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Abstract— Above-ground biomass (AGB) is an important indi-
cator for studying and understanding the ecological environment.
However, the traditional AGB estimation methods using terres-
trial Light Detection and Ranging (LiDAR) data still suffer
from biases for different tree species or forest sites as well
as low accuracy using the tree metrics. To overcome these
challenges, this article developed a novel model based on fractal
geometry. First, a theory was built to reveal the relationship
between fractal geometry and AGB estimation. To realize this,
three different theories were involved, including fractal theory,
traditional AGB estimation theory, and stem form factor theory.
The allometric AGB estimation equation was then developed
based on fractal geometry parameters (i.e., fractal dimension
and intercept). To test the proposed model, 101 individual trees
located at different forest sites with corresponding harvested
reference AGBs were adopted. Experimental results show that
the proposed model can achieve better AGB results when
compared with traditional allometric equations built upon tree
metrics. All the utilized accuracy indicators revealed that the
proposed method was the best. Relative root-mean-square error
(RMSE) was improved by 53%, 22%, and 18% when com-
pared with traditional allometric models built upon diameter
at breast height (DBH), tree height, and the combined two
variables (DBH and tree height). Furthermore, the performance
of the developed model was also analyzed toward different
tree species and different leaves on or off conditions. Results
indicated that the developed model can produce satisfactory
performance.

Index Terms— Above-ground biomass (AGB), allometric
model, fractal geometry, terrestrial Light Detection and Ranging
(LiDAR).
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I. INTRODUCTION

FOREST is one important component of the terrestrial
ecosystem, which plays a significant role in maintaining

the global climate system, regulating global carbon balance,
and slowing down the rise of greenhouse gas concentration
[1], [2]. Nowadays, forest above-ground biomass (AGB) has
become an important index to measure forest carbon sink
capacity and evaluate forest carbon budget [3].

Traditional optical remote-sensing technology usually
utilizes satellite images to estimate forest biomass. However,
remote-sensing images only provide horizontal spectral
information and cannot obtain vertical structure information
for the forest. As a result, it is generally difficult to achieve
accurate AGB estimation results in dense forest areas [4].
Compared with optical remote-sensing technology, Light
Detection and Ranging (LiDAR) is an active remote-sensing
technology, which has been developing rapidly in recent
years. LiDAR can obtain the 3-D structure information of
forests, and provide reflection intensity, number of echoes,
waveform, and so on. Thus, LiDAR has been widely used in
forest inventory and especially with the fast development of
terrestrial LiDAR (TLS), point clouds acquired by multiscan
mode can provide detailed 3-D information [5]. Nowadays,
it has become a major means for measuring tree metrics and
AGB estimation [2], [6], [7].

AGB estimation methods using TLS can be classified into
two categories based on measurable structural parameters and
individual tree volume and wood density. For the first category
of methods, individual tree structural parameters need to be
calculated. The relationship between tree parameters and ref-
erenced AGB values needs to be fit to build the corresponding
AGB estimation model [8]. The most commonly used tree
parameters are diameter at breast height (DBH) and tree height
[3], [9]. In the method proposed by Altanzagas et al. [3],
four kinds of allometric equations of AGB estimation were
established based on DBH, DBH square, tree height, and a
combination of DBH square and tree height, respectively. Ana-
lytical results showed that different AGB estimation models
were suitable for different tree species, and the establishment
of tree species-specific AGB models would be beneficial to
accurately estimate biomass. Basuki et al. [10] established an
AGB estimation based on DBH. R2 between the estimated
results and the measured results was up to 0.989. In addition to
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DBH and tree height, the wood density parameter was added to
the model developed by Chave et al. [11]. Experimental results
showed that this revised model can improve the estimation
accuracy of AGB. In addition to the allometrics equations built
upon tree metrics, Wang et al. [12] presented a new indicator
named LiDAR biomass index (LBI) for AGB estimation. The
obtained results showed that comparative performance can
be achieved based on LBI. However, LBI should be first
calculated using point clouds of analytical trees.

The main challenge for these methods is that inaccurate
tree parameters will lead to the propagation of errors, which
will seriously affect the subsequential estimation accuracy of
AGB models. For instance, the estimation of DBH is prone to
error due to the occlusion influence of LiDAR data. Moreover,
treetops are difficult to detect by TLS, resulting in a low esti-
mation of tree height. Tree parameters with a low calculated
accuracy will not help to generate an accurate AGB estimation
model. Moreover, the established AGB estimation models
generally cannot achieve satisfactory performance in terms
of different species or under different forest environments.
Existing studies have shown that established empirical models
tended to underestimate biomass by more than 35% for large
tropical trees and eucalypts [13], [14].

AGB estimation methods based on tree volume and wood
density generally need to estimate the tree volume first with the
AGB calculated by multiplying wood density [7], [15], [17].
The tree volume can be obtained by voxelization [18], [19] or
by local cylinder fitting [20], [21], [22]. The wood density can
be obtained by field measurement of the ratio of dry weight to
fresh volume of tree samples, or by querying the global wood
density database of tree species [23], [24]. Takoudjou et al.
[7] divided the individual tree into three parts, including the
stump, stem, and crown. Cylinder fitting was carried out
respectively, and the volume of the tree was obtained by adding
these three parts together. Subsequently, wood density obtained
from the global wood density database was used to convert
tree volume into biomass. Kükenbrink et al. [2] obtained the
volume of trees by constructing a quantitative structural model
(QSM), and the biomass of individual trees was obtained by
multiplying the wood density. In their study, wood density was
determined by the ratio of the dry weight of tree samples to
the fresh volume of tree samples. The key to this method
is to obtain the accurate volume of individual trees, but
existing studies have shown that the volume estimation of
small branches (diameter less than 7 cm) is prone to error
[25]. To solve such problems, the volume expansion factor
was adopted by Longuetaud et al. [26]. The volume expansion
factor is the ratio of the volume of partial components to
the volume of the whole individual tree. In the method
proposed by Demol et al. [16], model construction and volume
estimation were carried out for branches whose diameters were
larger than 7 cm, and then the volume expansion factor was
multiplied to obtain the volume of the whole individual tree.
This helped in solving the problem that small branches are
prone to volume estimation deviation. However, the accuracy
of volume estimation using this method is only slightly better
than that based on the QSM of individual trees. Thus, Demol et
al. [16] suggested that it was better to further improve the accu-

racy of QSM construction, especially for twig reconstruction
to improve the estimation accuracy of individual tree volume.

In addition to the difficulty of accurately obtaining the
volume of individual trees, another major problem with such
methods is how to obtain wood density. Wood density is often
related to many factors such as the geographical locations,
growing environments, and sunlight exposure conditions of
individual trees [11]. Hence, it is error-prone when getting the
wood density by searching the global wood density database
directly according to the tree species. In addition, not all
species density information is included in the global wood
density database. Although wood density can be measured
directly in the field, it has been shown that the field mea-
surement of wood density is heavily affected by the field
environments [27]. Also, the density of wood in different parts
of an individual tree tends to be different [28].

To sum up, the main challenges of AGB estimation using
TLS mainly include the following four aspects.

1) The current calculated tree metrics used for AGB estima-
tion, such as DBH, tree height, and so on, cannot reflect
the overall structure of the tree in 3-D space. As a result,
AGB estimation cannot be obtained using the descriptors
in a global perspective with higher accuracy.

2) The calculated tree metrics used for AGB estimation is
generally prone to errors. For example, treetops cannot
be acquired effectively using TLS. Clearly, inaccurate
tree metrics cannot lead to accurate AGB estimation
results.

3) Most traditional AGB estimation models are specific
to particular tree species. As a result, when applied to
different tree species, these models fail to provide sat-
isfactory AGB estimation performance. In other words,
the traditional models lack robustness and applicability
across various tree species.

4) The traditional allometric equations are generally built
based on tree metrics (DBH, tree height, and so on).
Leaves on or off conditions have little influence on the
traditional model estimation results. Therefore, it is nec-
essary to conduct further research on how the conditions
of leaves on and off affect AGB estimation.

To solve the enumerated challenges, this article constructs
a novel model for revealing the relationship between fractal
geometry and AGB estimation and tries to estimate AGB
at tree level using fractal geometry parameters. The newly
developed AGB estimation model is not species-specific and
can be applied to any individual tree. To sum up, the main
contributions of this study mainly include the following three
aspects.

1) To propose a novel allometric model for AGB estimation
based on fractal parameters.

2) To analyze the relationship of fractal dimension and
intercept toward AGB.

3) To evaluate the applicability and accuracy of the pro-
posed fractal geometry allometric (FGA) equation for
AGB estimation under different leaves on and off con-
ditions.
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The remainder of this article is organized as follows.
In Section II, the principle of the proposed theory using
fractal geometry for estimating AGB is demonstrated. Mean-
while, the developed FGA equation is derived. Section III
conducts experiments and analysis using the LiDAR datasets
at tree level to access the applicability and accuracy of
the proposed theory. Section IV gives a discussion on the
relationship between fractal geometry parameters and AGB,
the performance of the developed model toward different tree
species, and the influence of leaves on and off conditions.
Finally, a conclusion regarding AGB estimation based on
fractal geometry is given in Section V.

II. METHODOLOGY

The derivation process of the proposed fractal
geometry-based AGB estimation model is illustrated in
Fig. 1. It can be found that three theories are involved
in deriving the proposed fractal geometry-based AGB
estimation equation. These include fractal theory, traditional
AGB estimation theory and stem form factor theory.
In fractal theory, two fractal geometry parameters, namely,
fractal dimension (dMB) and intercept (InterceptMB) can be
calculated by using a log–log linear regression to voxel sizes
and corresponding number of voxels. Although the classical
log-log linear model has been established before, this article
mainly utilizes it for exploring the relationship between
voxel and fractal parameters, which will be used for further
evolution of the traditional stem form factor calculation.
In traditional AGB estimation theory, a new allometric
equation between InterceptMB and AGB is derived from the
traditional allometric AGB estimation equation based on
the power-law relationship between tree height and DBH,
and the power-law relationship between DBH and fractal
intercept. In stem form factor theory, stem form factor (F)

can be calculated using stem-wood volume (V ), parabolic
height (h p), and cross-sectional area (sp). Here, V can be
calculated as the sum of a series of voxels, while voxels can
be represented as an allometric equation of fractal geometry
parameters. Thus, the stem form factor can be further derived
as a fractal geometry parameter-based equation. Thereafter,
the proposed fractal geometry-based AGB estimation equation
was derived by substituting F into the traditional allometric
equation. By taking the logarithmic transformation, the
theoretical relationship between AGB and fractal geometry
parameters can be derived. To sum up, four main steps are
included in this article as described in Sections II-A–II-D,
respectively.

A. Fractal Geometry Parameter Calculation

Fractal geometry was first defined by Mandelbrot [29].
In fractal theory, the structure or shape of an object shows
a similarity to the whole when observing at different scales
[30]. It recognizes that changes in the dimension of space
can be both discrete and continuous. Since fractal geometry
provides a cheap way to access the structure and size of plants,
it has been widely used in vegetation point extraction and tree
metrics (DBH, height, crown area, and so on) estimation [30],

[31], [32]. However, never has it been used for AGB estimation
based on LiDAR datasets.

In general, the fractal parameters can be calculated accord-
ing to the box-counting method, where the object can be
covered by a series of boxes. In terms of 3-D point clouds,
the box can be replaced as voxels. As shown in Fig. 2, the
individual tree can be covered by voxels of different sizes.

By fixing the edge of a cube, we can achieve the optimal
coverage of voxels for an individual tree. In practice, the initial
cube edge is set to the maximum value of 1x , 1y, and 1z,
1x , 1y, and 1z refer to the differences between the maximum
and minimum x , y, and z coordinates, respectively. In this
case, we use one large voxel to cover the individual tree.
As the cube edge is decreased, more voxels will be required
to cover the individual tree and the number of voxels will
increase exponentially. The voxelization is kept iterating until
the cube edge is equal to the mean point spacing distance.
A log–log linear regression can be built between voxel size
and the number of voxels as defined in the following equation
[30]:

log N1 = dMB × log
(

1
Voxel

)
+ InterceptMB (1)

where N1 is the number of voxels and Voxel represents the
voxel size. Obviously, different Voxel corresponds to different
N1. The relationship between them can be solved by linear
regression with dMB as the slope, which is also named as
fractal dimension. The InterceptMB is the intercept of the linear
model.

The coefficients dMB and InterceptMB in the linear model can
be calculated using the least-squares principle. As previously
mentioned, the voxel size (Voxel) influences the number of
voxels (N1). By obtaining a series of values for Voxel and N1,
regression analysis can be used to calculate the coefficients
dMB and InterceptMB. Regression analysis aims to find the
optimal coefficients that minimize the residual sum of squares.

Equation (1) is a classical formula in fractal theory. Dif-
ferent from existing studies, this article further derived the
relationship between Voxel and fractal geometry parameters
based on (1) as follows:

Voxel = exp
((

InterceptMB − log(N1)
)/

dMB
)
. (2)

From (2), it is easy to find that voxel size is related to fractal
information. This relationship will be used for further evolu-
tion of the traditional stem form factor calculation mentioned
in Section II-C.

B. Evolution of the Traditional Allometric Equation

It is generally suggested that AGB should be proportional
to DBH, tree height and specific wood density. Thus, a tra-
ditional allometric equation for AGB estimation is generally
established as follows [33]:

AGB = F ×

(
ρ ×

(
π D2

4

)
× H

)β

(3)

where F is the stem form factor, ρ is the specific wood density,
D is DBH, and H is the tree height. β shows the power-law
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Fig. 1. Derivation of the proposed fractal geometry-based AGB estimation model.

Fig. 2. Fractal geometry parameters calculation based on the box-counting method. With the gray voxel size changing smaller, the number of voxels increases
distinctly.

relationship between AGB and the tree metrics. Due to the
occlusion of the tree canopy, tree height is difficult to be
measured by TLS. For better AGB estimation, (3) can be
evolved as a DBH-based allometric equation as follows:

AGB = F ×

(
ρ ×

π D2+α

4

)β

. (4)

Equation (4) is derived based on the power-law relationship
between tree height and DBH, that is H ⇔ Dα [34]. Here, ⇔

represents proportionality. Furthermore, Guzmán et al. [30]
have proven that fractal geometry parameters can be used
to predict tree metrics. This is because there is a strong

power-law relationship between DBH and InterceptMB. Here,
we defined it as D ⇔

(
InterceptMB

)r . Subsequently, (4) can
be further derived as follows:

AGB = F ×

(
ρ

π

4

)β

× Intercept(2+α)βr
MB . (5)

C. Stem Form Factor Calculation by Voxelization

From (5), it is easy to find that AGB is only related to
the product of the stem form factor and one fractal geometry
parameter. In general, the stem form factor is related to
the proportions of tree branches to stems and varies among
different forest types [34], [35].
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In stem form factor theory, the shape of stem wood is
assumed as a quadratic paraboloid [36]. Thus, the parabolic
volume of the stem wood can be calculated as a product of
parabolic height and cross-sectional area as defined in the
following equation [35]:

V = F × h p × sp (6)

where V is the wood volume, h p is the parabolic height, and
sp is the cross-sectional area at the base of the paraboloid [35].
F is the stem form factor, which is affected by tree species.
In general, when encountering with mature conifers, F will be
smaller. On the contrary, when encountering with broadleaved
trees, F will be larger [35]. Thus, it can be found that the stem
form factor is difficult to determine. Different from existing
studies, this article does not calculate F according to tree
species. Instead, F is derived based on the wood volume,
which can be estimated by voxelization. Thus, F can be further
solved by the following equation:

F =
1

h p × sp
× N2 × Voxel (7)

where N2 is the number of voxels. Similar with (1), when
voxel size changes smaller, the number of voxels will be
increased as a power function.

D. Deviation of the Proposed FGA Equation

By substituting (2) and (7) into (5), a new model for AGB
estimation can be derived as follows:

AGB =
N2

h p × sp
exp

((
InterceptMB − log(N1)

)/
dMB

)
×

(
ρ

π

4

)β

× Intercept(2+α)βr
MB . (8)

By taking the logarithmic transformation, a log-log model can
be achieved as follows:

log(AGB) = log
(

N2

h p × sp

)
+

(
InterceptMB − log(N1)

)/
dMB

+ β log
(
ρ

π

4

)
+ (2 + α)βr log

(
InterceptMB

)
.

(9)

Equation (9) can be further simplified as an allometric
equation of fractal geometry parameters, which is named as
FGA equation in this article, defined as follows:

log(AGB) = a0 + a1 × d−1
MB + a2 × InterceptMB × d−1

MB

+ a3 × log
(
InterceptMB

)
(10)

where a0, a1, a2, and a3 are coefficients, which can be solved
by regression. In this case, the least-squares method is used
to calculate these four coefficients. The aim of regression
analysis is to find the optimal coefficients that minimize the
residual sum of squares between the estimated and referenced
AGB values. At this point, the fractal geometry-based AGB
estimation model has been established.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Datasets and Evaluation Metrics

To evaluate the performance of the proposed FGA model,
eight publicly available datasets located in different areas were
tested. The eight datasets covered seven different tree species,
including Pinus sylvestris, Larix decidua, Fagus sylvatica,
Fraxinus excelsior, Quercus petraea, Erythrophleum, and Pinus
massoniana. The characteristics of the tested datasets are tabu-
lated in Table I. Among them, five datasets were collected from
Belgium, one from Germany, and two from China [16], [20].
The five datasets collected from Belgium were acquired using
a RIEGL VZ-1000 or VZ-400 terrestrial laser scanner [16].
There are 15, 15, 5, 15, and 15 individual trees in each forest
site, respectively. The angular sampling resolution is 0.04◦,
and the pulse repetition rate is 300 KHz [16]. The datasets
were scanned between December 2017 and March 2018. The
last three forest stands include 12, 12, and 12 individual
trees, respectively. The point clouds were collected using a
Z+F IMAGER 5010 (10,000 pixel/360◦) or Z+F IMAGER
5010c (20,000 pixel/360◦) laser scanner, which belongs to
phase shift scanning mode. The point clouds were collected
between March 2013 and October 2013. In total, there are
101 individual trees (54 trees with leaves and 47 trees without
leaves) in the eight forest stands. All the individual trees were
felled and the AGBs were destructively measured. The AGBs
will serve as reference values for testing the performance of
the developed AGB estimation model.

Five accuracy metrics were used for testing the performance
of the proposed method, including mean bias (mBias), relative
mean bias (rmBias), root-mean-square error (RMSE), relative
RMSE (rRMSE), and coefficient of determination (R2). The
five accuracy metrics are defined in (11)–(15). The first four
indicators demonstrate deviation of the estimated AGBs from
the referenced AGBs. R2 can be seen as a measurement of
self-similarity and can reflect the model explanatory degree
[30]

mBias=

N∑
i=1

abs
(
AGBi

est − AGBi
ref

)/
N (11)

rmBias

=mBias/AGBref (12)

RMSE=

√√√√ N∑
i=1

(
AGBi

est − AGBi
ref

)2

/
N (13)

rRMSE

=RMSE/AGBref (14)

R2
=

∑N
i=1

(
AGBi

ref−AGBref
)2

−
∑N

i=1

(
AGBi

ref−AGBi
est

)2∑N
i=1

(
AGBi

ref−AGBref
)2

(15)

where AGBi
est is the i th estimated AGB using the developed

model, while AGBi
ref is the referenced value. N is the total

number of trees. AGBref is the mean referenced AGB value.
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TABLE I
CHARACTERISTICS OF THE TESTED DATASETS [16], [20]

Fig. 3. Comparison between estimated AGBs and referenced AGBs. The
black line is 1:1 line, while the blue dotted line is the fit line.

B. Experimental Results and Comparison

According to (10), the AGBs for the 101 individual trees
can be estimated. If the estimated AGBs are all equal to the
referenced AGBs, the points should be distributed along the
least squares line of best fit designated as 1:1 in Fig. 3. In that
case, all the estimated results are completely correct. In other
words, if more points are distributed around the 1:1 line,
the performance of the developed model will be better. From
Fig. 3, it can be found that there are many points found around
the line of best fit. As a result, R2 of the developed model
in this article is 0.753 as produced by the fit line between
the estimated AGBs and referenced AGBs. The higher R2

indicates that higher similarity existed between the estimated
AGBs and referenced AGBs. Thus, it can be concluded that
the developed AGB estimation model performs well in terms
of these 101 individual trees.

The commonly used models for AGB estimation are devel-
oped based on DBH [10], [37], [38], which is expressed as
AGB = aDb. Since some researchers assumed that there is a
power-law relationship between tree height and DBH (H ⇔

Dα) [34], the DBH-based AGB models can be transformed
to be AGB = aH b. Another kind of famous AGB estimation

model is based on DBH and tree height simultaneously [3],
[4], which is expressed as AGB = aDb H c. To obtain better
AGB estimation results, an interaction item (D ∗ H) can also
be added. That is AGB = aDb H c(DH)d . With the fast devel-
opment of individual tree modeling methods, some researchers
also used the tree volume (V ) and wood density (ρ) to
estimate the biomass. That is AGB = aV bρc. As commented
by Altanzagas et al. [3], the first four allometric equations
built upon DBH, tree height, and the combined two variables
(DBH and height) are suitable for different tree species, and
the establishment of tree species-specific AGB models would
be beneficial to accurately estimate biomass. In other words,
the first four AGB estimation models are generally species-
specific. The last allometric equation is built based on tree
volume and wood density. Tree volume can be obtained by
voxelization or by local cylinder fitting. Wood density can be
obtained by field measurement of the ratio of dry weight to
fresh volume of tree samples, or by querying the global wood
density database according to tree species. This model based
on tree volume and wood density is commonly regarded as a
reliable method for estimating AGB.

To objectively evaluate the performance of the proposed
method, this article compared the accuracy metrics of the
proposed FGA model and the ones of these traditional AGB
estimation models. The comparison result is tabulated in
Table II. From Table II, it can be found that the proposed FGA
model performs the best no matter which accuracy indicator
is adopted. In terms of R2, the proposed method performs
much better than the models based on one variable (D or H).
For two variables (D and H) combined, the proposed method
still outperformed the traditional models. In terms of RMSE,
the proposed model still achieved the lowest value. rRMSE
was improved 41.3, 10.2, 8.1, and 9.9 percentage points
compared with traditional allometric models built upon DBH,
tree height, and the combined two variables. Although the
AGB estimation model based on tree volume was expected to
achieve a promising result, its performance was still worse than
the proposed model due to the poor wood density accuracy of
different tree species.
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TABLE II
COMPARISON WITH COMMONLY USED ALLOMETRIC MODELS

TABLE III

ESTABLISHED AGB MODELS AND CORRESPONDING EQUATIONS [39]. N IS THE NUMBER OF TREES IN THE TESTED PLOT, D IS DBH (CM), H IS TREE

HEIGHT (M), AND WD IS WOOD DENSITY (G/CM3)

TABLE IV
ACCURACY METRICS FOR THE ESTABLISHED ALLOMETRIC EQUATIONS

Many established AGB equations have also been built
for specific species or local regions as shown in Table III.
To further analyze the performance of the proposed method,

this article computed the accuracy metrics according to these
established AGB equations as listed in Table III and their
corresponding obtained results are shown in Table IV. From
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Fig. 4. Relationship between fractal geometry parameters and referenced
AGBs: (a) dMB and referenced AGBs and (b) InterceptMB and referenced
AGBs.

Table III, it can be found that these seven AGB estimation
equations were developed toward different forest types and
different regions. Using these established equations for testing
will help to show the robustness and applicability of the
established models toward the 101 trees tested in this study.

Table IV demonstrates that when testing these 101 trees, all
seven established AGB equations showed poorer performance.
All the R2 values were smaller or even negative. It means
that the estimated AGBs by the five established equations
have little similarity with the referenced AGBs. The smallest
mBias (237.938 kg) was achieved by Chan et al. [42], which is
more than two times that of the proposed model (106.224 kg,
Table II). Meanwhile, the largest mBias (825.414 kg) was
about eight times that of the proposed model. In terms of
RMSE, the proposed method also performed much better. The
reasons for the bad performance of these established models
are twofold. The first is that the measurement of DBH and tree
heights generally involves errors. This is because the measured
DBH always relies on circle fitting. Hence, the calculated
result is easily prone to error. In terms of tree height, LiDAR
pulses may miss actual treetops. Studies have also shown that
the field-measured wood density can easily produce errors
[27]. Moreover, these established equations are generally built
upon trees in specific regions or of specific species. When
applying these existing models to other datasets, good perfor-
mance cannot be guaranteed.

Fig. 5. Comparison of AGB estimation models based on fractal geometry
parameters.

IV. DISCUSSION

A. Relationship Between Fractal Geometry Parameters and
AGB

Fig. 4 shows the relationship between fractal geometry
parameters and referenced AGBs. From Fig. 4(a) and (b),
it can be found that both dMB and InterceptMB have the
growing tendency with referenced AGBs changing to be larger.
However, this tendency is not obvious as indicated by the fit
lines shown in Fig. 4(a) and (b). The largest referenced AGBs
do not own the highest dMB and it is the same for InterceptMB.
In terms of dMB, its value varies from 0 to 1. For the tested
datasets used in this article, dMB values are mainly between
0.55 and 0.65 [Fig. 4(a)]. In general, dMB close to 0 represents
a cylindrical tree. Since most trees have branches and canopies,
dMB values are generally larger than 0. This can also be found
in Fig. 4(a). Conversely, dMB close to 1 represents that the tree
points are uniformly occupied the 3-D space [30]. In other
words, the individual tree is regular in shape like a Menger
sponge. It must be admitted that most trees do not meet this
requirement in nature. That is why dMB values are generally
smaller than 1. In terms of InterceptMB, its values can be
positive and negative. In general, larger objects own larger
InterceptMB values [30]. Thus, a tree with larger size generally
owns larger InterceptMB. This is why InterceptMB values have
a tendency to increase as the referenced AGB values become
larger, as illustrated in Fig. 4(b).

As the dotted line shown in Fig. 4(a) and (b), both dMB
and InterceptMB have a growing tendency when referenced
AGBs changes to be larger. It seems that there could be a
relationship between dMB or InterceptMB and AGB. To verify
this, this article developed two AGB estimation models based
on only one variable (dMB or InterceptMB) and tested their
estimation performance. Fig. 5 shows the comparison results
with the proposed model in this article. From Fig. 5, it can be
found that InterceptMB can be better used for AGB estimation
than dMB. Comparing with dMB or InterceptMB-based models,
the proposed model performs much better. R2 of the proposed
model is the highest. More importantly, the allometric equation
developed in this article is derived step by step and not
obtained by roughly combining the two fractal geometry
parameters.
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TABLE V
PERFORMANCE OF THE DEVELOPED MODEL TOWARD DIFFERENT TREE SPECIES

TABLE VI
ACCURACY METRICS COMPARISON TOWARD THE DEVELOPED MODEL UNDER LEAF-ON AND LEAF-OFF CONDITIONS. N IS THE NUMBER OF TREE

B. Performance of the Developed Model Toward Different
Tree Species

To verify the robustness of the developed AGB estimation
model toward different tree species, this article tested the
datasets separately by species. As shown in Table I, there are
seven tree species in these datasets, namely, Pinus massoniana,
Erythrophleum fordii, Quercus petraea, Pinus sylvestris, Larix
decidua, Fraxinus excelsior, and Fagus sylvatica. The AGB
estimation performance using the developed model toward
these tree species is tabulated in Table V. It can be found
that the developed model performs well in most species. Six
out of eight tree species can achieve R2 larger than 0.6. As a
result, the average R2 of all these seven species is 0.762, which
means that promising AGB estimation results can be achieved
by this article. In terms of mBias, only one tree species’
mBias is larger than 100 kg. It means the proposed method
can obtain the estimated biomass results as accurately as the
referenced values. Moreover, almost all the rRMSEs of tree
species are smaller than 30%. Thus, it can be concluded that
the developed AGB estimation model has strong robustness
toward different tree species. However, it is important to note
that the performance of the proposed model varies for different
tree species. For instance, the R2 value for Fagus sylvatica
is 0.441, while the R2 value for Larix decidua is 0.989.
One of the main reasons for this discrepancy is the limited
number of tree samples used to test the accuracy of AGB
estimation in this study. In the case of Fagus sylvatica, only
15 tree samples were available. Additionally, these samples
exhibited a wide range of referenced AGB values, ranging
from 350.062 to 1175.124 kg. Consequently, constructing a
reliable AGB estimation model using such a small number of
diverse tree samples becomes challenging.

Fig. 6. Violin plot comparing fractal geometry parameters under different leaf
conditions: (a) dMB;dMB and (b) InterceptMB. The black dotted line represents
the median, while the two white dotted lines represent 25 percentile and
75 percentile, respectively.

C. Influence of Leaf-On and Leaf-Off Conditions

As presented in Table I, among the tested 101 individual
trees there are 54 trees with leaves and 47 trees without leaves.
To further analyze the influence of leaves on and off condi-
tions on the developed model, this article calculated fractal
geometry parameters and accuracy metrics, respectively. The
fractal geometry parameters calculation results are shown in
Fig. 6. From Fig. 6(a), it can be found that trees with leaves
tend to have larger dMB values larger than 0.6. As a result,
the median dMB value [black dotted line in Fig. 6(a)] of trees
with leaves is higher than that of trees without leaves. This
can be explained by the fact that trees with leaves cover more
voxels, resulting in a greater occupation of 3-D space when
calculating the fractal dimension. As mentioned previously,
when a tree evenly occupies its space, its fractal dimension
will be larger. Fig. 6(b) shows InterceptMB values distribution
under different leaf conditions. It can be found that most
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trees without leaves tend to have larger InterceptMB values.
Examining Table VI, the heights of trees without leaves are
higher than the trees with leaves in this study. Meanwhile,
DBHs of trees without leaves are also larger than the trees
with leaves in this study. This means that trees without leaves
are larger in size than trees with leaves in the testing datasets.
As mentioned in Section IV-A, a tree with a larger size
generally has large InterceptMB. That is why the InterceptMB
values of trees without leaves tend to be higher than the trees
with leaves.

Table VI presents the accuracy metrics of the developed
model under different leaf conditions. It can be observed that
no matter leaf on or leaf off, the proposed model can achieve
good AGB estimation performance. All the R2 are larger than
0.7. In this study, trees with leaves can achieve the smallest
mBias and RMSE values. This is because trees with leaves
in this study tend to have smaller DBHs. More importantly,
DBHs exhibit smaller changes (27.650 ±7.236 cm) among the
trees with leaves when compared with the trees without leaves
(36.089 ±28.210 cm). As a result, mBias and RMSE values
for the trees without leaves are about two times the ones with
leaves. This indicates that the proposed model tends to achieve
better AGB estimation result when the trees are smaller
in size.

V. CONCLUSION

This article proposed a new allometric model for AGB
estimation. Unlike traditional allometric models built upon tree
metrics (DBH, tree height, and so on), the proposed model
applies fractal geometry parameters (dMB and InterceptMB) for
estimating AGB from a global perspective. The strengths of the
newly built model are twofold. On the one hand, the developed
model provides a new way of estimating AGB, which will not
need the prerequisite of tree metrics calculation. Compared to
the newly proposed LBI indicator, the calculation of fractal
geometry parameters is much easier and does not need to
calculate the leaf area of each crown layer. In addition, the
developed model is not species-specific, which extends its
application to any tree species for AGB estimation. To test
the proposed model, 101 individual trees collected from eight
different forest sites are used to assess the performance of
the proposed model. The datasets include seven different
tree species and contain 54 trees with leaves and 47 trees
without leaves, respectively. Experimental results show that
the developed model can achieve good AGB performance.
Compared with the traditional tree metrics-based models, the
proposed model achieved the highest R2 and lowest mBias and
RMSE. Moreover, the relationship between fractal geometry
parameters and AGB estimation shows that combining dMB
with InterceptMB performed better than the single variable-
based model. Furthermore, the developed model was tested on
the trees with and without leaves. Experimental results show
that the proposed model can achieve good AGB results in
both leaves on and off conditions. The newly developed AGB
estimation model could provide a new way for researchers and
make more contributions to the forest inventory. However, it is
still uncertain whether the fractal geometry parameters can be

utilized for estimating AGB on a large scale. In our forthcom-
ing research, we will concentrate on estimating regional AGB
using the principles of fractal geometry.
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