-R remote sensing studies. GNSS-R technology has
been demonstrated to be effective for observing ocean
and land geophysical parameters, leading to the develop-
ment of retrieval algorithms. The National Aeronautics
and Space Administration (NASA) launched the Cyclone
Global Navigation Satellite System (CYGNSS) mission
to examine tropical cyclones and factors that influence
their intensity (Rose et al., 2014). The primary objective
of CYGNSS is to gain a deeper understanding of the inner
processes of tropical cyclones. The CYGNSS has produced
vast amounts of observations which are expected to pro-
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vide invaluable information for a variety of applications.
Several methodologies for repurposing CYGNSS data for
SSM estimation have been presented in literature. The pre-
vious spaceborne CYGNSS SSM inversion algorithms are
similar to passive radiometry, forming the statistic quanti-
fied fitting model, which is heavily dependent on the quality
of the collocated fiducial reference SSM values. Many suc-
cessful investigations have relied on establishing a statisti-
cal model that relates the aggregated DDM-derived
effective reflectivity to collocated SSM values obtained
from other observing systems. Chew and Small (2018) uti-
lized the spatial average approach in their study, where the
retrieval algorithm employed a linear model to regress the
variations in effective reflectivity and SSM. The retrieval
algorithm assumed that effective reflectivity changes related
to vegetation and roughness occurred on timescales longer
than those associated with soil moisture changes. Based on
this idea, Al-Khaldi et al. (2019) presents a method for
retriving SSM using data from the CYGNSS constellation.
The approach focuses on incoherent scattering from land
surfaces. Clarizia et al. (2019) also employed a standard
statistical inversion procedure that included spatial average
and linear regression. The empirical statistical model
between the gridded effective reflectivity, vegetation opac-
ity, roughness coefficient, and SSM was established using
trilinear regression. Yan et al. (2020) study pan-tropical
SSM mapping based on a three-layer model from
CYGNSS data. Some studies have sought to enhance
SSM inversion accuracy by utilizing advanced artificial
intelligence. This includes the use of deep learning algo-
rithms and machine learning to estimate SSM from
GNSS-R observations (Eroglu et al., 2019; Jia et al.,
2021; Lei et al., 2022; Nabi et al., 2022; Senyurek et al.,
2020). These approaches offer the advantage of capturing
complex non-linear relationships between spaceborne
GNSS-R measurements, SSM and other influencing fac-
tors, yielding promising outcomes in producing accurate
and reliable SSM estimates. Nevertheless, the current
results demonstrate a proximity to those achieved by tradi-
tional empirical regression methods.

One of the current debates in the field of GNSS-R ter-
restrial remote sensing is the relative significance of the
coherent and incoherent components of scattered GNSS
signals. Dong and Jin (2021) has investigated the classifica-
tion of received terrestrial coherent and incoherent signals
and their impact on SSM retrieval. The results showed that
the proportion of signals dominated by incoherence was
low and their influence on SSM retrieval was limited. In
addition, prior to using the methods mentioned in this
study, different pre-processing steps are required. Ground
reflectivity, which is a major factor in responding to SSM
in GNSS-R detection, is also influenced by various factors,
including plant cover, topography, and small-scale surface
roughness (Yan et al., 2020). These effects are interrelated
and must be considered when conducting SSM retrieval.
In previous studies, these factors have been considered,
and various ancillary parameters and correction models
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were employed to mitigate their effects (Al-Khaldi et al.,
2019; Chew and Small, 2020; Yan et al., 2020; Yueh
et al., 2022). However, most starting points have resorted
directly to approaches developed for satellite-based
radiometry (Chew and Small, 2020, 2018).

To date, numerous SSM products have been generated
utilizing data from satellite sensors, land surface model,
and merge algorithms. These products exhibit diverse spa-
tial and temporal coverage, resolution, and quality. How-
ever, it is worth noting that the most of prior spaceborne
GNSS-R land SSM retrieval methods rely solely on
single-sensor-based SSM products as the ground reference
values, mainly sourced from SMAP and/or SMOS mis-
sions (Chew and Small, 2020; Lei et al., 2022; Yan et al.,
2020). Blended SSM products, combining data from multi-
ple satellite sensors, have been consistently shown to out-
perform other single-sensor-based SSM products in terms
of accuracy and spatial coverage (Wang et al., 2021). As
demonstrated in Ma et al. (2019), it found that the overall
performance of the European Space Agency’s (EAS) CCI
was superior to that of the SMOS, Advanced Microwave
Scanning Radiometer 2 (AMSR2), and SMAP Level 3
products. These products are specifically designed to
enhance the accuracy and spatial resolution for SSM esti-
mates across various land cover types, making them valu-
able for a wide range of hydrological and climatic
applications. Currently, there are only two sets of blended
SSM products: the Climate Change Initiative (CCI) and
the Soil Moisture Products System (SMOPS), which have
different data sources, merging methods, and time intervals
(Dorigo et al., 2017; Liu et al., 2016). The CCI product is
distinguished for its meticulous data quality control proce-
dures, which guarantee high accuracy and data reliability.
Conversely, SMOPS provides extended spatial and tempo-
ral coverage, broadening its applicability for diverse
research and monitoring purposes. The increased coverage
of blended products compared to single-sensor-based prod-
ucts such as SMAP and SMOS products can be beneficial
for studies that require a large sample size or that aim to
investigate regional or temporal soil moisture trends. Addi-
tionally, validation of the retrieved SSM is crucial for eval-
uating the performance of the retrieval algorithm and
identifying the sources of uncertainty (Gruber et al.,
2020). This can be achieved through comparison with
ground-based measurements or other satellite-based SSM
products. The validation process helps to establish confi-
dence in the accuracy and reliability of the data and sup-
ports various applications.

This study utilized blended SSM products from the ESA
CCI and NOAA SMOPS as reference data in comparison
to SMAP data for the CYGNSS SSM retrieval modeling.
The following discrepancies stand out from previous
research that used CYGNSS observations for SSM retrie-
val: (1) To make good use of blended SSM products with
higher accuracy and spatial coverage in comparison to
solely adopting SMAP or SMOS single-sensor-derived
SSM products as inversion reference data. (2) Utilizing
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the Chinese soil moisture automatic measurement network
stations for evaluation, a scaling strategy was used to
remove the systematic differences in the spatial mismatch
between the derived gridded SSM products and in-situ
measurements. (3) Can merged products with a higher spa-
tial resolution generate an accurate CYGNSS-based SSM
retrieval model? (4) Determine whether the current
CYGNSS-derived SSM can capture regional SSM dynam-
ics. We expect that the derived results will be scrutinized to
better understand the capabilities of spaceborne GNSS-R
terrestrial SSM remote sensing, which can improve current
coarse-scale satellite-based SSM products of radiometry
with successive development in the near future. Current
and future spaceborne GNSS-R missions can benefit and
improve retrieval algorithms for quantitatively mapping
global SSM for various applications. In the following Sec-
tion 2, the experimental dataset, retrieval approach, and
evaluation metrics are described, the main results and anal-
ysis are presented in Section 3, some discussions are shown
in Section 4, and finally the summary and findings are pro-
vided in Section 5.

2. Data and method

2.1. Dataset description

2.1.1. CYGNSS dataset

The CYGNSS is a satellite mission initiated by the
NASA to investigate tropical cyclones and the factors gov-
erning their intensity using GNSS-R. The mission consisted
of a constellation of eight small satellites orbiting in a same
orbital plane launched into a low Earth orbit in 2016. The
observation coverage encompasses latitudes ranging from
38� south to north. The CYGNSS dataset became accessi-
ble in March 2017, and the experiment outlined in this
study leverages CYGNSS Level-1 Version 2.1 data,
sourced from the Physical Oceanography Distributed
Active Archive Center (PO.DAAC, https://podaac-open-
dap.jpl.nasa.gov/opendap/allData/cygnss/L1/v2.1/), to
extract the parameters essential for SSM retrieval. Land
observations can be extracted from the product file using
the per-DDM quality flags parameter, furnished with 16-
bit flag masks. Invalid observation data is filtered out by
utilizing a combination of various flag bits, which include
criteria such as ‘‘S-band transmitter powered up,” ‘‘space-
craft attitude error,” ‘‘black body DDM,” ‘‘DDM is a test
pattern,” ‘‘direct signal in DDM,” and ‘‘low confidence in
the GPS EIRP estimate” (Chew and Small 2020).

2.1.2. SMAP dataset

The study uses the SMAP v008 Level-3 SSM product
downloaded from the National Snow and Ice Data Center,
which is updated daily with a 36 km � 36 km spatial reso-
lution gridded on the Equal-Area Scalable Earth Grids 2.0
(EASE-Grid2) grid. The SSM data from satellite descend-
ing (a.m.) and ascending (p.m.) passes, which were
recorded separately in the Level-3 product files, were com-
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bined by taking the average values to create a daily SMAP
SSM map, which were used for SSM retrieval modeling.
The valid range for SMAP SSM map is 0.02–0.5 cm3/
cm3. It is important to emphasize that we only used the
regions recommended by the data provider flag in the
metadata. The vegetation opacity (‘‘vegetation_opacity_d
ca”) in the SMAP product also undergo averaging for veg-
etation correction in the retrieval modelling (ONeill, Peggy
E. et al., 2021, p. 8).
2.1.3. SMOPS soil moisture product

The Soil Moisture Products System (SMOPS), devel-
oped by the National Oceanic and Atmospheric Adminis-
tration and the National Environmental Satellite Data
and Information Service (NOAA/NESDIS) center, pro-
vides high-quality soil moisture data for various purposes,
including weather forecasting, agriculture, and natural
resource management. The dataset combines SSM prod-
ucts from five satellites, including GPM, SMAP, GCOM-
W1, SMOS, and MetOp-B, resulting in enhanced accuracy
and spatial resolution for SSM estimates over global land.
SMOPS v3.0 provides daily blended products, with 0.25� �
0.25� grid SSM maps generated every 6 h and daily to meet
the needs of different users. The 6-hourly product is avail-
able in GRIB2 format at standard forecast times (00Z,
06Z, 12Z, and 18Z). The maps have almost full land cover-
age and can fill the gaps left by most currently available
single satellite soil-moisture products. The verification
accuracy of the product against ground station measure-
ments can reach 0.046 cm3/cm3 according to the Wang
et al. (2021). The SMOPS SSM map for January 1, 2018,
is shown in Fig. 1 to demonstrate the spatial coverage
and dynamic range of the data.
2.1.4. CCI soil moisture product

The Soil Moisture Climate Change Initiative (CCI) is
part of the European Space Agency’s (ESA) program for
monitoring essential climate variables. Starting in 2010,
the project produced updated soil moisture data every year
Fig. 1. SMOPS surface soil moist
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with an average accuracy of 0.042 cm3/cm3 compared with
in in-situ stations. The data had a spatial resolution of
0.25� � 0.25� grids, with 27.8 km resolution in the equator.
The dataset is a combination of SSM data derived from
various sensors and processed through distinct algorithms,
resulting in three separate SSM products from the active
sensors, passive sensors, and combined product (Dorigo
et al., 2017; Gruber et al., 2019). In this study, the com-
bined product (ESA CCI COMBINED v06.1) was used
as the reference data for the CYGNSS-based SSM retrieval
modeling. The CCI SSM map for January 1, 2018, is
shown in Fig. 2 to demonstrate the spatial coverage and
dynamic range of the data.

2.1.5. Other dataset

The vegetation layer mainly causes the attenuation of
the received power of the reflected GNSS signal. To decou-
ple the effects of vegetation and SSM on the observation
signals and increase the retrieval accuracy of the
CYGNSS-derived SSM, external vegetation parameter
data can be utilized directly to mitigate the vegetation
impact. Konings et al. (2017) developed an algorithm
called the multi-temporal dual-channel algorithm (MT-
DCA), which retrieves SSM and vegetation optical depth
from SMAP L1C brightness temperature products using
a robust estimation technique. The product is currently
accessible on 9 km and 36 km grids from April 2015 to July
2021. Although this is not an official product and did not
go through the same calibrating validation procedures as
the official SMAP criteria, it has been used effectively in
several recent studies to reveal the behavior of tropical for-
ests, semi-arid grasslands, and crops (data acquisition:
https://afeldman.mit.edu/mt-dca-data). In this study,
9 km � 9 km the EASE-Grid2 data products were
employed and resampled to the basic regular grid for veg-
etation correction in the CYGNSS SSM retrieval.
ure product at Jan 1st, 2018.

https://afeldman.mit.edu/mt-dca-data


Fig. 2. CCI surface soil moisture product on Jan 1st, 2018.

Z. Dong et al. Advances in Space Research 73 (2024) 456–473
2.1.6. In-situ measurements

Automatic soil moisture monitoring stations offer pre-
cise and continuous measurements of soil moisture across
multiple depth layers. The ground stations operate in real
time, providing valuable support for agricultural produc-
tion and hydrological applications. Currently, the China
Meteorological Administration has established Chinese
automated soil moisture network consisting of more than
2,000 stations spanning the mainland, achieving near
real-time uploading of measurements for data product inte-
gration. The published hourly element dataset of soil mois-
ture information included four soil state parameters:
volumetric water content, relative humidity, mass content,
and available water at different depths. The stations are
equipped with Frequency Domain Reflection (FDR) sen-
sors, which are utilized for the measurement of volumetric
water content. Simultaneously, the remaining three ele-
ments are computed through a combination of the
acquired data and the soil hydrological parameters. In this
study, quality control procedures were applied to in-situ
measurements taken at shallow depths of 0–10 cm with
hourly temporal resolution within the coverage of
CYGNSS (Saeedi et al., 2021). These measurements were
subsequently resampled at a daily scale and matched with
the gridded SSM products to evaluate the SSM inversion
model. Fig. 3 illustrates the spatial distribution of the soil
moisture monitoring stations within the China region that
were utilized in this study.
2.2. Methodology

2.2.1. Land GNSS-R observable

The spaceborne GNSS-R system collects scattered
power of GNSS signals from the Earth’s land surface to
infer various soil moisture conditions. The scattered power
is characterized by cross correlating the reflected signals
with the local replica code of the receiver. The DDM quan-
tifies the power distribution as a function of the time delay
and Doppler frequency shifts. It serves as the primary and
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fundamental observation derived from GNSS-R receivers.
The CYGNSS mission employs a 1 ms coherent integration
time to capture the signals, followed by an incoherent inte-
gration of 0.5 to 1 s to minimize the impact of speckle and
thermal noise. The Z-V model offers a useful approxima-
tion of the scattering mechanisms at the scattering surface
(Zavorotny et al., 2014), with ocean surfaces exhibiting
mainly incoherent scattering, whereas land surfaces tend
to exhibit coherent scattering originating from the specular
reflection direction. This study assumes that the land sur-
face is dominated by coherent reflection and that the first
Fresnel zones near the specular point are homogeneous.
The received power can be approximated by the free-
space propagation value modulated by the reflection coef-
ficient. The total bistatic radar system path length was cal-
culated as the sum of individual path lengths. The DDM
reflectivity, also known as the effective reflectivity, can be
determined through calibration using the radar equation
for a coherent signal.

CðhÞ ¼ ð4pÞ2Pcoh Rts þ Rrsð Þ2
k2GrP tGt

ð1Þ

where Pcoh is the received DDM peak power, P tGt indicates
the GNSS equivalent iso-tropically radiated power (EIRP),
P t is the GNSS satellite transmit power, Gt is the GNSS
satellite antenna gain, Gr is the gain of the GNSS-R recei-
ver antenna, k is the carrier wavelength of the GNSS signal,
Rts and Rrs are the distances from the GNSS transmitter to
the specular point and specular point to the receiver,
respectively, and h is the incidence angle of the signal. All
the pertinent parameters are encompassed within
CYGNSS Level-1 product file.

Effective reflectivity serves as a proxy for SSM, although
it can also be influenced by other non-relevant spatial and
temporal factors, including topography, surface roughness,
vegetation cover type, inland water. Hence, in GNSS-R soil
moisture retrieval, it becomes imperative to mitigate the
impact of these influencing factors to the greatest extent
feasible. Among these factors, the influence of surface veg-



Fig. 3. Distribution of Chinese automated soil moisture observation stations within the scope of CYGNSS mission.
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etation and surface roughness on effective reflectivity
stands out prominently. Through the incorporation of veg-
etation parameters and surface roughness parameters, the
effective reflectivity can be corrected using the following
method:

C ¼ RðhÞ2c2e �4k2s2cos2hð Þ ð2Þ
The exponential term on the right-hand side of the equa-

tion indicates surface roughness attenuation. k is the
wavenumber, s is the standard deviation of the surface
height, and h is the measurement incidence angle. The
weakening of the signal caused by vegetation, can be
expressed by the vegetation transmissivity c ¼ e�2ssech,
where s is the vegetation optical depth. It should be noted
that owing to the absence of reliable small-scale surface
roughness data and more refined corrective models, a sur-
face roughness correction method similar to the SMAP
SSM retrieval was applied to the CYGNSS SSM retrieval
but provided limited improvement. Therefore, only the
vegetation optical depth parameters provided by SMAP
and the estimated vegetation parameters in Konings et al.
(2017) were used to correct the CYGNSS effective reflectiv-
ity in relation to vegetation effects.
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2.2.2. Retrieval algorithm

In this study, the CYGNSS SSM retrieval algorithm
employs the space–time averaging approach to aggregate
the discrete effective reflectivity values calculated at individ-
ual specular points into a grid format, aligning them with
the reference SSM data. The semiempirical model was
developed through linear regression, involving the aggrega-
tion of corrected effective reflectivity values against the ref-
erence SSM at each grid cell. In the course of SSM retrieval
with CYGNSS measurements, we utilize the per-DDM
quality flags parameter provided by the CYGNSS Level-
1 data files to ensure the reliability of observations. Addi-
tionally, empirical quality control criteria are integrated
into the process: the delay bin of the DDM peak power
must fall within the 7–10 bin interval, the DDM SNR must
be at least 2 dB, the receiver antenna gain at the specular
point must be 0 dB or greater, and the specular incidence
angle must be less than 60�. The CYGNSS observation
geometry also affects the effective reflectivity; therefore, a
normalization method has been implemented to adjust
the effective reflectivity for different incidence angles to
the nadir direction (Al-Khaldi et al., 2019).

Fundamentally, the retrieval methodology hinges on
establishing a fitting regression model that correlates the
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selected reference SSM values from measurement systems
with the effective reflectivity deduced through GNSS-R.
Therefore, the CYGNSS-based SSM estimates will be lar-
gely limited by the retrieval performance of the reference
SSM source. In the aggregation and regridding step for
effective reflectivity, grid cells with fewer than 5 counts of
the average effective reflectivity were deemed invalid and
were not used in fitting the model. Moreover, grid cells
marked as urban, hilly, and inland water in the reference
product were omitted. Subsequently, a pixel-by-pixel linear
model was constructed using all accessible collocated train-
ing data. Using the established retrieval model, one can
predict daily SSM using the following equation:

MCYGNSS
v ¼ ACgridded þ B ð3Þ

where A is the coefficient matrix of the linear model, B is
the intercept matrix of the linear model, Cgridded is the grid-

ded GNSS-R effective reflectivity, and MCYGNSS
v represents

the predicted SSM from GNSS-R.
2.2.3. Scaling method

The spatial mismatch between coarse-resolution gridded
satellite SSM products and in-situ measurements is a criti-
cal challenge in the validation of satellite-based products.
Several studies building upon the temporal stability con-
cept introduced by the foundational research of Brocca
et al. (2011), based on in-situ measurements, have shown
that point-scale SSM time series can be indicative of
broader regions. This demonstrates that the temporal pat-
tern of local SSM measurements closely matches that of the
spatial average. However, despite the relative comparabil-
ity of temporal dynamics, systematic discrepancies between
satellite-derived products and in-situ measurements are
commonly observed, which are referred to as representa-
tiveness errors. Cumulative Density Function (CDF)
matching is one of the most common scaling methods used
to compare and adjust the differences between gridded
satellite remote sensing products and in-situ measurements
(Ma et al., 2019). This approach involves calculating the
CDF for each dataset and then aligning the two CDFs
by adjusting the satellite dataset to match the in-situ mea-
surements. The rescaled coarse-resolution SSM products
are subsequently applicable for further evaluation and
wider application. To implement the CDF matching
method, commence by computing the CDFs for both the
satellite dataset and in-situ measurements. Next, derive
the disparities between the two CDFs within each bin
and plot these differences against the satellite data. Subse-
quently, fit a polynomial function to calculate bias cor-
rected for the satellite dataset. The transformed satellite
data will retain the distribution of the in-situ measure-
ments, though the actual values will differ.
2.2.4. Experimental design
To evaluate the effectiveness of the blended SSM prod-

ucts within the CYGNSS SSM retrieval, two distinct exper-
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imental strategies were employed. Initially, the high-
accuracy CCI and SMOPS data were resampled and
regridded to the 36 km � 36 km EASE-Grid2 grid using
nearest neighbor interpolation, aligning them with the grid
used in the SMAP L3 SSM product. Furthermore, the CCI
and SMOPS datasets were screened based on the spatial
coverage of the recommended data in the SMAP product
with the same timestamp to align the different datasets.
This process enabled the evaluation of the impact of refer-
ence data quality on the retrieval results. Vegetation atten-
uation correction uses the vegetation opacity parameter
from the SMAP L3 product produced by the dual-
channel algorithm (ONeill, Peggy E. et al., 2021) to com-
pute the two-way transmissivity of the canopy applied
directly to the CYGNSS-derived grid point effective reflec-
tivity. The models generated using the SMAP, CCI, and
SMOPS reference data allowed for a comparison of the
performance of different datasets based on their corre-
sponding estimations. The 12-fold cross-validation was
used in the CYGNSS SSM retrieval modeling to evaluate
the performance of different reference data-generated
inversion models.

Next, the raw blended SMOPS and CCI SSM products
not only have high accuracy and spatial coverage but also
have higher spatial resolution compared to SMAP data. To
understand the capability of CYGNSS in generating higher
resolution SSM products, the CYGNSS SSM retrieval
model was developed using raw reference data products
with the original resolution of 0.25� � 0.25�. To align with
referenced blended data, individual specular effective reflec-
tivity from CYGNSS was projected onto a cylindrical grid
at a spatial resolution of 0.25� � 0.25� grids, resulting in an
approximate spatial resolution of 28 km within the tropics.
The model performance was also evaluated using a 12-fold
cross-validation.

2.2.5. Statistical analyses

Evaluating model performance holds paramount signif-
icance within satellite remote sensing research, often facili-
tated by the widely adopted k-fold cross-validation
method. This technique involves partitioning data into k
subsets, enabling iterative model training and evaluation.
In each iteration, a distinct subset is designated as the test
set, while the remaining k-1 subsets serve as the training
set. For this study, the value of k was set at 12, meaning
that each iteration utilized approximately 11 months of
data for training the SSM retrieval model and one month
for testing. Nevertheless, it’s important to acknowledge
that the lack of established core validation stations for
quality assessment of CYGNSS-derived SSM products pre-
sents a challenge in achieving absolute uncertainty mea-
surements, which is in contrast to the situation with
traditional radiometer and scatterometer products. In this
study, the evaluation outcomes primarily indicate whether
the retrieval results exhibit wetter or drier conditions com-
pared to in-situ measurements. The performance evalua-
tion of CYGNSS-derived SSM encompasses several
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standard skill metrics, including mean bias (bias), Mean
Absolute Error (MAE), Root-Mean-Square Deviation
(RMSD), Pearson correlation coefficient (R-value), and
unbiased-RMSD (ubRMSD).
3. Results and analysis

3.1. Accessibility of reference data sets

The quality and quantity of the reference data have a
significant impact on the accuracy of satellite-based
GNSS-R SSM retrieval modelling. To highlight the bene-
fits of the blended soil moisture product in terms of spatial
coverage, Fig. 4 shows the number of days in 2018 for
which individual reference data points were available from
the SMAP, SMOPS, and CCI SSM products, counted over
each grid pixel. Regarding the statistics presented here, it’s
Fig. 4. Distribution of the number of available days for each pixel of SMAP (a
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important to note that the SMAP data encompasses all
available data points, even those from tropical rainforest
areas. Nonetheless, it’s a common practice to solely utilize
recommended data points featuring low uncertainty in
applications. This practice leads to the masking of regions
that resemble undocumented areas within the CCI dataset.
However, in terms of spatial and temporal coverage, the
blended SSM products have a wider range than single-
sensor-based SMAP data. Among the blended products,
SMOPS exhibited the highest spatiotemporal coverage.
The CCI data volume decreases at high latitudes, which
is consistent with the characteristics of the individual prod-
ucts, as the generated CCI dataset has undergone meticu-
lous quality control within its merging algorithm (Dorigo
et al., 2015). The greater spatiotemporal coverage of the
blended products offers more training samples and proba-
bly provides a larger dynamic range within the space and
), SMOPS (b), and CCI (c) surface soil moisture products in the year 2018.
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time gaps in the SMAP data for GNSS-R SSM retrieval
modeling.
3.2. Model performance of higher accuracy blended SSM

products

Despite the inherent representativeness errors intro-
duced by upscaling, for the purpose of comparing the
higher-accuracy blended SSM products as reference data
for CYGNSS SSM retrieval modeling with the final
CYGNSS-derived estimates, the SSM maps from CCI
and SMOPS were resampled. This resampling ensured spa-
tial consistency with the SMAP data products. The spatial
coverage of both CCI and SMOPS was aligned with SMAP
data for the corresponding date, achieved through the
application of recommended valid SMAP data to establish
spatial masking. Utilizing the CYGNSS SSM retrieval
algorithm outlined in Section II, we constructed the retrie-
val model for performance evaluation, employing three dis-
tinct sources of reference data. Vegetation opacity
parameters were screened consistently with the reference
datasets and CYGNSS-derived gridded effective
reflectivity.

Table 1 presents the mean performance and overall stan-
dard deviation (STD) of predicted SSM values across the
12-fold cross-validation of the test dataset, as compared
to the corresponding reference data. All three retrieval
model predictions exhibit a mean bias near zero, with a
STD of 0.006 cm3/cm3 for SMAP, 0.004 cm3/cm3 for
SMOPS, and 0.005 cm3/cm3 for CCI, indicating that the
model predictions do not have a significant systematic bias.
The MAE for SMAP data-based retrieval model estima-
tions is 0.036 cm3/cm3 with a STD of 0.002 cm3/cm3, for
SMOPS is 0.021 cm3/cm3 with a STD of 0.001 cm3/cm3,
and for CCI is 0.033 cm3/cm3 with a STD of 0.003 cm3/
cm3. This shows that SMOPS-based model prediction has
the lowest MAE. The RMSD for SMAP is 0.054 cm3/
cm3 with a STD of 0.002 cm3/cm3, for SMOPS is
0.029 cm3/cm3 with a STD of 0.002 cm3/cm3, and for
CCI is 0.045 cm3/cm3 with a STD of 0.004 cm3/cm3. Given
the negligible bias in the predicted SSM values of all three
models, the ubRMSD closely resembles the RMSD, indi-
cating that the SMOPS-based model has the smallest unbi-
ased error. The R-value for SMAP is 0.905 with a STD of
0.008, for SMOPS is 0.926 with a STD of 0.009, and for
CCI is 0.892 with a STD of 0.019. SMOPS-based results
have the highest correlation coefficient, meaning it has
the highest linear relationship between predicted and refer-
ence values. In summary, the overall evaluation results
Table 1
The average skill metrics and standard deviation of 12-fold cross-validation o

Skill Metrics Bias (STD) MAE (STD)

SMAP 0.0002 (0.006) 0.036 (0.002)
SMOPS 0.0002 (0.004) 0.021 (0.001)
CCI 0.0001 (0.005) 0.033 (0.003)
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show that the SMOPS dataset generated retrieval model
have the best performance, followed by CCI, with the
worst results for SMAP.

The ensemble predicted SSM maps derived from each
fold test dataset were rigorously compared to the refer-
enced SSM maps, and the scatter density plot of spatiotem-
poral collocated grid point data pairs for individual
datasets is illustrated in Fig. 5. The density plots confirm
a strong agreement between the model predicted SSM
maps and the reference data. Notably, the scatter points
on both sides of the 1:1 diagonal line are evenly dispersed,
with density intensifying closer to the diagonal. Neverthe-
less, distinct differences remain apparent in the distribution
patterns within the three figures. The blended SSM match-
ing pairs demonstrate superior performance, displaying
enhanced alignment, whereas the SMAP result display
greater dispersion. Additionally, it’s noteworthy that the
SMAP products claimed a narrower valid range, spanning
from 0.02 cm3/cm3 to 0.5 cm3/cm3, whereas the SMOPS
and CCI data encompassed a broader valid range, from
0.0 cm3/cm3 to 1.0 cm3/cm3. The SSM pairs involving
SMOPS and the corresponding predicted outcomes exhib-
ited a tighter concentration within intervals compared to
the matching pairs involving CCI and SMAP. The statisti-
cal results for the corresponding data pairs agreed with the
average scores obtained over 12-fold cross-validation.

Fig. 6 shows the spatial maps of RMSD and R-value on
36 km � 36 km EASE-Grid2 grids of the SMAP-based,
SMOPS-based, and CCI-based models from all 12 itera-
tions of testing to determine the performance of each
model. These maps, presented in Fig. 6(a), (c), and (e), rep-
resent the spatial variability of the RMSD within the
CYGNSS coverage. Blue shading signifies lower RMSD
values, whereas red shading indicates higher RMSD values.
Notably, the models effectively captured the spatial distri-
bution characteristics of the SSM. Across arid regions,
SSM values exhibited subtle fluctuations and minimal
model errors. Conversely, in moist surface regions charac-
terized by substantial annual SSM variability, the predic-
tion accuracy of the model declined. The SMOPS-based
model consistently demonstrated reduced RMSD values
compared to the SMAP-based and CCI-based models.
The lowest values corresponded to areas with sparse vege-
tation, whereas the highest values were evident in densely
vegetated regions. This trend holds true for regions like
the Sudanian Savanna in western and central Africa, where
notable disparities in model performance are observed.
This region is covered with grassland and woodland, where
receives an average of 600–800 mm of rainfall per year. In
f retrieval models from EASE-Grid2 grid reference data (cm3/cm3).

RMSD (STD) R (STD) ubRMSD (STD)

0.054 (0.002) 0.905 (0.008) 0.054 (0.002)
0.029 (0.002) 0.926 (0.009) 0.029 (0.002)
0.045 (0.004) 0.892 (0.019) 0.045 (0.004)



Fig. 5. Scatter density plot of ensemble data pairs from the model-predicted surface soil moisture from the test dataset, and referenced SMAP (a), SMOPS
(b), and CCI (c) data.

Fig. 6. Spatial distribution of the RMSD and correlation coefficient of three models based on SMAP (a, b), SMOPS (c, d), and CCI (e, f).
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addition, the southern part of China revealed a relatively
large difference among the three models. As for the R-
value maps, prevailing lower R-values were observed
across most arid regions, while wet areas displayed higher
R-values. SMOPS-based model exhibited superior perfor-
mance compared to the other two models, as depicted in
Fig. 6(b), (d), and (f). The observed differences in model
performance can be primarily attributed to the reference
data and resampling algorithm employed. This underscores
the critical significance of judiciously selecting reference
data and employing suitable resampling techniques to
ensure accurate evaluation of SSM retrieval model
performance.
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Temporal performance was further evaluated through
quantification using daily bias, MAE, RMSD, ubRMSD,
and correlation across 12-fold cross-validation for different
reference data, as illustrated in Fig. 7 (a). The performance
of the three models closely aligns with the ensemble aver-
age statistics mentioned earlier. Consistently, SMOPS
demonstrated superior performance, followed by CCI, with
SMAP showing the worst performance. All three models
exhibited minimal bias, hovering around 0.0 cm3/cm3.
Consequently, the time series of daily RMSD and
ubRMSD demonstrated similarity across all three models.
Among the three models, SMOPS exhibited the lowest val-
ues for MAE, RMSD, and ubRMSD, maintaining stability



Fig. 7. Temporal skill metrics comparison between the estimated surface soil moisture from the testing dataset and referenced gridded data (a), and in-situ
measurements data (b).
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throughout the year. CCI and SMAP closely followed,
with a similar performance trend. Nevertheless, for the
R-value of the blended SSM dataset, CCI and SMOPS dis-
played a more pronounced overall decreasing trend
between July and October.
3.3. Validation by in-situ measurements

The evaluation of the generated models was conducted
using independent in-situ measurements on a daily basis.
To ensure accurate comparisons, a rescaling method was
applied to eliminate systematic errors caused by the differ-
ences in spatial resolution between the predicted gridded
data and point-scale station measurements. As depicted
in Fig. 8, a noteworthy systematic deviation is evident in
Fig. 8. Daily mean surface soil moisture time series of Chinese automated soi
SMAP-based model, SMOPS-based model, and CCI-based model.
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the daily average SSM time series obtained from the auto-
matic observation stations in China, in contrast to the cor-
responding daily average time series of SSM derived from
direct predictions by different models at collocated loca-
tions. The study employed the CDF matching method for
this purpose. First, the CDF was computed for the pre-
dicted gridded SSM data obtained from the three retrieval
models, as well as for the in-situ measurements. Both sets
of data were calculated within the same bins. Then, a
fifth-order polynomial was employed to fit CDF values
of the gridded SSM and the differences between the CDF
of gridded data and in-site measurements. This polynomial
was then applied as a transformation on the satellite data,
effectively establishing a mapping between the gridded
SSM values and their corresponding rescaled counterparts.
l moisture observation stations and collocated gridded soil moisture from
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As shown in Fig. 9, the transformed satellite data exhibited
and identical distribution to the in-situ measurements. This
outcome confirms the suitability of the chosen polynomial
degree for fitting. The results show that the CDF matching
method is a robust approach to overcoming the issue of the
spatial resolution difference between the sparse gridded
data and the in-situ measurement.

Spatiotemporal collocation was conducted on rescaled
SSM data derived from the model outputs and in-situ mea-
surements within southern China, serving as the basis for
regional evaluation. Three sets of predicted gridded SSM
data were collocated with station measurements within in
the same grid pixel, yielding around 130,000 data pairs
for each set. These data pairs were depicted in a scatter
density plot, as shown in Fig. 10, offering a visual represen-
tation of the distribution of both predicted and measured
SSM values. The scatter density plots unveiled a positive
correlation between all three model-predicted outcomes
and the in-situ measurements, with the majority of match-
ing points clustered on the 1:1 diagonal. For each set of
data pairs, the correlation coefficient was computed, fur-
nishing a quantifiable gauge of the association between
the predicted and measured values. The calculated R-
values for the SMAP, SMOPS, and CCI-based model esti-
mations were 0.346, 0.384, and 0.362, respectively. These
results suggest that the SMOPS-based model predictions
exhibit the strongest correlation with the in-situ measure-
ments, closely followed by the CCI-based model. Further-
more, the MAE and RMSD values were calculated for
each model, offering an overview of the overall difference
between the predicted and measured SSM. The calculated
MAEs for the SMAP, SMOPS, and CCI models were
0.084, 0.082 and 0.083 cm3/cm3 respectively. Correspond-
ingly, the RMSDs for the SMAP, SMOPS, and CCI mod-
els were 0.107, 0.104 and 0.106 cm3/cm3 respectively. The
results suggest that the SMOPS-based model exhibit the
smallest overall disparities between predicted and in situ
measurements. To summarize, the results strongly imply
that the SMOPS model outperformed the others in SSM
Fig. 9. Cumulative Distribution Function (CDF) matching results of the pre
between SMAP-based model (a), SMOPS-based model (b), and CCI-based m
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prediction, boasting the highest correlation coefficient
along with the lowest MAE and RMSD values. The CCI
model also performed commendably, although not at par
with the top performing SMOPS model, while the SMAP
model displayed the least favorable performance.

Spatial performance evaluation of the models was con-
ducted by using in-situ measurements aligned within the
same grid pixels, as depicted in Fig. 11. The RMSD map
portrays the spatial distribution of the RMSD across
southern China, highlighting prevalent high RMSD values
across numerous regions and a generally low correlation
coefficient. This implies that the models do not effectively
predict SSM in these regions. Nevertheless, it’s crucial to
acknowledge that this result doesn’t solely stem from the
CYGNSS observation and retrieval technique. Upon com-
paring reference data with the station measurements, it
became evident that the performance of reference data in
southern China mirrored the same pattern. These findings
indicate that further improvements are necessary in the
CYGNSS SSM retrieval model, specifically using high-
quality reference data in China.

Moreover, the temporal performance of the model-
predicted gridded SSM compared with in relation to in-
situ measurements is portrayed in Fig. 7 (b). The daily R-
values and errors, presented as scatter density plots, tended
to be consistent across the three sets of model predictions
against ground station measurements. However, a higher
degree of variability was observed in comparison to the
outcomes between the model predictions and the reference
gridded values. These fluctuations in correlation and error
could potentially be influenced by variations in sample size
across different time periods.

To further validate the performance of the retrieval
model, a scatter density plot of collocated in-situ measure-
ments and SSM products from SMAP, SMOPS, and CCI
under the EASE-Grid2 grid is presented in Fig. 12. The
scatter density plots demonstrate that the three reference
datasets yielded outcomes closely resembling the predic-
tions of the model generated gridded SSM. Among the ref-
dicted soil surface moisture from the test dataset using a retrieval model,
odel (c), compared to spatial and in-situ measurements.



Fig. 10. Scatter density plot illustrating the relationship between rescaled soil moisture values from SMAP-based model output (a), SMOPS-based model
output (b), and CCI-based model output (c), and in-situ measurement data pairs.

Fig. 11. Comparison of the RMSD and correlation coefficient of three models based on SMAP (a, d), SMOPS (b, e), and CCI (c, f), evaluated using
collocated in-situ measurements.

Fig. 12. Scatter density plot illustrating the relationship between rescaled soil moisture values from SMAP (a), SMOPS (b), and CCI (c) products, and in-
situ measurement data pairs.
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erence datasets, SMOPS exhibited the highest correlation
coefficient along with the lowest MAE and RMSD values
when compared to the in-situ measurements. The R-value
for SMAP, SMOPS, and CCI data were 0.423, 0.466,
and 0.455, respectively. While the RMSD values were
slightly higher overall when compared to the respective
model-predicted data, this discrepancy was primarily
attributed to the considerably larger number of matched
data pairs. This is due to the fact that the blended products
were not subjected to the same spatial coverage screening
as the SMAP data. Nonetheless, the statistics are sufficient
to demonstrate that the SSM retrieved by the CYGNSS-
retrieved SSM can reach levels comparable to those of tra-
ditional remote sensing techniques. Furthermore, the
statistics also highlight the impact of the accuracy of the
reference data on the modeling process.
3.4. Model performance using original resolution blended soil

moisture products

As demonstrated by the modeling and prediction results,
incorporating high-accuracy blended SSM data can
enhance the accuracy of CYGNSS SSM retrieval model.
Furthermore, the blended SSM product also offers broader
spatial and temporal coverage, which effectively reduces the
daily space–time gaps through data fusion in comparison
with SSM products from SMAP or SMOS. By regridding
the CYGNSS-derived effective reflectivity into a 0.25� �
0.25� grid, which is used by both blended products, the full
potential of the blended SSM product can be utilized for
modeling purposes. The 9 km � 9 km EASE-Grid2 raw
vegetation optical depth data were resampled using nearest
neighbor interpolation, upscaling it to a 0.25� � 0.25� reg-
ular grid for CYGNSS SSM retrieval vegetation attenua-
tion correction.

The average model performances using SMOPS and
CCI over 12 iterations are presented in Table 2. The eval-
uation demonstrated that the SMOPS model outperformed
the CCI model in terms of bias, MAE, RMSD, and
ubRMSD. Specifically, the SMOPS model had a bias of
0.0002 cm3/cm3, MAE of 0.020 cm3/cm3, RMSD of
0.028 cm3/cm3, and ubRMSD of 0.028 cm3/cm3, while
the CCI model had a bias of 0.0 cm3/cm3, MAE of
0.031 cm3/cm3, RMSD of 0.042 cm3/cm3, and ubRMSD
of 0.042 cm3/cm3. Furthermore, the SMOPS model exhib-
ited a superior R-value of 0.930 compared with 0.906 for
the CCI model. Moreover, all skill metrics displayed very
low standard deviations, indicating that the models were
stable. Compared to outcomes achieved through the
36 km � 36 km EASE-Grid2 grid retrieval model, the
Table 2
The average skill metrics and standard deviation of 12-fold cross-validation o

Skill Metrics Bias (STD) MAE (STD)

SMOPS 0.0002 (0.002) 0.020 (0.001)
CCI 0.0000 (0.004) 0.031 (0.002)
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model established using the original resolution blended
product demonstrated enhanced accuracy across all skill
metrics. Overall, the SMOPS model outperformed the
CCI model for both the spatial references. And the accu-
racy of the model was further enhanced under the original
higher spatial resolution of the reference data. The scatter
density plots of the model predictions from each fold
cross-validation test dataset and reference data over grid
points were very close to those in Fig. 5.

Following the CDF matching process of the SSMs pre-
dicted in each fold of the model cross-validation with the
in-situ measurements, and subsequent spatiotemporal
alignment with the station measurements, the scatter den-
sity plot illustrating the data pairs resulting from this
matching is presented in Fig. 13. The original SMOPS-
based and CCI-based models exhibit comparable predic-
tion accuracies, evident through their similar RMSD values
of 0.113 cm3/cm3 and 0.108 cm3/cm3, respectively. Given
the consistency of the spatiotemporal performance with
the EASE-Grid2 grid, no further analysis was pursued in
this regard.
4. Discussion

This study highlights the potential enhancement of using
a blended SSM product as the ground reference for
CYGNSS SSM retrieval modeling. In Fig. 14, a compar-
ison is presented regarding the spatial performance of the
predicted SSM from the retrieval models and the blended
SMOPS and CCI products. The results, averaged for Jan-
uary 2018, illustrate that the retrieval models produced
SSM estimates that exhibited a stronger alignment with ref-
erence data. While deviations were generally modest across
the majority of regions, notable distinctions in performance
between the SMOPS- and CCI-based models were
observed, particularly in the Sudanian Savanna, where
SMOPS outperformed CCI. The consistently low bias
levels observed in all three models, fluctuating around
0.0 cm3/cm3, underscore the accuracy of the developed
models. Furthermore, the daily time series of RMSD and
ubRMSD for the three models exhibited considerable sim-
ilarity, further accentuating their accuracy. The SMOPS-
based model had the smallest MAE, RMSD, and
ubRMSD metrics, and remained stable throughout the
year. The CCI and SMAP performed similarly, with the
correlation coefficient showing a declining trend between
July and October, suggesting a potential impact of seasonal
variation on their performance. In summary, the results
show that the SMOPS-based model is the superior model
f raw blended product formed models (cm3/cm3).

RMSD (STD) R (STD) ubRMSD (STD)

0.028 (0.001) 0.930 (0.007) 0.028 (0.002)
0.042 (0.003) 0.906 (0.014) 0.042 (0.002)



Fig. 13. Scatter density plot showing the relationship between rescaled soil moisture from SMOPS (b), and CCI-based (c) model prediction under raw
spatial resolution and in-situ measurement data pairs.

Fig. 14. The difference of monthly averaged SMOPS and CCI based model predicted surface soil moisture and corresponding reference data for the month
of January 2018 with 0.25� � 0.25� spatial resolution.
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among the three, whereas CCI and SMAP have compara-
ble performances.

In certain regions, the accuracy of the CYGNSS-derived
SSM is compromised due to various factors. Despite ongo-
ing debates regarding the precise spatial resolution of
CYGNSS observations, consensus suggests that it sur-
passes the resolutions of the two reference grids used in this
study. The existence of heterogeneities within the grid pix-
els, such as disparities in topography, vegetation, and even
small bodies of water, can cause significant representative
errors. Previous studies have indicated that implementing
roughness correction utilizing roughness coefficients from
the SMAP product did not yield a significant impact on
CYGNSS-derived SSMs. This outcome might stem from
many factors, including the accuracy of the correction
model, noise inherent in CYGNSS effective reflectivity,
data aggregation during regridding, and spatial and tempo-
ral variability present within grid pixels. These factors col-
lectively contribute to diminishing the efficacy of surface
attenuation correction. However, in the theoretical simula-
tion study, it is evident that surface roughness exerts sub-
stantial influence on the GNSS scattering signal
(Balakhder et al., 2019); therefore, the surface small-scale
roughness needs to be considered in the subsequent space-
borne GNSS-R SSM inversion focus.

When assessed against measurements from Chinese
automated soil moisture observation stations, the models
exhibited a slightly diminished performance in comparison
to prior modeling and assessment studies that relied on
measurements from the International Soil Moisture Net-
work (ISMN) sites (Senyurek et al., 2020). The comparison
between the model predictions, raw reference product, and
in-situ measurements unveiled that the dissimilarity was
primarily due to inadequate calibration of the original ref-
erence data within the Chinese region. The spatial distribu-
tion of the correlation coefficients, calculated from the
gridded CYGNSS-derived daily effective reflectivity and
Fig. 15. Correlation coefficient between CYGNSS-derived gridded effec-
tive reflectivity and collocated in-situ measurements.
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spatiotemporally matched station measurements in each
grid pixel, is displayed in Fig. 15. The CYGNSS-derived
SSMs were calibrated linearly from the CYGNSS-derived
effective reflectivity. The correlation coefficients exhibited
a more favorable distribution compared to the outcomes
presented in Fig. 11, providing additional validation to
the aforementioned observation. Furthermore, the subopti-
mal model performance can also be attributed to dissimi-
larities in station selection. While previous studies
meticulously chose ISMN stations, our approach encom-
passed all stations within the CYGNSS mission coverage.
The geographical features of the wetter southern region
of China, characterized by a larger distribution of vegeta-
tion, developed water systems, and urbanization, as
depicted in the natural surface map of the Chinese region
in Fig. 1, significantly impact the ultimate model perfor-
mance as well.

Constructing the retrieval models at the native spatial
resolution of the blended products led to enhanced perfor-
mance compared to when the reference data were resam-
pled to the 36 km � 36 km EASE-Grid2 grid.
Nevertheless, the evaluation results based on station mea-
surements revealed a decline in accuracy, potentially influ-
enced by the correction for vegetation attenuation. When
the retrieval model was constructed using the full reference
data without any correction for vegetation attenuation, the
results of the cross-validation were in line with the findings
presented in Table 2. This indicates that vegetation attenu-
ation can be disregarded as noise in the modeling process
when a larger amount of training data is available. Previ-
ous studies have showcased the rigorous quality control
procedures applied to CCI data, leading to SSM products
of superior accuracy compared to SMOPS. However, in
this case, the model’s performance using the SMOPS refer-
ence data was superior. This underscores the need to care-
fully deliberate on the trade-offs between the quality
control rigor of the CCI product and the extended spatial
and temporal coverage provided by the SMOPS product.
Larger training samples generally lead to improved perfor-
mance by supplying the model with a broader array of
diverse and representative instances for learning. While
low uncertainty and small samples might contain fewer
outliers or errors that could negatively affect the perfor-
mance of the retrieval model, they may not adequately cap-
ture the underlying patterns and relationships intrinsic to
the data.

Space-based GNSS-R remote sensing has the unique
advantage of high spatial and temporal resolutions, mak-
ing it promising for obtaining high-resolution SSM data-
sets and assimilating them into other merged high spatial
and temporal resolution products. Although the CYGNSS
mission was not primarily designed for land remote sensing
applications and the spatial coverage of the inversion
results was influenced by the quality of the CYGNSS
observations and its quality control strategy, the use of
blended SSM products in this study as the ground reference
true values for inversion modeling can further improve the
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accuracy of the model, and the predicted SSM exhibited a
comparable performance to the reference data. This study
can motivate the continued development of dedicated satel-
lite missions for GNSS-R land SSM retrieval, which will
greatly improve the spatial and temporal coverage of
SSM measurements.

5. Conclusion

This study examined CYGNSS-based SSM retrieval
models using three reference datasets: SMAP, SMOPS,
and CCI. Model performance was evaluated using in situ
measurements resampled on a daily scale. The study aims
to identify the optimal reference dataset for the SSM retrie-
val algorithm by comparing their effects on the model.
Employing a CDF matching method, the study eliminates
systematic errors arising from spatial resolution differences
between the gridded CYGNSS-derived SSM predicted by
the model and in situ measurements. To evaluate the retrie-
val accuracy when utilizing the blended SSM product as
the reference value in the modeling, the study employed
the blended SSM at its original spatial resolution (0.25�
� 0.25� regular grid) and also at a reduced spatial resolu-
tion (36 km � 36 km EASE-Grid2 grid).

The results indicate that the model predicted SSM effec-
tively captured the spatial variation at both spatial resolu-
tions. The SMAP-based model exhibited the least favorable
performance, characterized by elevated RMSD values
across multiple regions and a comparatively low correla-
tion coefficient with the EASE-Grid2 grid. The study
revealed that the retrieval models exhibited higher accuracy
when constructed using the native spatial resolution of the
blended products, as opposed to when the reference data
were resampled to the lower 36 km � 36 km EASE-
Grid2 grid. Among the models tested, the SMOPS-based
model demonstrated the strongest correlation coefficient
(0.930) and smallest RMSD (0.028 cm3/cm3), followed by
the CCI-based model (R = 0.906 and RMSD = 0.042 c
m3/cm3). Upon evaluating the constructed inversion mod-
els against in-situ measurements, it was observed that all
three model predictions exhibited a positive correlation
with the measurements. Nevertheless, when assessed using
data from Chinese automated soil moisture observation
stations, the models displayed slightly diminished perfor-
mance in comparison to previous studies that relied on
ISMN site measurements. This difference was primarily
due to the insufficient calibration of the original reference
data in the Chinese region. In summary, the most precise
SSM retrieval model was established using the blended
SMOPS SSM product. While the outcomes of the
CYGNSS mission underscore its substantial potential, it
is imperative to pursue further enhancements, particularly
by incorporating high-quality reference data from China,
to attain heightened accuracy and reliability in results.
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Hasan, S., Montzka, C., Rüdiger, C., Ali, M., R. Bogena, H., Vereecken,
H., 2014. Soil moisture retrieval from airborne L-band passive
microwave using high resolution multispectral data. ISPRS Journal
of Photogrammetry and Remote Sensing 91, 59–71. https://doi.org/
10.1016/j.isprsjprs.2014.02.005.

Jia, Y., Jin, S., Chen, H., Yan, Q., Savi, P., Jin, Y., Yuan, Y., 2021.
Temporal-spatial soil moisture estimation from CYGNSS using
machine learning regression with a preclassification approach. IEEE
J. Sel. Top. Appl. Earth Observations Remote Sens. 14, 4879–4893.
https://doi.org/10.1109/JSTARS.2021.3076470.

Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F.,
Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C., Juglea,
S.E., Drinkwater, M.R., Hahne, A., Martı́n-Neira, M., Mecklenburg,
S., 2010. The SMOS mission: New tool for monitoring key elements
ofthe global water cycle. Proc. IEEE 98, 666–687. https://doi.org/
10.1109/JPROC.2010.2043032.

Konings, A.G., Piles, M., Das, N., Entekhabi, D., 2017. L-band
vegetation optical depth and effective scattering albedo estimation
from SMAP. Remote Sens. Environ. 198, 460–470. https://doi.org/
10.1016/j.rse.2017.06.037.

Lei, F., Senyurek, V., Kurum, M., Gurbuz, A.C., Boyd, D., Moorhead,
R., Crow, W.T., Eroglu, O., 2022. Quasi-global machine learning-
based soil moisture estimates at high spatio-temporal scales using
CYGNSS and SMAP observations. Remote Sens. Environ. 276.
https://doi.org/10.1016/j.rse.2022.113041 113041.
473
Liu, J., Zhan, X., Hain, C., Yin, J., Fang, L., Li, Z., Zhao, L., 2016. In:
NOAA Soil Moisture Operational Product System (SMOPS) and Its
Validations. IEEE, Beijing, China, pp. 3477–3480. https://doi.org/
10.1109/IGARSS.2016.7729899.

Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M.H., Wang, W., 2019.
Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA
CCI: A comprehensive assessment using global ground-based obser-
vations. Remote Sens. Environ. 231. https://doi.org/10.1016/j.
rse.2019.111215 111215.

Nabi, M.M., Senyurek, V., Gurbuz, A.C., Kurum, M., 2022. Deep
learning-based soil moisture retrieval in CONUS using CYGNSS
delay-doppler maps. IEEE J. Sel. Top. Appl. Earth Observations
Remote Sens. 15, 6867–6881. https://doi.org/10.1109/
JSTARS.2022.3196658.

ONeill, Peggy E., Chan, Steven, Njoku, Eni G, Jackson, Tom, Bindlish,
Rajat, Chaubell, M. Julian, 2021. SMAP L3 Radiometer Global Daily
36 km EASE-Grid Soil Moisture, Version 8. https://doi.org/10.5067/
OMHVSRGFX38O.

Rose, R., Gleason, S., Ruf, C., 2014. The NASA CYGNSS mission: a
pathfinder for GNSS scatterometry remote sensing applications, in:
Bostater, C.R., Mertikas, S.P., Neyt, X. (Eds.). Presented at the SPIE
Remote Sensing, Amsterdam, Netherlands, p. 924005. https://doi.org/
10.1117/12.2068378.

Saeedi, M., Sharafati, A., Tavakol, A., 2021. Evaluation of gridded soil
moisture products over varied land covers, climates, and soil textures
using in situ measurements: A case study of Lake Urmia Basin. Theor.
Appl. Climatol. 145, 1053–1074. https://doi.org/10.1007/s00704-021-
03678-x.

Senyurek, V., Lei, F., Boyd, D., Gurbuz, A.C., Kurum, M., Moorhead,
R., 2020. Evaluations of Machine Learning-Based CYGNSS Soil
Moisture Estimates against SMAP Observations. Remote Sens. (Basel)
12, 3503. https://doi.org/10.3390/rs12213503.

Senyurek, V., Lei, F., Boyd, D., Kurum, M., Gurbuz, A.C., Moorhead,
R., 2020. Machine learning-based CYGNSS soil moisture estimates
over ISMN sites in CONUS. Remote Sens. (Basel) 12, 1168. https://
doi.org/10.3390/rs12071168.

Tsegaye, T.D., Tadesse, W., Coleman, T.L., Jackson, T.J., Tewolde, H.,
2004. Calibration and modification of impedance probe for near
surface soil moisture measurements. Can. J. Soil Sci. 84, 237–243.
https://doi.org/10.4141/S03-069.

Wang, Y., Leng, P., Peng, J., Marzahn, P., Ludwig, R., 2021. Global
assessments of two blended microwave soil moisture products CCI and
SMOPS with in-situ measurements and reanalysis data. Int. J. Appl.
Earth Obs. Geoinf. 94. https://doi.org/10.1016/j.jag.2020.102234
102234.

Wang, L., Qu, J.J., 2009. Satellite remote sensing applications for surface
soil moisture monitoring: A review. Front Earth Sci. China 3, 237–247.
https://doi.org/10.1007/s11707-009-0023-7.

Yan, Q., Huang, W., 2016. Spaceborne GNSS-R sea ice detection using
delay-doppler maps: First results from the U.K. TechDemoSat-1
mission. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 9,
4795–4801. https://doi.org/10.1109/JSTARS.2016.2582690.

Yan, Q., Huang, W., Jin, S., Jia, Y., 2020. Pan-tropical soil moisture
mapping based on a three-layer model from CYGNSS GNSS-R data.
Remote Sens. Environ. 247. https://doi.org/10.1016/j.rse.2020.111944
111944.

Yueh, S.H., Shah, R., Chaubell, M.J., Hayashi, A., Xu, X., Colliander, A.,
2022. A semiempirical modeling of soil moisture, vegetation, and
surface roughness impact on CYGNSS reflectometry data. IEEE
Trans. Geosci. Remote Sens. 60, 1–17. https://doi.org/10.1109/
TGRS.2020.3035989.

Zavorotny, V.U., Gleason, S., Cardellach, E., Camps, A., 2014. Tutorial
on remote sensing using GNSS bistatic radar of opportunity. IEEE
Geosci. Remote Sens. Mag. 2, 8–45. https://doi.org/10.1109/
MGRS.2014.2374220.

https://doi.org/10.1016/j.rse.2014.07.023
https://doi.org/10.1016/j.rse.2017.07.001
https://doi.org/10.1016/j.rse.2017.07.001
https://doi.org/10.1109/JPROC.2010.2043918
https://doi.org/10.1109/JPROC.2010.2043918
https://doi.org/10.3390/rs11192272
https://doi.org/10.3390/rs11192272
https://doi.org/10.1002/2015GL064204
https://doi.org/10.1002/2015GL064204
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.1016/j.rse.2020.111806
https://doi.org/10.1016/j.rse.2020.111806
https://doi.org/10.1109/JSTARS.2021.3076470
https://doi.org/10.1109/JPROC.2010.2043032
https://doi.org/10.1109/JPROC.2010.2043032
https://doi.org/10.1016/j.rse.2017.06.037
https://doi.org/10.1016/j.rse.2017.06.037
https://doi.org/10.1016/j.rse.2022.113041
https://doi.org/10.1109/IGARSS.2016.7729899
https://doi.org/10.1109/IGARSS.2016.7729899
https://doi.org/10.1016/j.rse.2019.111215
https://doi.org/10.1016/j.rse.2019.111215
https://doi.org/10.1109/JSTARS.2022.3196658
https://doi.org/10.1109/JSTARS.2022.3196658
https://doi.org/10.1007/s00704-021-03678-x
https://doi.org/10.1007/s00704-021-03678-x
https://doi.org/10.3390/rs12213503
https://doi.org/10.3390/rs12071168
https://doi.org/10.3390/rs12071168
https://doi.org/10.4141/S03-069
https://doi.org/10.1016/j.jag.2020.102234
https://doi.org/10.1007/s11707-009-0023-7
https://doi.org/10.1109/JSTARS.2016.2582690
https://doi.org/10.1016/j.rse.2020.111944
https://doi.org/10.1109/TGRS.2020.3035989
https://doi.org/10.1109/TGRS.2020.3035989
https://doi.org/10.1109/MGRS.2014.2374220
https://doi.org/10.1109/MGRS.2014.2374220

	Retrieval and evaluation of surface soil moisture from CYGNSS �using blended microwave soil moisture products
	1 Introduction
	2 Data and method
	2.1 Dataset description
	2.1.1 CYGNSS dataset
	2.1.2 SMAP dataset
	2.1.3 SMOPS soil moisture product
	2.1.4 CCI soil moisture product
	2.1.5 Other dataset
	2.1.6 In-situ measurements

	2.2 Methodology
	2.2.1 Land GNSS-R observable
	2.2.2 Retrieval algorithm
	2.2.3 Scaling method
	2.2.4 Experimental design
	2.2.5 Statistical analyses


	3 Results and analysis
	3.1 Accessibility of reference data sets
	3.2 Model performance of higher accuracy blended SSM products
	3.3 Validation by in-situ measurements
	3.4 Model performance using original resolution blended soil moisture products

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


