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A B S T R A C T

The satellite-based Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a promising 
technique for detecting surface soil moisture (SSM), which plays a pivotal role in various applications. Different 
approaches have been developed for SSM retrieval, including parametric semi-empirical models and non- 
parametric machine learning methods. This study, however, specifically focuses on constructing and evalu
ating semi-empirical fit models. To this end, the study compares the effectiveness of our enhanced pixel-by-pixel 
model, the land cover-based linear model, and the Reflectivity-Vegetation-Roughness (R-V-R) model across 
different land surface types, aiming to both evaluate their efficacy and identify potential limitations. In the 
assessment, various factors were taken into consideration, such as the correction for vegetation and roughness 
attenuation, fitting functions employed, and the utilization of a lookup table (LUT). The results of the evaluation 
showed variations in the performance of the retrieval models across different land cover types, highlighting the 
impact of the choice of fitting functions and attenuation correction strategies on the accuracy of soil moisture 
retrieval. The pixel-by-pixel model demonstrated the highest prediction accuracy, with an unbiased root mean 
square difference (ubRMSD) of 0.056 cm3/cm3 and a correlation coefficient of 0.896. By showcasing these 
outcomes, this research underscores the significance of accounting for surface conditions and integrating relevant 
data to enhance the accuracy of GNSS-R SSM retrieval, thereby contributing to the advancement of SSM 
monitoring methodologies.

1. Introduction

Soil moisture information is essential for diverse applications, such 
as water resource management, agricultural productivity enhancement, 
weather forecasting, and ecological health monitoring, underscoring the 
need for accurate and reliable remote sensing retrieval methods [1]. 
Conventional in situ measurements conducted on the ground are 
capable of delivering accurate soil moisture data only at a localized 
point, thereby generating sparse data that is insufficient for regional or 
global-scale applications [2]. On the other hand, satellite remote sensing 
has progressed over the last two decades and is a more efficient method 
of detecting surface soil moisture (SSM) at global scales. However, the 
limitations of early-stage shortwave-based optical remote sensing and 
thermal infrared remote sensing based on surface latent heat effects 

make it difficult to provide accurate and quantitative SSM products with 
high spatial and temporal resolution from individual sensors [3,4]. The 
successful estimation of SSM has been achieved through the subsequent 
advancement of microwave remote sensing operating at lower fre
quencies, enabling the monitoring of the dielectric constant of the near- 
surface soil layer, which is directly correlated with water content [5–7]. 
Furthermore, microwave active and passive sensors offer the advantage 
of continuous, all-weather operation, with 24/7 data collection capa
bilities, making them particularly well-suited for persistent SSM moni
toring. As satellite antenna technology develops, specialized L-band soil 
moisture monitoring satellite missions such as Soil Moisture and Ocean 
Salinity (SMOS) [8] and Soil Moisture Active Passive (SMAP) [9] have 
been successfully launched. These satellites provide unprecedented 
global datasets, significantly impacting various fields. However, the 
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rotation difference between satellites and Earth can result in strip-gap 
regions, necessitating gap-filling methods to update products in these 
areas [10].

In the past decade, spaceborne Global Navigation Satellite System- 
Reflectometry (GNSS-R) has exhibited considerable potential in 
remotely sensing geophysical surface parameters, thereby highlighting 
its capacity as an innovative data source for monitoring SSM [11–14]. 
This technique leverages the reflected GNSS signals from the Earth’s 
surface to provide a cost-effective alternative to the deployment of 
satellite-based GNSS-R observation systems. The GNSS-R receiver pro
cesses the reflected GNSS signal into a 2-Dimensional Delay Doppler 
Map (DDM), which serves as a fundamental observation for spaceborne 
GNSS-R missions. Compared to dedicated radiometer missions, this 
approach offers enhanced efficiency, cost-effectiveness, and high 
spatiotemporal resolution, making it a desirable supplement to con
ventional SSM remote sensing techniques. By integrating the spaceborne 
GNSS-R technique, the capability and performance of SSM retrieval in 
earth science can be enhanced, providing new opportunities for 
improved understanding of SSM dynamics.

The Cyclone Global Navigation Satellite System (CYGNSS), launched 
by the National Aeronautics and Space Administration (NASA), is the 
world’s first GNSS-R micro-satellite constellation initially designed for 
ocean surface wind speed monitoring [15]. It provides high-spatial- 
resolution land surface observations to compensate for the constraints 
associated with passive radiometers. Additionally, it offers high tem
poral resolution, overcoming the temporal gaps inherent in the synthetic 
aperture radar (SAR) remote sensing of SSM. This combination of ca
pabilities is crucial for mitigating the individual spatial and temporal 
limitations of the traditional passive and active SSM sensors. Extensive 
exploratory validation studies have consistently validated that satellite- 
based GNSS-R observations are capable of accurately detecting changes 
in SSM. Moreover, the effective reflectivity derived from GNSS-R mea
surements has been established as a reliable proxy for estimating SSM 
with high accuracy, as evidenced by these thorough validation efforts 
[16–19]. As a result, GNSS-R has emerged as a valuable tool for SSM 
estimation. The CYGNSS mission has provided significantly high-quality 
and high-frequency repeated observations, attracting immediate inter
est for SSM inversion research [20]. These data have spurred further 
research in SSM inversion techniques.

Many studies have investigated SSM inversion using the CYGNSS 
land observations. SSM products generated by the SMAP mission are 
used as a reference value and modeling basis in most of these studies. 
The linear correlation between the changes in CYGNSS effective 
reflectivity and the changes in SMAP soil moisture has been discovered 
and explained [21]. Furthermore, an empirical statistical model incor
porating trilinear regression was established to characterize the rela
tionship between gridded effective reflectivity, vegetation opacity, 
roughness coefficient, and SSM [22]. To date, inversion methods are 
broadly classified into parametric semi-empirical fitting models and 
non-parametric machine learning (ML) methods. Previous research has 
shown that both approaches demonstrate comparable inversion accu
racies [14,20–26]. The parametric semi-empirical inversion model sta
tistically establishes the relationship between effective reflectivity and 
the reference SSM from other observation systems or model outputs 
[21,22,27,28]. The presented accuracy of the retrieval is influenced by 
various spatiotemporal factors, including the study area and period, the 
availability of reference and auxiliary data, the methods employed for 
data preprocessing, and the strategies used to evaluate the inversion 
process. Consequently, the quality of the CYGNSS SSM inversion re
mains uncertain. Recently, ML and convolutional neural networks have 
paid attention for handling complex nonlinear relationships, leading to 
their widespread use in space-based GNSS-R SSM retrievals. These ap
proaches utilize ML models trained on extracted or embedded features 
from the DDM, combined with collocated auxiliary parameters and 
reference SSM labels [26,29].

It is also necessary to consider the effects of other non-interesting 

influences on the effective reflectivity in the inverse modeling process. 
Spaceborne GNSS-R observations are also susceptible to confounding 
factors such as vegetation, roughness, and topography. Consequently, 
the development and incorporation of correction models and auxiliary 
data are essential for mitigate these biases [30–32]. Uncertainties in 
characterizing these parameters can be major sources of errors in sat
ellite based SSM retrieval [33]. Calibration and correction of radiation 
parameters related to surface roughness and the canopy properties are 
particularly crucial for GNSS-R based SSM retrieval algorithms. Several 
inversion methods leverage change detection, assuming that the tem
poral scale of variability in vegetation and surface roughness far exceed 
those of SSM. Consequently, these inverse models often neglect the ef
fects of vegetation and surface roughness [16,21,28]. Furthermore, 
previous studies have utilized radiometers-derived parameters that ac
count for the impacts of vegetation and surface roughness. In the 
correction process, the GNSS-R effective reflectivity is adjusted through 
the calculation of vegetation layer transmissivity and surface undulation 
attenuation [22,23,34].

Land cover types exhibit varying physical and electrical properties, 
such as dielectric constant, which directly impact the reflection and 
scattering of GNSS signals. Moreover, the intricate geometry of vege
tation structures, including leaf density and branch morphology, can 
also play a crucial role in modifying the GNSS signal propagation, 
thereby influencing the accuracy of GNSS-R-based SSM retrieval. 
Therefore, it is imperative that GNSS-R SSM retrieval algorithms inte
grate information on land cover types and assess their inversion per
formance across different land cover types. Although land cover type 
data has been successfully incorporated into ML and CNN inversion 
models as physically based features for GNSS-R SSM retrieval [29], it has 
not yet been integrated into the semi-empirical inversion model. 
Nonetheless, the semi-empirical model also reflects the influence of 
surface attributes in its approach. A clustering algorithm has been 
employed to categorize the global land surface into various types based 
on vegetation opacity and surface roughness characteristics. Linear 
retrieval models have been developed for each cluster, capitalizing on 
the similarities in land surface physical attributes across regions and 
assuming the temporal stability of vegetation and roughness to minimize 
their impacts [35]. This underscores the significance of considering 
specific surface conditions and integrating pertinent data for precise 
land cover classification in GNSS-R SSM retrieval.

The advancement of satellite-based GNSS-R terrestrial remote 
sensing has accelerated with the deployment of the CYGNSS mission, 
spurring the development of various soil moisture inversion algorithms. 
The upcoming HydroGNSS mission, featuring a new generation of GNSS- 
R sensors tailored for land applications, is set to launch in 2024, high
lighting the growing interest in utilizing GNSS-R for SSM retrieval 
within the scientific community [36]. In this context, we aim to develop 
and evaluate semi-empirical fit models, with a particular focus on 
comparing the pixel-by-pixel model, land cover-based linear model, and 
trilinear regression model across various land surface types. The goal is 
to assess their effectiveness and identify potential limitations. To ach
ieve this objective, the study addresses several key challenges in 
spaceborne GNSS-R SSM retrieval modeling, including: (1) optimal 
vegetation and roughness attenuation corrections and evaluating the 
impact of exponential function fitting within the pixel-by-pixel model; 
(2) constructing and assessing land cover-based semi-empirical inver
sion models; (3) evaluating the impact of Look-Up Table (LUT) im
provements on the pixel-by-pixel model; and (4) comparing the 
performance of various semi-empirical inversion models to offer insights 
for their application and refinement. The findings of this study are ex
pected to make a valuable contribution to the enhancement of more 
precise and dependable SSM retrieval algorithms. The subsequent sec
tions of this paper are organized as follows: Section 2 discusses the 
datasets, methodologies, and experimental approaches employed; Sec
tion 3 presents the results, with analyses and discussions provided in 
Section 4; and finally, Section 5 offers the conclusions derived from this 
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study.

2. Datasets

2.1. CYGNSS dataset

The CYGNSS mission offers observational coverage between 38◦S to 
38◦N latitude, with sub-daily revisit periods over land. After completing 
in-orbit testing on 23 March 2017, CYGNSS transitioned to scientific 
operations, maintaining an average of 6–8 normally operating satellites 

under typical conditions. The Delay Doppler Mapping Instrument 
(DDMI) aboard each CYGNSS satellite generates DDMs in real-time 
using1 ms coherent integration and 0.5–1 s incoherent integration pe
riods, with a multi-stage process of analog radio frequency, digital 
processing, and calibration [37]. The downloaded DDMs are compressed 
to 17 delay bins by 11 Doppler bins, with delay resolution of 0.244 μs 
and Doppler frequency shift resolution of 500 Hz. Each satellite captures 
up to four reflected signal sets simultaneously, enabling extensive daily 
land sampling. Prior to August 2018, the DDMI operated in fixed gain 
mode, which is typically used during commissioning phase of a mission. 
After that, the receiver switched to adaptive gain mode to optimize the 
signal quality by automatically adjusting to variations in signal strength. 
In July 2019, CYGNSS increased its sampling frequency from 1 s to 0.5 s, 
enhancing the temporal resolution of land applications. All CYGNSS 
data products are open-access in the Physical Oceanography Distributed 
Active Archive Center (PODAAC) (https://podaac.jpl.nasa.go 
v/dataset). This study mainly uses the Level 1 Science Data Record 
Version 3.0 (CYGNSS_L1_V3.0) product, which is available in netCDF4 
format. Each satellite offers a separate data file daily, and the data 
publication delay is about 6 days. The data product file contains the 
receiver power DDM calibrated by geographic location, the bistatic 
radar scattering cross-section DDM, and other scientific and engineering 

Fig. 1. The distribution of the IGBP land cover types over pan-tropical regions in the year of 2019.

Table 1 
Model training and testing scores using pixel-by-pixel retrieval model with 
different vegetation and roughness correction strategies (unit for bias and 
ubRMSD is cm3cm− 3).

Vegetation and 
roughness 
correction

Model Training Model Testing

Bias R ubRMSD Bias R ubRMSD

On specular point 0.000 0.912 0.047 − 0.002 0.886 0.054
On grid level 0.000 0.914 0.051 − 0.004 0.897 0.058

Table 2 
Model training and testing scores using pixel-by-pixel model with different 
fitting functions on grid pixels (unit for bias and ubRMSD is cm3cm− 3).

Fitting function Model training Model testing

Bias R ubRMSD Bias R ubRMSD

Linear function 0.000 0.914 0.051 − 0.004 0.887 0.058
Logarithmic 

function
0.000 0.914 0.051 − 0.004 0.886 0.058

Fig. 2. The ubRMSD of surface soil moisture prediction using pixel-by-pixel 
model with linear and logarithmic function at different humidity intervals.

Fig. 3. Heatmap of prediction residuals from trilinear model as a function of 
vegetation opacity and roughness coefficient.
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parameters.

2.2. SMAP soil moisture product

The SMAP Level-3 Version 8 radiometer-only soil moisture product 
(SPL3SMP) is a daily composite of half-orbit swaths, generated from the 
SMAP L2 Radiometer Half-Orbit 36 km Equal-Area Scalable Earth Grid, 
Version 2.0 (EASE-Grid 2.0) Soil Moisture, Version 8 (SPL2SMP), 
updated the dual channel algorithm (DCA) as the baseline algorithm. It 
provides comprehensive information on all data fields within the 
SPL3SMP product, available in HDF5 format (https://nsidc.org/data 
/spl3smp/versions/8). The product file also includes soil moisture pa
rameters retrieved by the single-channel algorithm (SCA) used in the 
pre-Version 8 data products, along with essential vegetation and surface 
roughness parameters. The SMAP Level-3 radiometer SSM product has 
been widely applied in weather and climate forecasting, water resource 
management, and hydrological research. This product entails SSM that 
has been resampled to a global, cylindrical 36 km × 36 km EASE-Grid 
2.0 projection, with a valid range spanning from 0.02 to 0.5 cm3cm− 3. 
The dataset is updated on a daily basis and spans from April 1, 2015, to 
the present. In addition to SSM data, the product incorporates supple
mentary variables such as vegetation opacity and surface roughness 
parameters. For this study, we utilized combined daily averages of 
morning (AM) and afternoon (PM) product parameters. selecting only 
data flagged as “recommended” by the provider in the metadata [38].

2.3. Land cover type data

The Moderate Resolution Imaging Spectroradiometer (MODIS) Land 
Cover Climate Modeling Grid (MCD12C1), Version 6.1, is a global 
annual land cover type distribution dataset available from https:// 
e4ftl01.cr.usgs.gov. It combines data from Terra and Aqua satellites to 

provide maps of the land cover types according to the International 
Geosphere-Biosphere Programme (IGBP), University of Maryland 
(UMD), and Leaf Area Index (LAI) classification schemes [39]. The 
MCD12C1 product provides global coverage from 2001 to 2021 at a 
native spatial resolution of 0.05◦ (approximately 5,600 m). To ensure 
consistent spatial resolution, the 2019 MCD12C1 data were resampled 
from the original 0.05◦ × 0.05◦ grid to a 36 km × 36 km EASE-Grid2 
projection. Resampling was accomplished by uniformly mapping the 
finer resolution source grid points to the coarser target grid. The 
dominant land surface cover type within each coarse grid pixel was 
determined by aggregating the plurality of cover types from the un
derlying finer resolution cells. This aggregated modal cover type was 
then assigned as the representative value for each coarse grid cell. Given 
the focus on SSM retrieval in this study, certain observations were 
deliberately omitted based on the IGBP land cover type dataset. Spe
cifically, data pertaining to water surfaces, permanent wetlands, urban 
and built-up areas, as well as snow/ice regions were excluded from our 
analysis. Deciduous needleleaf forests were also excluded, as they are 
absent in the pan-tropical regions covered by the CYGNSS mission. Fig. 1
illustrates the land cover types within the study area for 2019.

2.4. In-situ measurement

In situ measurements from the International Soil Moisture Network 
(ISMN), which collects and distributes high-quality soil moisture data 
sourced from internationally shared in situ monitoring networks for 
hydrology, meteorology, agriculture, and environmental research, were 
used to evaluate the performance of the retrieval model. The ISMN offer 
a reliable benchmarking platform for satellite-based SSM products due 
to its comprehensive coverage and accuracy. To evaluate the perfor
mance of the retrieval models developed in this work, we collected 
hourly soil moisture time series datasets at a depth of 0–0.1 m from all 

Fig. 4. Comparison of the ubRMSD and correlation coefficient for the R-V-R model without LUT correction, the R-V-R model using LUT-corrected R-V-R, and the 
global model in predicting surface soil moisture over various land cover types.
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ISMN network stations. Specifically, we downloaded observations from 
August 1, 2018, to July 31, 2020, that were marked as “good” by the 
quality control process setting on the ISMN website download panel 
[40]. To evaluate the gridded SSM data from the SMAP and CYGNSS 
SSM retrieval models, high-quality site measurements from the same 
network were temporally and spatially averaged within a grid pixel on a 
daily scale based on the flags provided by the ISMN.

3. Methodology

3.1. CYGNSS surface soil moisture proxy

The mathematical representation of surface reflectivity includes the 
Fresnel reflection coefficient as well as attenuation due to surface 
vegetation and roughness [29,41]. The dielectric constant of the land 
surface, which is primarily influenced by SSM, directly impacts the 
Fresnel reflection coefficient [5]. Thus, surface reflectivity can be 
viewed as proxy responding to SSM. This theoretical foundation un
derpins the utilization of GNSS-R technology for SSM remote sensing. 

ΓRL(∊s, θ) = RRL(∊s, θ)γ2exp
(
− hcos2θ

)
(1) 

where Γ is surface reflectivity, RL stands for the left circular polarized 
scattering with the incoming right circular polarized signal, ∊s is the 
dielectric constant, θ is the incidence angle of the signal, R is the circle 
polarized Fresnel reflection coefficient, γ is the transmissivity of the 
overlying canopy layer, γ = exp

(
− τpsecθ

)
, τp represents the nadir 

vegetation opacity, the parameter h is assumed linearly related to the 

root mean square height [42].
For the CYGNSS mission, land observations can be derived from the 

raw L1 V3.0 data product file using the per-DDM quality flags param
eter, which is provided in 16-bit flag masks. Specifically, invalid 
observation data were filtered using a combination of different flag bits 
[28]. These include: “S-band transmitter powered up”, “spacecraft 
attitude error”, “black body DDM”, “DDM is a test pattern”, “direct 
signal in DDM”, and “low confidence in the GPS EIRP estimate”. In the 
GNSS-R land applications, it is assumed that only coherent reflection 
occur on the land surface [21]. The surface reflectivity can be calibrated 
using the coherent reflection equation, as follows. 

ΓRL(∊s, θ) =
(4π)2Pcoh(RT + RR)

2

λ2GRPTGT
(2) 

where Pcoh is the received DDM peak power, which was determined by 
the peak value of 17 × 11 array of DDM bin analog power, PT is the GNSS 
satellite transmit power, GT is the GNSS satellite antenna gain, GR is the 
gain of the receiver antenna, λ is the carrier wavelength of the GNSS 
signal, RT and RR are the distances from the transmitter to the specular 
point and specular point to the receiver, respectively, and θ is the inci
dence angle of the incoming signal.

The requisite parameters were extracted from the CYGNSS L1 
product files. Unlike theoretical reflectivity, which assumes perfect ob
servations, surface reflectivity derived from CYGNSS is subject to 
various errors, such as observation errors, calibration errors, and other 
factors. Therefore, it is commonly referred to as the effective reflectivity, 
considering the combined impact of these factors on the retrieved 

Fig. 5. Scatter density plot of pixel-by-pixel model predicted surface soil moisture and referenced SMAP L3 soil moisture over different land cover types.
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reflectivity values. In this study, a geometry correction methodology 
was employed to normalize the CYGNSS observations by accounting for 
the effects of varying incidence angles relative to the nadir direction 
[43]. The spatial resolution of the effective reflectivity at the specular 
point was mainly determined by observation geometry and surface 
roughness. It is generally assumed that the spatial footprint of CYGNSS 
effective reflectivity over land is approximately 7 × 0.5 km, or 3.5 × 0.5 
km after mid-2019. Given the 36 km × 36 km EASE-Grid2 resolution, 
which exceeds the spatial scale of CYGNSS-derived effective reflectivity, 
this study treated CYGNSS observations as point-scale data. The gridded 
map was then created by rasterizing the effective reflectivity of indi
vidual specular points on a single day and aggregating the average 
values. This map maintains the same spatiotemporal resolution as the 
SMAP L3 reference SSM for semi-empirical modeling. Additionally, a 
minimum of five specular point effective reflectivity values within the 
same pixel is required. The gridded processing enhances the signal-to- 
noise ratio and reduces the representative error of the effective reflec
tivity relative to the reference data.

3.2. Enhanced pixel-by-pixel retrieval model

The prior pixel-by-pixel retrieval model was limited to estimating 
relative changes in SSM, as it modeled shifts in effective reflectivity and 
SSM rather than absolute values [21,28]. The model assumes that 
changes in vegetation and surface roughness occur on a much longer 
timescale than SSM. Therefore, modeling effective reflectivity variations 

can help minimize their influence. However, vegetation and surface 
roughness, particularly for crops and forests, are subject to continuous 
changes, including rapid growth and seasonal fluctuations. To accu
rately capture the complex dynamics influencing SSM, it is essential to 
incorporate these changes into the retrieval model. The enhanced model 
developed in this study rectifies biases in CYGNSS-derived effective 
reflectivity by integrating the tau-omega model [44], which in
corporates parameters for vegetation opacity and surface roughness. The 
correction of the model to the effective reflectivity is given in Eq. (1), 
using the vegetation opacity and roughness coefficient parameters from 
the SMAP L3 data product. The raw point-scale effective reflectivity is 
rasterized to create an effective reflectivity image matching the spatial 
resolution of the SMAP soil moisture product. Corrections to the effec
tive reflectivity can be applied in two ways: by first correcting the raw 
effective reflectivity of the specular points and then gridding them, or by 
correcting the aggregated effective reflectivity after gridding. The 
choice of a correction method can affect inversion results, as the process 
is sensitive to GNSS-R observation geometry, aggregation errors, and the 
accuracy of auxiliary parameter interpolation.

In the enhanced pixel-by-pixel retrieval model, the least squares 
regression coefficient estimates a linear relationship between the time 
series of the gridded CYGNSS-derived effective reflectivity and the 
SMAP reference SSM for each grid pixel. 

u(i,j) = a(i,j)ΓRL(i,j) + b(i,j) (3) 

where u(i,j) indicates the reference SSM values at grid point index (i, j), 

Fig. 6. Scatter density plot of land cover-based linear model predicted surface soil moisture and referenced SMAP data over different land cover types.
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ΓRL(i,j) represents gridded effective reflectivity with vegetation and sur
face roughness attenuation correction, a(i,j) denotes the slope of the 
linear model, and b(i,j) represents the intercept. The established linear 
relationship can calibrate the absolute SSM using effective reflectivity. 
The entire model for quasi-global CYGNSS SSM mapping can be repre
sented in matrix form. 

U = AΓ+B (4) 

where U indicates the reference SSM image for modeling or CYGNSS 
SSM image from retrieval model prediction, Γ represents the observa
tions matrix of gridded CYGNSS-derived effective reflectivity, A and B 
are the coefficient matrix and intercept matrix of the formed retrieval 
model.

Based on theoretical simulations using the dielectric constant model 
and the Fresnel equations [5], the Fresnel reflection coefficient increases 
continuously with increasing SSM up to the point of soil saturation. The 
logarithmic function provided a better fit for the correlation between the 
two variables. Prior studies did not examine the incorporation of a 
logarithmic function in the pixel-by-pixel SSM retrieval model. This 
study also assessed the effectiveness of applying a logarithmic function 
at the pixel level. 

u(i,j) = a(i,j)ln(− b(i,j)ΓRL(i,j)) + c(i,j) (5) 

where a, b, and c are parameters to be estimated in the model.
In order to conduct pixel-by-pixel modeling, at least five aligned time 

series of the reference SSM and CYGNSS effective reflectivity for a given 
pixel are required. Without these, the prediction model cannot be 
generated for that specific pixel.

3.3. Land cover-based linear model

In the study by [35], a representative model was developed to 
separately model SSM inversion across various surface features driven 
by the diverse surface vegetation and roughness characteristics of 
different land properties. The model clusters the surface using SMAP L3 
vegetation opacity and roughness, establishing linear relationships be
tween CYGNSS-derived effective reflectivity and reference SSM within 
each cluster. Building on the finding that the roughness parameters 
included in the current SMAP Level 3 product have minimal impact on 
the retrieval outcomes [45], this result aligns with previous research 
[35], which showed that clustering the surface based on SMAP Level 3 
vegetation opacity and roughness closely mirrored the distribution of 
land cover types from the IGBP. Leveraging this insight, the study 
developed dedicated linear regression models for each land cover type. 

u = alc⋅ΓRL + blc (6) 

where lc indicates the land cover type, alc and blc are the slope and 
intercept, ΓRL(i,j) represents gridded effective reflectivity after vegetation 
and surface roughness attenuation corrections. An optimization method 
is used to enhance modeling accuracy by removing extreme outliers 

Fig. 7. Scatter density plot of R-V-R model predicted surface soil moisture and referenced SMAP data over different land cover types.
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from the training dataset of each land cover type. This method trims the 
lowest and highest 2.5 % of the training samples.

3.4. Reflectivity-Vegetation-Roughness retrieval model

The Reflectivity-Vegetation-Roughness (R-V-R) GNSS-R SSM 
retrieval model was first developed in [22] and later improved by 
incorporating additional DDM observables and applying multivariate 
linear regression [23]. The original R-V-R model functions as a trilinear 
regression, modeling SSM as a function of effective reflectivity, vege
tation opacity, and surface roughness. However, the regression residuals 
analysis revealed a significant correlation between vegetation opacity 
and surface roughness, exposing a limitation of the trilinear model in 
accurately capturing their independent effects on SSM estimation. As a 
result, predictions from trilinear model may exhibit systematic biases 
under varying vegetation and roughness conditions. To address this 
issue, regression errors were grouped by intervals of vegetation opacity 
and surface roughness, with the average error calculated within each 
interval. This data was used to create a LUT to correct the systematic 
biases in the model’s predictions. The R-V-R model, along with its 

corresponding correction LUT, enables both global and regional appli
cations with just a single trilinear regression model needed for the study 
area.

The original R-V-R model was improved by incorporating land cover 
type information. Using IGBP land cover type data, individualized R-V-R 
models were developed for each surface type. Spatiotemporal matching 
techniques were applied to gather training data specific to each of the 12 
land cover categories. 

u = alc⋅Γʹ
RL + blc⋅τ+ clc⋅σ + dlc (7) 

where ΓŔL represents the aggregated effective reflectivity on grid pixel 
without vegetation and surface roughness correction; τ represents the 
vegetation opacity, and σ represents the roughness coefficient of ground 
surface; a, b, c and d were model parameters that need to be estimated in 
the trilinear regression; the subscript lc represents a specific land cover 
type. The bottom and top 2.5 % of training samples for each land cover 
type are excluded to improve the data quality. The ordinary least 
squares (OLS) method was used to perform a correlation test between 
the regression residuals and the vegetation opacity and roughness co
efficients before establishing the LUT. The formed enhanced R-V-R 
model for SSM prediction initially uses the trilinear function over a 
specific land cover type. This function predicts SSM using vegetation 
opacity, surface roughness, and effective reflectivity parameters. Sub
sequently, a corresponding LUT integrates surface roughness and 
vegetation opacity to calculate correction factors for SSM prediction.

3.5. Experimental design

To achieve the research aims, a flexible inversion program was 

Fig. 8. Comparison of the ubRMSD and correlation coefficient for predicting surface soil moisture using the pixel-by-pixel model, land cover-based linear model, and 
R-V-R model with LUT correction over various land cover types.

Table 3 
The total scores of three model predictions (unit for bias and unRMSD is 
cm3cm− 3).

SSM retrieval models Bias R ubRMSD

Pixel-by-pixel model − 0.004 0.887 0.058
Land cover-based Linear model − 0.002 0.756 0.082
R-V-R model − 0.004 0.806 0.073
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developed to implement pixel-wise and land cover-dependent models. 
This enabled the rapid incorporation of varied data sources and 
adjustment of correction strategies for vegetation and surface roughness. 

To develop and assess the SSM retrieval models, we utilized CYGNSS 
data spanning two years (August 1, 2018, to July 31, 2020). Specifically, 
the first year (August 1, 2018, to July 31, 2019) was used for model 

Fig. 9. Spatial distribution of the ubRMSD and correlation coefficient for the soil moisture retrieval using pixel-by-pixel model, land cover-based linear model, and R- 
V-R model with LUT correction. The color bars on the bottom represent the scale for the ubRMSD and R values, respectively.

Fig. 10. Temporal skill metrics comparison between the estimated surface soil moisture from pixel-by-pixel model, land cover-based linear model, and R-V-R model 
with LUT correction.
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training, while the second year (August 1, 2019, to July 31, 2020) served 
as validation dataset.

Initially, a comparative analysis was conducted between vegetation 
and surface roughness attenuation corrections of effective reflectivity at 
the individual specular point or rasterized grid point level in the 
improved pixel-by-pixel retrieval model. Following this, an evaluation 
of linear and logarithmic fitting functions employed in pixel-by-pixel 
retrieval modeling was undertaken. Subsequently, R-V-R retrieval 
models were generated for different land cover types, with a focus on 
assessing the enhancement achieved through bilinear interpolation LUT 
in the R-V-R model. Building on these investigations, we formulated 
optimal inversion models based on the most effective approaches and 
evaluated their performance on a test dataset using three distinct 
inversion models. Furthermore, we compared the improvement in 
inversion accuracy achieved through bilinear interpolation LUTs and 
examined the impact of incorporating LUTs to correct inversion results 
within the pixel-by-pixel model.

To further validate the retrieval performance, ISMN in-situ mea
surements were employed. Only matched pairs within the same grid 
pixel were considered, which included the predicted SSM from the 
retrieval model, SMAP SSM maps, and ISMN station measurements with 
a minimum of 31 samples. To maintain fairness and rigor in the statis
tical comparison, the same stations with complete valid scores across all 
SSM sources were retained [46,47]. The evaluation of performance 

entailed utilizing various skill metrics, such as mean bias, Pearson cor
relation coefficient (R), and unbiased root mean square difference 
(ubRMSD).

4. Results and analysis

4.1. Vegetation and surface roughness correction evaluation

The CYGNSS mission offers L1 data products provided necessary 
parameters that allow the calibration of the effective reflectivity at the 
specular point using Eq. (2). Current inversion techniques commonly use 
space–time averaging, which involves reprojecting and rasterizing the 
effective reflectivity of specular points to create CYGNSS-derived 
effective reflectivity images at different spatiotemporal resolutions. 
This process is essential for reducing observation noise and improving 
the signal-to-noise ratio. The resultant effective reflectivity map from 
this stage captures contributions from both surface vegetation and sur
face roughness. One approach involves adjusting the specular point 
effective reflectivity obtained from raw CYGNSS observations by inter
polating SMAP-derived vegetation opacity and roughness parameters at 
specular points for Eq. (1). However, a thorough data analysis revealed 
that about 10 % of the calibrated effective reflectivity would fall be
tween − 40 to − 5 dB outside its valid range due to errors in interpolation 
and representativeness, necessitating their exclusion before raster
ization. Notably, the most substantial reduction in data points occurred 
predominantly in forested regions. Such instances may accentuate 
representativeness errors in gridded effective reflectivity and result in 
under-sampling for specific grid pixels, potentially causing modeling 
inadequacies. As an alternative, it is proposed to directly correct the 
aggregated average effective reflectivity at the grid points of the gridded 
effective reflectivity map.

Both solutions were developed to model 55,855 land grid cells. As 
shown in Table 1, the first solution, which applied corrections at the 
specular point level, exhibited slight improvement in training and 
testing accuracy over the second solution, which corrected the aggre
gated reflectivity map. Notably, neither approach significantly impacted 
on the number of accurately modeled grid pixels. The correction process 
involves interpolating the vegetation opacity and roughness coefficient 
to rectify the discrete effective reflectivity values obtained from GNSS-R 
observations separately. It is essential to recognize that the spatial and 
temporal resolution of the vegetation and roughness parameters can 
introduce anomalies in the correction process. Thus, it is recommended 
to directly adjust the calibrated specular point effective reflectivity using 
high-resolution vegetation and roughness parameters to ensure accu
racy. Conversely, correcting vegetation and roughness at the grid level is 
deemed a simpler and more efficient process. Due to the spatial reso
lution limitations of the vegetation opacity and roughness coefficient 

Table 4 
Error metrics median of SMAP product, predictions from pixel-by-pixel model 
and R-V-R model from independent ISMN networks (unit for bias and unRMSD is 
cm3cm− 3).

SSM product Network Collocated grid 
pixel Num.

bias ubRMSD R

Prediction from 
pixel-by-pixel 
model

SCAN 33 − 0.014 0.060 0.282
ARM 3 0.002 0.038 0.597
OZNET 7 − 0.008 0.042 0.547
SNOTEL 8 − 0.011 0.074 0.222
TAHMO 12 − 0.002 0.053 0.504
USCRN 10 − 0.002 0.055 0.260

Prediction from R- 
V-R model

SCAN 33 0.011 0.059 0.244
ARM 3 − 0.011 0.060 0.439
OZNET 7 0.010 0.053 0.468
SNOTEL 8 − 0.018 0.072 0.105
TAHMO 12 0.023 0.046 0.512
USCRN 10 0.003 0.055 0.217

SMAP SCAN 33 − 0.002 0.050 0.650
ARM 3 0.014 0.042 0.780
OZNET 7 − 0.018 0.053 0.739
SNOTEL 8 0.010 0.073 0.444
TAHMO 12 0.000 0.052 0.733
USCRN 10 0.005 0.047 0.557

Fig. 11. Spatial map of the standard deviation of surface soil moisture from the SMAP product.
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data used in this study, the second solution was implemented in subse
quent experiments involving a pixel-by-pixel retrieval model. Addi
tionally, the use of vegetation opacity and surface roughness parameters 
from the SMAP SCA versus DCA algorithms in the SMAP L3 product had 
minimal impact on SSM retrieval results using the pixel-by-pixel model. 
Future experiments will incorporate the parameters derived from the 
DCA algorithm for further analysis and refinement.

4.2. Comparison of pixel-level modeling functions

The Fresnel reflection coefficient exhibits a non-linear, monotonic 
relationship with SSM within its dynamic range [45], which can be 
accurately modeled using logarithmic functions. However, it is essential 
to differentiate between the physically relationships governing reflec
tance and soil moisture in models and the statistically derived correla
tion observed between CYGNSS effective reflectivity and SMAP 
reference SSM at specific area. This distinction is necessary due to dif
ferences in errors and uncertainties associated with actual observation 
and reference SSM. Furthermore, some regions, such as arid and semi- 
arid areas, experience a limited annual range of SSM. In these regions, 
the connection between effective reflectivity and SSM can be properly 
represented by a linear model. Therefore, the fitting function derived 
from the physical mechanism simulation cannot be entirely applicable 
to actual observation data, but rather serves as a reference for analysis. 
Thus, SSM retrieval models were compared to evaluate the efficiency of 
linear and logarithmic functions used at the pixel level in the pixel-by- 
pixel retrieval model.

Table 2 displays the skill metrics for employing linear and logarith
mic functions in the pixel-by-pixel retrieval model to assess their per
formance in calibrating SSM from the CYGNSS-derived effective 
reflectivity. The evaluation metrics reveal that both models exhibited 
comparable performance with negligible differences in bias and accu
racy. Specifically, both models demonstrated near-zero biases, indi
cating no systematic over- or under-prediction, while the high 
correlation coefficients suggested a strong correlation between model 
predictions and the reference values. The training ubRMSD was 
consistent at 0.051 cm3cm− 3 for both models. The prediction error on 
the test set was found to be 0.058 cm3cm− 3, highlighting the consider
able accuracy of both linear and logarithmic models. Ultimately, this 
analysis shows that both linear and logarithmic functions can be used 
accurately calibrate SSM from the effective reflectivity at the pixel level, 
with similar performance. Furthermore, to compare the performance of 
the two function models, prediction errors on the test set were analyzed 
across 0.05 cm3cm− 3 SSM intervals within the dynamic range. As Fig. 2
shows, when SSM was under 0.2 cm3cm− 3 the functions exhibited 
comparable performance. However, above 0.2 cm3cm− 3, the linear 
model slightly outperformed the logarithmic model, even under humid 
conditions.

4.3. Intercomparison of different reflectivity-vegetation-roughness models

In contrast to the original global R-V-R model, the enhanced R-V-R 
model was specifically developed for diverse land cover types using 
IGBP land cover classification data. The trilinear model and the corre
sponding corrected LUTs on different surface types were simultaneously 
generated. The heatmap corresponding to the LUTs created when 
building the global R-V-R model is shown in Fig. 3. Subsequently, the 
performance of the land cover-based R-V-R inversion models was 
compared with the global-scale R-V-R model, both before and after LUT 
correction, across various surface cover types. The trilinear regression 
analysis indicates that effective reflectivity was the most influential 
variables, exhibiting the strongest correlation with model predictions. 
Notably, this finding implies that vegetation and surface roughness 
characteristics may have contributed to the observed prediction bias. 
The significance testing found no statistically significant correlation 
between the residuals of the model fit and vegetation and surface 

roughness, either in building R-V-R models for different land cover types 
or at a global scale. However, comparing the trilinear regression model 
predictions to the reference SSM shows apparent prediction bias. To 
address this issue, a 2D LUT was established by calculating the mean 
residuals for different vegetation and roughness intervals.

The performance of the enhanced R-V-R model across various surface 
types follows a consistent pattern with the global-scale R-V-R retrieval 
model, as shown in Fig. 4, which compares histograms of ubRMSD and 
correlation coefficients for predicted SSM values on the test set. Inver
sion errors were higher for moist surfaces, such as forests, grasslands, 
and agriculture areas, and lower for deserts. The comparisons involve 
the land cover-based R-V-R model before and after applying LUT 
correction, alongside the global-scale R-V-R retrieval model. The anal
ysis that while the R-V-R model derived from trilinear regression fitting 
cannot fully eliminate the influence of vegetation and surface roughness, 
prediction accuracy significantly improves with the application of LUT 
correction. The land cover-based R-V-R model demonstrated high pre
diction accuracy. Apart from closed shrubland and open shrubland 
surfaces, the predictive accuracy of the trilinear function fitted on other 
land cover types is already close to the global-scale R-V-R model. This 
highlights the benefits of developing land cover-specific R-V-R models, 
especially in wooded areas where the greatest improvement in corre
lation coefficients were observed. Hereafter, the R-V-R model refers to 
the methodology developed for various land-cover types.

4.4. Comparison of different inversion models for each land cover type

Given the consensus in the previous studies that SSM retrieval is 
sensitive to vegetation and surface roughness, both of which exhibit 
complex spatiotemporal variations, this study aimed to evaluate the 
accuracy of empirical inversion models for SSM estimating across 
diverse land cover surfaces. The pixel-by-pixel model used a unary linear 
function for each grid pixel. The land cover-based linear model and R-V- 
R model were built based on land cover types by upscaling the 
MCD12C1 IGBP land cover data. The auxiliary parameters, including 
vegetation optical thickness and surface roughness, were sourced from 
the estimations provided by the DCA algorithm within the SMAP L3 
product.

Scatter density plots of the predicted SSM versus reference SSM by 
the pixel-by-pixel model, land cover-based linear model, and R-V-R 
model on the test dataset for different land covers are depicted in Figs. 5, 
6, and 7. The inversion results reveal significant variations across land 
cover types. Notably, for certain land covers, such as evergreen nee
dleleaf forests in mountainous regions, limited CYGNSS coverage 
resulted in reduced accuracy due to the smaller test dataset. The scatter 
distribution demonstrates higher SSM values for forest covers (including 
evergreen broadleaf forest, deciduous broadleaf forest, and mixed for
est), predominantly exceeding 0.2 cm3cm− 3, albeit with slightly 
elevated inversion errors. In contrast, the inversion accuracy for her
baceous plant-covered surfaces (grasslands, croplands, savannahs, 
closed shrublands, and open shrublands) was notably superior, partic
ularly for grasslands and croplands, with strong agreement shown with 
reference data across all SSM levels. This finding provides additional 
support for the assertion that GNSS-R remote sensing displays significant 
resilience to the impact of vegetation attenuation effects [19]. Further
more, both land cover-based linear and R-V-R models demonstrate a 
distinctive limitation in predicting quasi-saturated SSM values.

Fig. 8 presents histograms of ubRMSD and correlation coefficients for 
SSM estimates from three retrieval models across diverse land covers, 
facilitating an intuitive assessment of model performance. The com
parison of the inversion models revealed that the land cover-based linear 
model produced the least accurate results, with considerable limitations. 
Notably, both the R-V-R and land cover-based linear models exhibited 
greater bias than the pixel-by-pixel model across a range of land surface 
types. The pixel-by-pixel model achieved lower ubRMSD compared to 
SMAP reference SSM across most land covers, except for evergreen 
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needleleaf forests. The land cover-based linear model showed weak 
agreement with the reference SSM on various surfaces, often producing 
anomalous results, with correlation coefficients typically below 0.4. Its 
performance was particularly poor in shrublands and barren or sparsely 
vegetated areas. In contrast, the pixel-by-pixel model generally achieved 
correlation coefficients above 0.6. Although the R-V-R model out
performed the land cover-based linear model, its results remained 
inferior to those of the pixel-by-pixel model.

Table 3 summarizes the total prediction error statistics of three 
models on the test dataset, offering insights into their performance 
across different land cover types. Model evaluation indicates that all 
models exhibit minimal prediction biases, with the pixel-by-pixel model 
demonstrating superior prediction accuracy. Specifically, the pixel-by- 
pixel model exhibited an ubRMSD of 0.058 cm3cm− 3 and a correlation 
coefficient of 0.887 in comparison to the reference SMAP SSM. On the 
contrary, the land cover-based linear model displayed the weakest 
performance, with an ubRMSD of 0.082 cm3cm− 3 and a correlation 
coefficient of 0.756. The R-V-R model, although surpassing the land 
cover-based linear model, showed inferior performance compared to the 
pixel-by-pixel model, with ubRMSD and correlation coefficients of 0.073 
cm3cm− 3 and 0.806, respectively.

Fig. 9 provides a comprehensive assessment of the spatial distribu
tion of inversion errors and inter-model variability in SSM estimation 
accuracy through spatial maps of ubRMSD and Pearson correlation co
efficients for three retrieval models. The pixel-by-pixel model proves to 
be the most reliable for grid-level SSM prediction, demonstrating su
perior performance with a broader spatial coverage, even in arid regions 
where CYGNSS observations are more prone to noise, resulting in lower 
ubRMSD. However, while the pixel-by-pixel model excels in prediction 
accuracy based on ubRMSD, the correlation coefficient map shows lower 
values for this model. After applying quality control procedures to the 
inversion results and enforcing a valid range of 0.0 ~ 0.65 cm3cm− 3 for 
model prediction, it was found that both the land cover-based linear 
model and the R-V-R model showed larger errors compared to the pixel- 
by-pixel model. In arid regions prone to noise, all these models produced 
unreliable predictions, resulting in a reduction in the coverage area of 
the metrics spatial map. Notably, the R-V-R model outperformed the 
land cover-based linear model, although both struggled in arid areas due 
to the data noise. Conversely, the pixel-by-pixel model showcased 
higher correlation between estimates and references, surpassing the 
other two models, particularly in wet areas. The comparative analysis 
reveals that the land cover-based linear model is significantly less 
effective, primarily attributed to the spatiotemporal variability of sur
face vegetation and roughness. This variability makes it challenging for 
land cover-based linear models in constructing inversion models that 
consistently deliver accurate and reliable estimates across diverse sur
face coverage conditions.

Fig. 10 compares the time series of daily bias, ubRMSD, and corre
lation between the predicted SSM maps from the three retrieval models 
and the reference SMAP SSM maps during the testing period. All three 
models show stable performance over time, with no significant degra
dation as the extrapolation period extends, despite minor fluctuations in 
the daily statistics, particularly in correlation coefficients. The time- 
domain bias sequences consistently converge to approximately 0.0 
cm3cm− 3 across all three models. Notably, the pixel-by-pixel model 
consistently maintains an ubRMSD below 0.07 cm3cm− 3, with a daily 
correlation statistic around 0.88. In contrast, the land cover-based linear 
model shows an ubRMSD time series exceeding 0.075 cm3cm− 3 overall, 
with daily correlation statistics consistently below 0.80. The R-V-R 
model with LUT maintains a daily ubRMSD time series of roughly 0.075 
cm3cm− 3, alongside correlation statistics around 0.80. The pixel-by- 
pixel model displays markedly superior time-domain performance 
compared to the other two models. This exhaustive analysis reveals the 
significant performance lag of the land cover-based linear model 
compared to the other models, leading to its exclusion from subsequent 
validation and evaluation processes.

4.5. Pixel-by-pixel model with LUT

The analysis revealed that the global R-V-R model had lower 
retrieval accuracy compared to the land cover-based R-V-R model. 
Notably, without LUT correction, the accuracy of the land cover-based 
model declined to match that of the global model, highlighting the 
critical role if LUTs in improving prediction accuracy, especially when 
tailored to specific land cover types. To address potential systematic 
biases in the pixel-by-pixel model from insufficient vegetative and sur
face roughness attenuation corrections, a correction LUT was created 
using prediction residuals and normalized vegetation opacity and sur
face roughness data. This correction LUT was then integrated into the 
pixel-by-pixel model with refined predictions incorporated interpolating 
corrections based on observed surface vegetation opacity and roughness 
values. The efficacy of this enhanced approach was rigorously validated 
through assessment of its prediction performance on the test set, 
demonstrating robust and reliable estimates of SSM across diverse land 
cover classes, as reflected in the results presented in Fig. 5. Despite the 
integration of LUT corrections, minimal deviations in the overall pre
dictive accuracy were observed compared to the original pixel-by-pixel 
model, as detailed in Table 3, where the overall bias was determined at 
− 0.002 cm3cm− 3, RMSD at 0.054 cm3cm− 3, and the correlation coeffi
cient at 0.886. These findings suggest that the regression fit might not 
comprehensively account for vegetation and surface roughness effects 
resulting from observation errors, temporal variations, and geographical 
differences in auxiliary factors.

4.6. Evaluation of retrieval performance with in-situ measurement

After spatiotemporal matching and screening, six sparse networks 
comprising 73 ground stations within the CYGNSS footprint were used 
to validate the performance of two SSM retrieval models. Table 4 pre
sents the median evaluation metrics of the collocated grid time series 
between in-situ measurements from each ISMN network and the gridded 
SSM data, including the SMAP SSM dataset, pixel-by-pixel model pre
dictions, and the R-V-R model predictions during the test period. The 
model performance varied across different in situ soil moisture net
works, with the most significant performance discrepancies observed in 
the SNOTEL network. Specifically, for the pixel-by-pixel model, the 
median ubRMSD stands at 0.074 cm3cm− 3, and the median correlation 
coefficient at 0.222 when considering SNOTEL stations. On the other 
hand, the R-V-R model with LUT correction exhibits a median ubRMSD 
of 0.072 cm3cm− 3 and a median correlation coefficient of 0.105 over the 
same SNOTEL stations. Additionally, the analysis indicates weak cor
relations with station measurements when considering the SCAN and 
USCRN networks. This result is consistent with previous study [48]. 
However, the performance over ARM, OZNET, and TAHMO stations is 
relatively more satisfactory. Overall, although both models display room 
for enhancement compared to SMAP SSM products, the pixel-by-pixel 
model consistently outperforms the R-V-R model.

5. Discussion

This study compares and analyzes three extended GNSS-R semi- 
empirical models for SSM retrieval, with a focus on their distinct ap
proaches to handing land cover heterogeneity, accounting for 
vegetation-induced signal loss, and mitigating the effects of surface 
roughness on signal attenuation. Accurate reference SSM values are 
crucial for semi-empirical fitting methods, while vegetation and surface 
roughness significantly affect inversion outcomes. Among the models 
evaluated, the pixel-by-pixel model stands out as the most sophisticated 
version, as it generates a unique model for each grid pixel compared to 
the land cover-based linear model and R-V-R model. The distinctive 
feature of the pixel-by-pixel model lies in its higher level of granularity, 
providing detailed modeling at the individual pixel level, unlike the 
broader corrections used in other models. Performance varies 
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significantly across different surfaces, as reflected in the results. To 
improve prediction accuracy, the pixel-by-pixel model uses a two-step 
approach: first, geometric correction is applied to the point-scale 
effective reflectivity of specular points, followed by vegetation and 
surface roughness correction on the aggregated EASE-Grid 2.0 pixel 
effective reflectivity. This sequential process has yielded better inversion 
results and greater efficiency. Correcting for vegetation and surface 
roughness attenuation significantly improved the pixel-by-pixel model’s 
performance on moderately vegetated land surfaces. Linear and loga
rithmic function performed similarly at the pixel level, even at high SSM 
levels. As show in Fig. 11, which presents the spatial map of SMAP L3 
SSM standard deviation from August 1, 2018, to July 31, 2020, most 
land surface exhibited relatively small annual SSM variation, allowing 
linear models to effectively capture the correlation between the 
variables.

Based on the total evaluation and performance comparison across 
different surface types, the pixel-by-pixel model outperformed the R-V-R 
model in both modeling and prediction accuracy. This finding aligns 
with previous studies [22,23], which reported a retrieval error of 0.07 
cm3cm− 3. However, in this study, the accuracy was observed to be 0.08 
cm3cm− 3. The disparity may be due to differences in quality control of 
inversion results and the sizes of the training and testing datasets. It is 
worth noting that the study by [22] utilized only five months of data, 
splitting it equally for modeling and testing.

The R-V-R algorithm is useful in areas where matched pairs for in
dividual grid pixels are scarce, making it ideal for missions with limited 
number of GNSS-R receivers in orbit that struggle to obtain frequent, 
repeated observations. The R-V-R algorithm demonstrated its effec
tiveness in SSM retrieval during the BuFeng-1 mission [35]. In contrast, 
the pixel-by-pixel retrieval model requires extensive training data for 
development. To increase training samples and enhance prediction ac
curacy, alternative reference datasets from other satellite observations 
or model outputs can be employed based on the CYGNSS retrieval sce
nario. These datasets can play a crucial role in improving the accuracy of 
the pixel-by-pixel model. The research used ISMN in situ measurements 
for evaluation and demonstrated the success of the GNSS-R semi- 
empirical model in estimating SSM. However, discrepancies between the 
predicted and reference data may be due to calibration errors between 
the datasets, underscoring the importance of meticulous calibration 
procedures in ensuring the accuracy of GNSS-R data retrieval and 
modeling processes.

Previous scattering simulations have shown that densely vegetated 
areas and surface roughness significantly affect GNSS-R received re
flected signal. While GNSS-R observations are also influenced by terrain, 
noise, and calibration errors, current correction methods for vegetation 
and surface roughness do not fully mitigate their impact on the GNSS-R 
SSM proxy. Errors in both the land cover-based linear model and the R- 
V-R retrieval model are largely due to spatiotemporal heterogeneity in 
surface vegetation and roughness. Additionally, this study uses SSM data 
from two microwave sensors: CYGNSS, which relies on active radar 
reflectometry, and SMAP, which uses passive radiometric measure
ments, both in the same microwave band. Two methods may sense 
different soil conditions, especially when moisture varies with depth, 
necessitating caution when combining data from both sensors. Inco
herent radiometric sensing may better account for vegetation effects 
using a homogeneous layer, whereas radar is more sensitive to vegeta
tion heterogeneity, such as differences in structure between forests and 
grasslands. The disparity between the land cover-based and R-V-R 
models highlights the importance of improving vegetation and rough
ness corrections and reducing uncertainty in auxiliary parameters. 
Future research should focus on developing pixel-level models or 
inversion techniques that bypass the need for auxiliary vegetation and 
roughness corrections, to better capture environmental complexities.

6. Conclusion

In conclusion, reliable and accurate methods for estimating SSM are 
essential for advancing our understanding of hydrological processes, 
optimizing agriculture practices, and gaining insights into the effects of 
climate change on water resources and ecosystems. This study aimed to 
enhance SSM estimation by developing semi-empirical retrieval algo
rithms using CYGNSS observations across various land cover types. 
Three enhanced semi-empirical inversion models, the pixel-by-pixel 
model, the land cover-based linear model, and the R-V-R model, were 
evaluated to assess their performance. The study focused on identifying 
optimal strategies for correcting diverse influencing factors, such as 
vegetation and surface roughness attenuation. Additionally, the study 
explored the efficacy of different fitting functions in the pixel-by-pixel 
model and the utilization of LUT correction in the various inversion 
models. The models were trained on data from August 2018 to July 2019 
and validated on data from August 2019 to July 2020. The inversion 
results varied significantly among different land cover types, with wetter 
forest floors having slightly higher errors than other land cover types. 
Herbaceous plant cover, such as grasslands and croplands, had notably 
good inversion accuracy. Statistical results indicated that the CYGNSS 
observation coverage had an insignificant SSM variation for most land 
surfaces. The pixel-by-pixel model demonstrated the highest prediction 
accuracy with minimal bias, achieving an ubRMSD of 0.058 cm3cm− 3 

and a correlation coefficient of 0.887. The land cover-based linear model 
performed the poorest with an ubRMSD of 0.082 cm3cm− 3 and a cor
relation coefficient of 0.756, while the R-V-R model outperformed the 
land cover-based linear model with an ubRMSD of 0.073 cm3cm− 3 and a 
correlation coefficient of 0.806.

The importance of enhanced SSM retrieval algorithms using satellite- 
based GNSS-R observations with consideration of surface conditions is 
emphasized in the study. The findings provide valuable insights for re
searchers and practitioners to improve SSM retrieval from GNSS-R data 
for different land surface types, which help develop more accurate and 
reliable SSM retrieval algorithms. Further research in this area can help 
advance our understanding of SSM dynamics and improve our ability to 
monitor and manage water resources in different land cover types.
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R. Reichle, P. Richaume, C. Rüdiger, T. Scanlon, R. van der Schalie, J.-P. Wigneron, 
W. Wagner, Validation practices for satellite soil moisture retrievals: What are (the) 
errors? Remote Sens. Environ. 244 (2020) 111806 https://doi.org/10.1016/j. 
rse.2020.111806.

[3] J.C. Price, The potential of remotely sensed thermal infrared data to infer surface 
soil moisture and evaporation, Water Resour. Res. 16 (1980) 787–795, https://doi. 
org/10.1029/WR016i004p00787.

[4] Y.H. Kerr, Soil moisture from space: Where are we? Hydrogeol J 15 (2007) 
117–120, https://doi.org/10.1007/s10040-006-0095-3.

[5] M. Dobson, F. Ulaby, M. Hallikainen, M. El-rayes, Microwave dielectric behavior of 
wet soil-part II: dielectric mixing models, IEEE Trans. Geosci. Remote Sensing GE- 
23 (1985) 35–46, https://doi.org/10.1109/TGRS.1985.289498.

[6] E.G. Njoku, D. Entekhabi, Passive microwave remote sensing of soil moisture, 
J. Hydrol. 184 (1996) 101–129, https://doi.org/10.1016/0022-1694(95)02970-2.

[7] T.E. Ochsner, M.H. Cosh, R.H. Cuenca, W.A. Dorigo, C.S. Draper, Y. Hagimoto, Y. 
H. Kerr, K.M. Larson, E.G. Njoku, E.E. Small, M. Zreda, State of the art in large- 
scale soil moisture monitoring, Soil Sci. Soc. Am. J. 77 (2013) 1888–1919, https:// 
doi.org/10.2136/sssaj2013.03.0093.

[8] Y.H. Kerr, P. Waldteufel, J.-P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.- 
J. Escorihuela, J. Font, N. Reul, C. Gruhier, S.E. Juglea, M.R. Drinkwater, A. Hahne, 
M. Martín-Neira, S. Mecklenburg, The SMOS mission: new tool for monitoring key 
elements ofthe global water cycle, Proc. IEEE 98 (2010) 666–687, https://doi.org/ 
10.1109/JPROC.2010.2043032.

[9] D. Entekhabi, E.G. Njoku, P.E. O’Neill, K.H. Kellogg, W.T. Crow, W.N. Edelstein, J. 
K. Entin, S.D. Goodman, T.J. Jackson, J. Johnson, J. Kimball, J.R. Piepmeier, R. 
D. Koster, N. Martin, K.C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J. 
C. Shi, M.W. Spencer, S.W. Thurman, L. Tsang, J. Van Zyl, The Soil Moisture Active 
Passive (SMAP) mission, Proc. IEEE 98 (2010) 704–716, https://doi.org/10.1109/ 
JPROC.2010.2043918.

[10] H. Mao, D. Kathuria, N. Duffield, B.P. Mohanty, Gap filling of high-resolution soil 
moisture for SMAP/Sentinel-1: a Two-layer machine learning-based framework, 
Water Resour. Res. 55 (2019) 6986–7009, https://doi.org/10.1029/ 
2019WR024902.

[11] M.P. Clarizia, C.S. Ruf, Wind speed retrieval algorithm for the cyclone global 
navigation satellite system (CYGNSS) mission, IEEE Trans. Geosci. Remote Sensing 
54 (2016) 4419–4432, https://doi.org/10.1109/TGRS.2016.2541343.

[12] D. Comite, L. Cenci, A. Colliander, N. Pierdicca, Monitoring freeze-thaw state by 
means of GNSS reflectometry: an analysis of TechDemoSat-1 data, IEEE J. Sel. Top. 
Appl. Earth Observations Remote Sensing 13 (2020) 2996–3005, https://doi.org/ 
10.1109/JSTARS.2020.2986859.

[13] E. Santi, S. Paloscia, S. Pettinato, G. Fontanelli, M.P. Clarizia, D. Comite, L. Dente, 
L. Guerriero, N. Pierdicca, N. Floury, Remote sensing of forest biomass using GNSS 
reflectometry, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 13 
(2020) 2351–2368, https://doi.org/10.1109/JSTARS.2020.2982993.

[14] Y. Jia, S. Jin, P. Savi, Q. Yan, W. Li, Modeling and theoretical analysis of GNSS-R 
soil moisture retrieval based on the random forest and support vector machine 
learning approach, Remote Sens. (Basel) 12 (2020) 3679, https://doi.org/ 
10.3390/rs12223679.

[15] C.S. Ruf, S. Gleason, Z. Jelenak, S. Katzberg, A. Ridley, R. Rose, J. Scherrer, 
V. Zavorotny, The CYGNSS nanosatellite constellation hurricane mission, 2012 
IEEE International Geoscience and Remote Sensing Symposium IEEE, Munich, 
Germany 2012 (2012) 214–216, https://doi.org/10.1109/IGARSS.2012.6351600.

[16] C. Chew, R. Shah, C. Zuffada, G. Hajj, D. Masters, A.J. Mannucci, Demonstrating 
soil moisture remote sensing with observations from the UK TechDemoSat-1 
satellite mission, Geophys. Res. Lett. 43 (2016) 3317–3324, https://doi.org/ 
10.1002/2016GL068189.

[17] H. Carreno-Luengo, A. Camps, J. Querol, G. Forte, First results of a GNSS-R 
experiment from a stratospheric balloon over boreal forests, IEEE Trans. Geosci. 
Remote Sensing 54 (2016) 2652–2663, https://doi.org/10.1109/ 
TGRS.2015.2504242.

[18] A. Camps, M. Vall⋅llossera, H. Park, G. Portal, L. Rossato, Sensitivity of TDS-1 
GNSS-R reflectivity to soil moisture: global and regional differences and impact of 

different spatial scales, Remote Sens. (Basel) 10 (2018) 1856, https://doi.org/ 
10.3390/rs10111856.

[19] H. Carreno-Luengo, G. Luzi, M. Crosetto, Sensitivity of CyGNSS bistatic reflectivity 
and SMAP microwave radiometry brightness temperature to geophysical 
parameters over land surfaces, IEEE J. Sel. Top. Appl. Earth Observations Remote 
Sensing 12 (2019) 107–122, https://doi.org/10.1109/JSTARS.2018.2856588.

[20] M. Rahmani, J. Asgari, M. Asgarimehr, Soil moisture retrieval using space-borne 
GNSS reflectometry: a comprehensive review, Int. J. Remote Sens. 43 (2022) 
5173–5203, https://doi.org/10.1080/01431161.2022.2128927.

[21] C.C. Chew, E.E. Small, Soil moisture sensing using spaceborne GNSS Reflections: 
comparison of CYGNSS reflectivity to SMAP soil moisture, Geophys. Res. Lett. 45 
(2018) 4049–4057, https://doi.org/10.1029/2018GL077905.

[22] M.P. Clarizia, N. Pierdicca, F. Costantini, N. Floury, Analysis of CYGNSS data for 
soil moisture retrieval, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 
12 (2019) 2227–2235, https://doi.org/10.1109/JSTARS.2019.2895510.

[23] Q. Yan, W. Huang, S. Jin, Y. Jia, Pan-tropical soil moisture mapping based on a 
three-layer model from CYGNSS GNSS-R data, Remote Sens. Environ. 247 (2020) 
111944, https://doi.org/10.1016/j.rse.2020.111944.

[24] Z. Dong, S. Jin, Evaluation of the land GNSS-reflected DDM coherence on soil 
moisture estimation from CYGNSS data, Remote Sens. (Basel) 13 (2021) 570, 
https://doi.org/10.3390/rs13040570.

[25] M.M. Nabi, V. Senyurek, A.C. Gurbuz, M. Kurum, Deep learning-based soil 
moisture retrieval in CONUS Using CYGNSS delay-doppler maps, IEEE J. Sel. Top. 
Appl. Earth Observations Remote Sensing 15 (2022) 6867–6881, https://doi.org/ 
10.1109/JSTARS.2022.3196658.

[26] F. Lei, V. Senyurek, M. Kurum, A.C. Gurbuz, D. Boyd, R. Moorhead, W.T. Crow, 
O. Eroglu, Quasi-global machine learning-based soil moisture estimates at high 
spatio-temporal scales using CYGNSS and SMAP observations, Remote Sens. 
Environ. 276 (2022) 113041, https://doi.org/10.1016/j.rse.2022.113041.

[27] H. Kim, V. Lakshmi, Use of cyclone global navigation satellite system (CyGNSS) 
observations for estimation of soil moisture, Geophys. Res. Lett. 45 (2018) 
8272–8282, https://doi.org/10.1029/2018GL078923.

[28] C. Chew, E. Small, Description of the UCAR/CU soil moisture product, Remote 
Sens. (Basel) 12 (2020) 1558, https://doi.org/10.3390/rs12101558.

[29] Y. Jia, S. Jin, Q. Yan, P. Savi, R. Zhang, W. Li, An effective land type labeling 
approach for independently exploiting high-resolution soil moisture products 
based on CYGNSS data, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 
15 (2022) 4234–4247, https://doi.org/10.1109/JSTARS.2022.3176031.

[30] O. Eroglu, M. Kurum, J. Ball, Response of GNSS-R on dynamic vegetated terrain 
conditions, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 12 (2019) 
1599–1611, https://doi.org/10.1109/JSTARS.2019.2910565.

[31] L. Dente, L. Guerriero, D. Comite, N. Pierdicca, Spaceborne GNSS-R signal over a 
complex topography: modeling and validation, IEEE J. Sel. Top. Appl. Earth 
Observations Remote Sensing 13 (2020) 1218–1233, https://doi.org/10.1109/ 
JSTARS.2020.2975187.

[32] Y. Liu, Y. Yang, Advances in the quality of global soil moisture products: a review, 
Remote Sens. (Basel) 14 (2022) 3741, https://doi.org/10.3390/rs14153741.

[33] L. Gao, M. Sadeghi, A. Ebtehaj, J.-P. Wigneron, A temporal polarization ratio 
algorithm for calibration-free retrieval of soil moisture at L-band, Remote Sens. 
Environ. 249 (2020) 112019, https://doi.org/10.1016/j.rse.2020.112019.

[34] S.H. Yueh, R. Shah, M.J. Chaubell, A. Hayashi, X. Xu, A. Colliander, 
A semiempirical modeling of soil moisture, vegetation, and surface roughness 
impact on CYGNSS reflectometry data, IEEE Trans. Geosci. Remote Sensing 60 
(2022) 1–17, https://doi.org/10.1109/TGRS.2020.3035989.

[35] Z. Guo, B. Liu, W. Wan, F. Lu, X. Niu, R. Ji, C. Jing, W. Li, X. Chen, J. Yang, Z. Bai, 
Soil moisture retrieval using BuFeng-1 A/B based on land surface clustering 
algorithm, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 15 (2022) 
4680–4689, https://doi.org/10.1109/JSTARS.2022.3179325.

[36] M.J. Unwin, N. Pierdicca, E. Cardellach, K. Rautiainen, G. Foti, P. Blunt, 
L. Guerriero, E. Santi, M. Tossaint, An introduction to the HydroGNSS GNSS 
reflectometry remote sensing mission, IEEE J. Sel. Top. Appl. Earth Observations 
Remote Sensing 14 (2021) 6987–6999, https://doi.org/10.1109/ 
JSTARS.2021.3089550.

[37] S. Gleason, C.S. Ruf, A.J. O’Brien, D.S. McKague, The CYGNSS level 1 calibration 
algorithm and error analysis based on on-orbit measurements, IEEE J. Sel. Top. 
Appl. Earth Observations Remote Sensing 12 (2019) 37–49, https://doi.org/ 
10.1109/JSTARS.2018.2832981.

[38] O’Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, R. Bindlish, and J. Chaubell. (2021). 
SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 8 
[SPL3SMP]. Boulder, Colorado USA. NASA National Snow and Ice Data Center 
Distributed Active Archive Center. doi: 10.5067/OMHVSRGFX38O. Date Accessed 
3-15-2023.

[39] Friedl, M., Sulla-Menashe, D. (2022). MODIS/Terra+Aqua Land Cover Type Yearly 
L3 Global 0.05Deg CMG V061 [MCD12C1]. NASA EOSDIS Land Processes 
Distributed Active Archive Center. Accessed 2023-3-20 from doi: 10.5067/MODIS/ 
MCD12C1.061.

[40] W.A. Dorigo, A. Xaver, M. Vreugdenhil, A. Gruber, A. Hegyiová, A.D. Sanchis- 
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