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Abstract: Algal blooms, resulting from the overgrowth of algal plankton in water bodies, pose
significant environmental problems and necessitate effective remote sensing methods for monitoring.
In recent years, Global Navigation Satellite System–Reflectometry (GNSS-R) has rapidly advanced
and made notable contributions to many surface observation fields, providing new means for
identifying algal blooms. Additionally, meteorological parameters such as temperature and wind
speed, key factors in the occurrence of algal blooms, can aid in their identification. This paper utilized
Cyclone GNSS (CYGNSS) data, Sentinel-3 OLCI data, and ECMWF Re-Analysis-5 meteorological
data to retrieve Chlorophyll-a values. Machine learning algorithms were then employed to classify
algal blooms for early warning based on Chlorophyll-a concentration. Experiments and validations
were conducted from May 2023 to September 2023 in the Hongze Lake region of China. The results
indicate that classification and early warning of algal blooms based on CYGNSS data produced
reliable results. The ability of CYGNSS data to accurately reflect the severity of algal blooms opens
new avenues for environmental monitoring and management.

Keywords: GNSS-R; CYGNSS; reflectivity; machine learning; algal blooms

1. Introduction

The development of society and the rise of urban construction near inland lakes with
abundant water resources have led to increased industrial, agricultural, and residential
activities, contributing to significant water pollution and eutrophication [1]. The presence
of phytoplankton indicates eutrophication [2,3]. These blooms deplete oxygen levels in the
water and produce toxins, posing serious threats to aquatic life and the safety of drinking
water for nearby cities [4,5]. Consequently, effective methods and tools for detecting algal
blooms are crucial for the protection and management of water resources in lakes and
surrounding areas. To minimize the negative impacts of these blooms, researchers have
adopted various detection methods. The in situ measurement methods involve directly
measuring the concentration of various algae in the water. However, these methods are
limited in their monitoring scope and the number of samples they can obtain [6]. Addition-
ally, field measurements are costly, time-consuming, and inadequate for quickly obtaining
comprehensive information about blooms across lakes and monitoring their changes.

Over decades of development, satellite remote sensing technology has been success-
fully applied to the monitoring of algal blooms and related research. Remote sensing
offers the advantages of low cost and wide observation coverage, allowing for the rapid
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acquisition of large-area feature information [7]. However, the temporal resolution of
optical remote sensing is generally low; for example, the revisit period of Landsat-8 is
16 days, while Sentinel-2 missions are at least 5 days [8]. Moreover, optical remote sensing
is significantly hindered by cloud cover, making it difficult to obtain reliable images on
cloudy or rainy days [9], which results in incomplete observation sequences and further
lengthens the time intervals between image acquisitions [10]. Microwave remote sensing is
also a major means of Earth observation, with synthetic aperture radar (SAR) being one of
the primary methods. SAR detects the scattering surface by receiving the backscattering of
transmitted electromagnetic waves. SAR is sensitive to algal blooms, as Wang et al. [11]
discovered that SAR backscattering is suppressed at the lake surface where blooms occur,
resulting in dark zones in SAR images. Bresciani et al. [12] demonstrated the feasibility
of correlating Chlorophyll-a (chl_a) concentration with SAR backscattering coefficients
during different bloom phases. They retrieved chl_a concentration and SAR backscattering
coefficients at various stages of the bloom, showing a viable correlation between the two.
Although SAR images can overcome weather constraints that affect optical images, the
revisit period of most onboard SAR missions remains not short enough (at least 7 days),
and their temporal resolution is not significantly better than that of optical images [13].

Global Navigation Satellite System–Reflectometry (GNSS-R) is an emerging microwave
remote sensing technology that uses specific receivers to capture GNSS signals reflected
from the ground to observe Earth’s surface [14]. Its main features include a wide range of
signal sources, global coverage of major land and oceans, and low cost [15]. GNSS-R satel-
lites offer flexible spatial resolution and very short revisit periods. Operating in the L-band,
they can penetrate clouds, are unaffected by weather conditions, and can monitor reflective
surfaces on a 24 h, all-weather basis [16,17]. In recent years, GNSS-R data have been applied
in various fields, such as sea surface wind retrieval, sea ice measurement [18,19], ocean
altimetry [20], flood and inland water mapping [21–23], and soil moisture retrieval [24–26].

Algal bloom detection has become a key GNSS-R research topic in recent years. Algal
blooms smooth the water surface, enhancing the forward scattering strength of radar waves.
GNSS signals reflecting off smooth water surfaces exhibit coherent reflections, and changes
in water surface roughness can be effectively identified using the Doppler Delay Map
of the onboard GNSS-R. These capabilities make Cyclone GNSS (CYGNSS) data feasible
for hydrographic monitoring. CYGNSS is the latest constellation mission using GNSS-R
technology and is also widely employed in the study. Rodriguez-Alvarez et al. [27] were
the first to use CYGNSS satellite data to analyze changes in ocean surface roughness in
the Gulf of Mexico to detect algal blooms. Ban et al. [28] proposed a model to estimate
red tide density at the sea surface from GNSS-R observations, demonstrating the potential
of GNSS-R technology for rapid preliminary monitoring of red tides. Zhang et al. [29]
utilized the power ratio of GNSS-R data to identify blooms in Taihu Lake by analyzing
coherent reflections on the water surface where blooms occur, also discussing the impact
of wind speed on identification results. Zhen et al. [30] combined GNSS-R data with
auxiliary meteorological data to detect blooms in Taihu Lake, showing that incorporating
meteorological data can improve detection accuracy. These studies primarily rely on
vegetation indices (e.g., Normalized Difference Vegetation Index, NDVI) as validated data.
The method is not sensitive enough to recognize mild to slight “algal blooms” and “algal
blooms” with low algal densities. When the NDVI is negative, it is difficult to choose a
suitable threshold between algal bloom and algal bloom, which leads to inconsistency in
the interpretation of algal bloom distribution and area. Consequently, using vegetation
indices as validation data may lead to false positives in bloom modeling results, causing
false alarms. Additionally, due to their characteristic thickness and stickiness, algae floating
on the lake’s surface reduce the tension on the water’s surface. During bloom formation,
algae multiply and aggregate, evolving from a hidden bloom to a dominant one, eventually
smoothing the water reflection surface and increasing the coherent reflection component
received by GNSS-R. Current research primarily focuses on identifying algal blooms after
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major outbreaks, with insufficient monitoring of less severe blooms and their development
processes, limiting the practical application and impact of these research findings.

To accurately monitor and predict algal blooms, this paper uses Sentinel-3 OLCI
(Ocean and Land Color Instrument) data to retrieve chl_a concentration and proposes
a machine learning (ML) model for bloom monitoring using CYGNSS reflectivity and
meteorological data. The validation of the chl_a concentration retrieval results and the
prediction model of algal bloom outbreak level are conducted in the Hongze Lake area of
China. This paper is organized as follows: Section 2 describes the study area and the data
used; Section 3 describes the methodology for retrieval of chl_a concentration, the strategy
for grading algal bloom levels, and the adopted ML prediction model; Section 4 presents
the classification results obtained; Section 5 gives the discussion of the article; and Section 6
provides the conclusions of this study.

2. Study Area and Materials
2.1. Study Area

Hongze Lake (Figure 1) is located in the lower reaches of the Huaihe River in north-
western Jiangsu Province, China. It is the largest lake in the Huaihe River Basin and one
of the five largest freshwater lakes in China. Geographically, Hongze Lake is situated be-
tween 33◦06′–33◦40′N and 118◦10′–118◦52′E. The lake is influenced by a monsoon climate,
resulting in relatively abundant annual precipitation. The water quality of Hongze Lake is
classified as medium-eutrophic, with the main pollutants being organic matter [31]. The
average annual water temperature is 16.3 ◦C, with summer water temperatures exceeding
28 ◦C, which is conducive to the proliferation of algae. Consequently, the lake has experi-
enced frequent algal blooms in recent years, significantly impacting local fishery resources,
the ecological environment, and the water supply for nearby residents and agriculture.
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2.2. CYGNSS Data

The CYGNSS satellite is a constellation utilizing GNSS-R technology that has received
great attention and has achieved many research results since its operation. The mission was
launched by the National Aeronautics and Space Administration (NASA) in December 2016
into a low Earth orbit at an altitude of 580 km and an inclination of 35◦. Its constellation
contains eight microsatellites that can receive both direct and ground-reflected signals from
Global Positioning System (GPS) satellites, and its sampling area covers all regions between
38◦ north and south latitudes. Each satellite is equipped with a dual-base radar featuring
multiple reception channels, allowing the reception of up to four signals simultaneously,
resulting in observations at 32 different points. The CYGNSS constellation offers high
temporal resolution and short revisit periods, averaging 7.2 h for oceans and 1–2 days for
land [32]. The spatial resolution of the data varies theoretically from 0.5 to 25 km, depending
on whether the reflections are specular (Fresnel zone) or diffuse (Shining zone) [33]. Since
2019, the sampling time of CYGNSS has been reduced from 1 s to 0.5 s, increasing the
minimum spatial resolution to 3.5 × 0.5 km [34]. Although the mission was originally
designed to monitor tropical cyclones, it was subsequently found to be perceptive of
surface changes. In this paper, CYGNSS L1 V3.1 data (downloaded from NASA https:
//search.earthdata.nasa.gov/search, accessed on 1 May 2023) were acquired from May to
September 2023. The surface-reflected power calculated from CYGNSS observations was
used to categorize algal bloom outbreaks in the Hongze Lake region.

2.3. Auxiliary Data
2.3.1. Sentinel-3 OLCI Data

This paper utilizes multispectral data from the Sentinel-3 OLCI satellite as auxiliary
data. ESA started the Sentinel-3 constellation mission in February 2016, and the Ocean
and Land Color Instrument (OLCI) on board the A and B satellites included in the mission
provides a wealth of water ecological remote sensing data [35]. Sentinel-3 OLCI provides
a full resolution of 1200 m and a reduced resolution of 300 m. Meanwhile, its Ocean
product has a revisit period of 1~2 days. OLCI inherits the technical characteristics of the
previous ENVISAT Medium Resolution Imaging Spectrometer (MERIS) sensor, designed
for watercolor and ecological remote sensing. It features several bands in the transition
zone from red to near-infrared. As a result, Sentinel-3 OLCI data are widely used to monitor
and identify the distribution area, intensity, and biomass of phytoplankton in eutrophic,
optically complex inland waters and near-shore seas worldwide. In this paper, Sentinel-
3 OLCI multispectral image data are used to retrieve chl_a concentration by leveraging
the bands of red to near-infrared wavelength. These data assist in the classification of
bloom levels.

2.3.2. ERA5-Land Data

ECMWF Re-Analysis-5 (ERA5)-Land is a meteorological dataset released by the Eu-
ropean Center for Medium-Range Weather Forecasts (ECMWF), containing atmospheric
stratification data on a global scale from 1970 to the present. It is available through the
European Space Agency (ESA) Climate Database (https://cds.climate.copernicus.eu/, ac-
cessed on 1 May 2023). ERA5-Land is the latest ECMWF reanalysis dataset and represents a
globally important surface element data integrated from multiple sources worldwide. This
dataset provides hourly meteorological data with a spatial resolution of 0.1◦ × 0.1◦. The
main meteorological factor that affects the identification of blooms is wind speed. Wind
speed influences the degree of water surface smoothing and the distribution of algae [36].
In this paper, wind speed data from the ERA-5 Land dataset is used to assist in monitoring
the algal bloom outbreak process.

https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://cds.climate.copernicus.eu/
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3. Algal Bloom Level Monitoring Method

In this study, chl_a concentration was first retrieved from Sentinel-3 OLCI imagery
using the Maximum Peak Height (MPH) algorithm and validated with in situ chl_a con-
centration measurement. The extensive coverage of OLCI data not only compensates
for the limited in situ sampling but also provides more data for modeling. After data
matching and quality control, the chl_a concentration was classified into 2 to 5 categories
using the K-means clustering algorithm. These categorized levels were labeled and used
as references and output levels to establish and train the monitoring model. Additionally,
surface reflectivity was derived using the bistatic radar equation, and wind speed data
were extracted from the ERA5-Land dataset to serve as inputs for the XGBoost monitoring
model. This design ensures a well-structured approach, integrating multisource data and
clustering methods to build an algal bloom monitoring model. The flowchart of this study
is illustrated in Figure 2.
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3.1. MPH Retrieval of chl_a Concentration

The MPH algorithm [37] is designed to provide quantitative estimates of chl_a in
optically complex inland and nearshore waters and detect cyanobacterial blooms, surface-
floating algae, and aquatic plants. It has undergone rigorous validation across a diverse
array of inland lakes globally, covering a wide range of trophic levels and water types.
The algorithm has consistently demonstrated strong overall performance and is widely
applicable to most lakes, with the exception of certain oligotrophic systems. The algorithm
utilizes the narrow red-edge bands at 681, 709, and 753 nm, with unique spectral features
in the 665 and 885 nm bands for cyanobacteria detection. It identifies the location of the
maximum peak in the 753 nm band to determine the presence of floating material and
cyanobacterial blooms. Specifically, the algorithm focuses on the 753 nm maximum reflec-
tivity peak to ascertain whether the water surface is heavily colonized with phytoplankton
or macrophytes. Matthews [38] improved the algorithm by increasing the number of bands
to 620, 664, 681, 709, 753, and 885 nm. During the retrieval process, the peak reflectivity
(Rmax,0, Rmax,1) and the corresponding wavelengths (λRmax,0 , λRmax,1) were determined for
two different spectral ranges used for the MPH calculations. Here, Rmax,0 represents the
maximum reflectivity peaks at the band center wavelengths of 681 and 709, and Rmax,1
represents the maximum reflectivity peaks at the band center wavelengths of 681, 709, and
753. The MPH values, MPH0 and MPH1, are calculated from these maximum reflectivity
peaks, where brri denotes the peak reflectivity of band with the center wavelength being i
and the integer (e.g., I619) denotes the band center wavelength:

MPH0 = Rmax,0 − brr664 −
[
(brr885 − brr664)·

(
λRmax,0 − I664

)
/(I885 − I664)

]
(1)



Remote Sens. 2024, 16, 3915 6 of 19

MPH1 = Rmax,1 − brr664 −
[
(brr885 − brr664)·

(
λRmax,1 − I664

)
/(I885 − I664)

]
(2)

Sun-Induced Chlorophyll Fluorescence peaks (SICFpeak), Sun-Induced Phycocyanin
Absorption and Fluorescence peaks (SIPAFpeak), Normalized Difference Vegetation Index
(NDVI), and Backscattering and Absorption-Induced Reflectivity peaks (BAIRpeak) were
also computed for water body delineation, where

NDVI = (brr885 − brr664)/(brr885 + brr664) (3)

SICFpeak = brr664 − brr619 − [(brr681 − brr619)·(I664 − I619)/(I681 − I619)] (4)

SIPAFpeak = brr681 − brr664 − [(brr709 − brr664)·(I681 − I664)/(I709 − I664)] (5)

BAIRpeak = brr709 − brr664 − [(brr885 − brr664)·(I709 − I664)/(I885 − I664)] (6)

The specific implementation flow of the MPH algorithm is shown in Figure 3:
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3.2. Classification Method for Algal Blooms

Algal blooms are defined by the proliferation and aggregation of various algal species,
ultimately leading to large-scale lake disasters. The chl_a concentration was classified
accordingly for the different stages of the algal bloom outbreak. The “Technical Specification
for Classification and Monitoring of Algal Blooms” (DB44/T 2261-2020) [39] is a local
standard of Guangdong Province, China, which was implemented on 28 March 2021
and issued by the Guangdong Provincial Department of Ecology and Environment. The
document details the classification methods for common algal blooms, such as diatoms,
greens, and methanogens, through the density of algae, as well as the concentration of
chl_a, as shown in Table 1.

Table 1. Guangdong Province Algal Bloom Classification Standard.

Algal Bloom
Classification

Cyanobacterial
Density (Cells/L)

chl_a
Concentration (µg/L)

no algal bloom 0 < D < 2 × 106 C < 10
no visible algal bloom 2 × 106 < D < 1 × 107 10 < C < 15

mild algal bloom 1 × 107 < D < 5 × 107 15 < C < 50
moderate algal bloom 5 × 107 < D < 1 × 108 50 < C < 100

heavy algal bloom D > 1 × 108 C > 100
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Each area has unique factors such as water temperature, nutrient levels, and ecosystem
characteristics. Therefore, algal bloom classification standards applicable to one area may
not be suitable for another. Based on this, this paper adopts a data-driven classification
criterion for chl_a concentration retrieved by the MPH algorithm. To standardize the data in
the study area, a clustering method is employed. K-means, a commonly used unsupervised
learning algorithm, classifies a dataset into k clusters [40].

3.3. Calculation of CYGNSS Surface Reflectivity

GNSS-R technology relies on bistatic radar to obtain surface reflection signals, and its
received signals are usually described by a bistatic radar model [41]:

Pr = Pcoh
RL + Pinc

RL (7)

In this equation, the received signal (Pr) from CYGNSS consists of coherent signal
(Pcoh

RL ) and incoherent signal (Pinc
RL ). The coherent signal dominates the received signal when

the surface roughness is lower and smoother, and the main source of the coherent signal
is the first Fresnel reflection region near the specular reflection point. As the distance
from the specular reflection point increases, the coherent component proportion of the
signal decreases rapidly. The coherent component of the reflected signal power can be
expressed as

Pcoh
RL =

(
λ

4π

)2 PtGtGr
(Rr+Rt)

2 ΓRL(θ) (8)

where λ is the wavelength, Pt is the peak power of the transmitted GNSS signal, Gt is the
gain of the transmitting antenna, and Gr is the gain of the receiving antenna. Rr is the
distance between the specular reflection point and the GNSS-R receiver, Rt is the distance
between the specular reflection point and the GNSS transmitter, ΓRL(θ) is the specular
reflectivity at the specular reflection point.

Meanwhile, the calculation of the incoherent component of the reflected signal power
can be expressed as

Pinc
RL = λ2PtGtGr RPL

(4π)3 σRL (9)

where σRL is the bistatic radar cross-section in m2, and RPL is the Fresnel coefficient.
When the surface is relatively flat and smooth, the signal can be considered to be mainly
a coherent component, i.e., Pcoh

RL = Pinc
RL , and then the surface reflectivity ΓRL(θ) can be

expressed as [42–46]

ΓRL(θ) =
σRL(Rr+Rt)

2

4πRt
2Rr

2 (10)

3.4. XGBoost Algorithm and Accuracy Evaluation

Extreme Gradient Boosting (XGBoost) is an efficient and powerful gradient boosting
framework widely used for various ML tasks, including multiclass classification prob-
lems [47]. The core idea of XGBoost is to iteratively train a series of weak learners, typically
decision trees, and progressively add new learners to enhance the accuracy of the model.
Residuals from the previous model are fitted by training a new decision tree, with the
predictions of this new tree serving as improvements to the current model. The impact of
each tree on the overall model is managed through the learning rate. XGBoost optimizes
model performance by refining the objective function and employs regularization to control
model complexity, thereby mitigating overfitting. The final XGBoost classification model
is obtained by iterating until the training ends when the error on the validation set no
longer decreases.

4. Results and Analysis
4.1. chl_a Retrieval Results and Validation

In this study, Sentinel-3 OLCI imagery from May to September 2023 was used to
retrieve chl_a concentration within the Hongze Lake region using the MPH algorithm. Due
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to limitations imposed by weather conditions and revisit cycles, reliable OLCI images were
available for 22 days during this period. To validate the reliability of the chl_a concentration
retrieval, in situ data were collected in the Hongze Lake region on 11 May 2023, and were
used for comparison with the retrieval results. The chl_a concentration results for one day
each month are selected and presented here (see Figure 4).
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Figure 4. Results of chl_a concentration retrieval based on MPH algorithm.

In most parts of Hongze Lake, chl_a concentration was low, with levels near the lake’s
center dropping below 100 µg/L, indicating no algal blooms. In contrast, higher chl_a
concentration was observed near the shores, particularly along the western and northern
edges of the lake, where levels exceeded 100 µg/L. These areas, characterized by relatively
shallow water and intensive planting and aquaculture activities, experience significant
eutrophication due to fertilizer and feed pollution. Consequently, they are more prone to
algal bloom outbreaks.

Since the Sentinel-3 constellation did not capture valid OLCI images on 11 May 2023,
this study validated the chl_a concentration retrieval results using data from 9 and 14 May,
which were close to that date. Figure 5 shows the distribution between retrieval results
and in situ data for chl_a concentration. The base map shows the retrieval results of con-
centration, and the dots show the in situ data. The visualization offers a clear comparison
between the retrieval model’s chl_a distribution and real-world data, providing valuable
insights into its performance. By highlighting both the alignment and discrepancies be-
tween the modeled retrieval values and in situ measurements, it sheds light on the model’s
accuracy and reliability. The results demonstrate that the retrieval model captures the
spatial distribution of chl_a in aquatic environments with notable precision, indicating
strong predictive capabilities and suitability for real-world applications.
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Figure 5. The map of retrieved chl_a concentration results and in situ measurements.

Figure 6 displays the correlation between the chl_a concentration retrievals for 9 and
14 May and the in situ measurements from 11 May. Although the units are inconsistent,
there is a strong correlation between the two datasets, which significantly reflects and
verifies the reliability of the retrieval results. The retrieval results of these two days were
compared with the in situ data, respectively, and both of them reflected a relatively apparent
correlation with coefficients of R = 0.7593 for 9 May and R = 0.7933 for 14 May. Meanwhile,
the RMSEs on the 9th and 14th were 56.081 ug/L and 86.865 ug/L, respectively.
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The comparison results indicate a high degree of alignment between the modeled
retrieval values and in situ measurements, confirming the accuracy and reliability of the
retrieval process. These results lay a solid foundation for the subsequent classification of
the retrieval values and their integration into monitoring models.

In this study, the retrieved chl_a concentration is classified into different categories us-
ing the K-means algorithm to establish an algal bloom monitoring model. This classification
method helps to accurately define different stages of algal bloom development, enhancing
the predictive accuracy of the model. Furthermore, by comparing the chl_a concentrations
across different categories, it becomes more effective to identify and monitor potential algal
bloom outbreak areas in the water, providing crucial support for environmental monitoring
and water quality management.

4.2. Algal Bloom Level Monitoring Based on CYGNSS Data

In this study, an input dataset was constructed using CYGNSS data, ERA5-Land data,
and Sentinel-3 OLCI image data from the experimental area. The input variables include the
geographic locations of sampling points, reflectivity, and wind speed. The output is based
on the classification results of previously retrieved chl_a concentration. The retrieved chl_a
concentration was clustered and classified using the K-means method, and the XGBoost
model was employed to predict chl_a concentration levels through geolocation, CYGNSS
reflectivity, and wind speeds.

The CYGNSS sampling process resulted in a random discrete distribution of ground
reflect points across the study area, and the spatial resolution of the chl_a concentration
retrieval results was not consistent with the CYGNSS reflectivity data. Therefore, the
CYGNSS data outside the water body were removed, and the chl_a concentration retrieval
results were resampled to 1 km with the CYGNSS reflectivity data in this study. When chl_a
concentration is at a very high level, algae significantly accumulate on the water surface,
directly affecting CYGNSS reflectivity. Thus, quality control procedures were applied to
exclude anomalous data. Specifically, data with CYGNSS reflectivity of less than 0.02 were
removed when chl_a concentration exceeded 190 µg/L. The number of samples used in the
learning model after data quality control is shown in Table 2.

Table 2. The number of samples used in the learning model.

Date Amount of Data Pre-Filter Amount of Data After Filter

2 May 2023 18 17
3 May 2023 19 14
9 May 2023 21 11

13 May 2023 23 6
14 May 2023 35 12
16 May 2023 24 10
19 May 2023 29 15
20 May 2023 32 14
3 Jun 2023 31 21
7 Jun 2023 22 8
8 Jun 2023 21 5
9 Jun 2023 11 8

10 Jun 2023 35 22
14 Jun 2023 16 7
3 Aug 2023 9 8
12 Aug 2023 25 13
31 Aug 2023 13 4
1 Sep 2023 36 21
7 Sep 2023 41 30
8 Sep 2023 32 17
9 Sep 2023 25 10

10 Sep 2023 19 6
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Figure 7 illustrates the chl_a concentration values corresponding to CYGNSS reflection
points, which represent the total number of samples used in our monitoring model. Most of
the reflection points have chl_a concentration under 100 µg/L, with a small number of data
points showing chl_a concentration over 1000 µg/L. Table 3 shows the K-means clustering
results of different categories, in which the algal bloom levels are categorized from “No
Bloom” to “Heavy”, and the numbers 0–5 represent the corresponding chl_a concentration
ranges under different clustering results.
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Table 3. Classification Results of K-means Algorithm.

Algal Bloom Classification chl_a Concentration (µg/L) 2Class 3Class 4Class 5Class

No Bloom <200
0

0 0 0

Light 200–600
1

1 1

Mild 600–1000

1

2 2

Moderate 1000–1500
2 3

3

Heavy >1500 4

To evaluate the accuracy of the monitoring model’s classification results for algal
blooms, a five-fold cross-validation (CV) method was used. It effectively utilizes every
part of the dataset, minimizing the randomness associated with data splitting. This is
particularly beneficial when the dataset is small, as it maximizes the use of training samples,
thereby enhancing the model’s robustness and stability.

This study uses the confusion matrix and the corresponding Accuracy to evaluate the
performance of the model. Accuracy is the ratio of the number of correctly classified samples
to the total number of samples, and Cij represents that the ith class of data is categorized
into the jth class.

Accuracy = ∑n
i=1 Cii

∑n
i=1 ∑n

j=1 Cij
(11)

The accuracy results of predicting chl_a concentration classes from CYGNSS reflectivity
data and wind speed data at a spatial resolution of 1 km are shown in Figure 8. “2
Classes” to “5 Classes” represent the categorization results of the clustering, while “GD
Classes” represents the categorization according to the Guangdong Province standard. The
overall accuracy of the model was highest when the data were clustered into “3 Classes”,
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with an overall accuracy of 0.955. The classification accuracy gradually decreased as the
number of classification classes increased. Notably, the classification result obtained after
clustering is lower than that obtained using the Guangdong Province standard, which had
an accuracy of 0.698. This discrepancy may be attributed to the fact that the clustering
mainly subdivided data points with chl_a concentration less than 100 µg/L, a range in
which the chl_a concentration characteristics were not distinctly categorized.
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Figure 8. Accuracy of predicted chl_a concentration category by XGBoost at 1 KM resolution.

Additionally, the confusion matrix demonstrates the classification results by showing
how correctly and incorrectly samples from each class i are predicted to be in class j.
Diagonal elements represent correct classifications, while off-diagonal elements indicate
misclassifications, helping to identify common errors and confusion between categories.
Figures 9–11 illustrate the confusion matrices of model predictions obtained by different
classification methods at a 1 km spatial resolution. Categories 0 to 4 refer to different
levels of algal blooms, corresponding to Table 3. Figure 9 demonstrates the results of
categorizing the retrieval values of chl_a concentration into Classes 2 and 3. The accuracy,
average precision, average recall, and average F1 index obtained by the model under
this categorization method are maintained at a high level, with fewer misclassifications
occurring. However, in the binary categorization, the data representing category 0, which
has a lower chl_a concentration, actually shows a relatively high concentration. The sample
imbalance in the dataset makes the model less sensitive to the distinguishing features
between the two categories. This is one of the reasons why there is more misclassification
in category 1, as shown in Figure 9a. But, Figure 10 shows the results of categorizing
the retrieval values of chl_a concentration into categories 4 and 5. As the number of
classification categories increases, the misclassification phenomenon begins to increase, and
the classification accuracy of the model appears to be reduced to a certain extent. However,
the overall classification accuracy remains around 0.85, which is within an acceptable range.
Figure 11 demonstrates the results of classification according to the local standards of
Guangdong Province. When classified according to the local standards, the differences
in features between different categories are not distinct enough, resulting in more cases
of misclassification.
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4.3. Impact of Different Scales on the Effectiveness of Algal Bloom Monitoring Models

The spatial resolution of the CYGNSS data was greater than the resolution of the
chl_a concentration retrieval results, so the chl_a concentration was projected onto a grid
of the same resolution as CYGNSS and averaged. During the averaging process, the chl_a
concentration may not be represented accurately due to the large differences between
pixels within the grid. Therefore, in this study, the retrieved chl_a concentrations were
also projected onto 2 km and 3 km grids to explore the impact of classification prediction
accuracy of chl_a concentration at different resampling resolutions.
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The five-fold validation accuracies of the classification results at different spatial
resolutions are shown in Table 4, as well as Figure 12. When the spatial resolution was
reduced from 1 km to 2 km or 3 km, the classification accuracy of the model subsequently
decreased. The accuracy of the classification results at a 1 km spatial resolution under
different classification methods was generally better than at other resolutions. This indicates
that higher spatial resolution can obtain higher classification accuracy to some extent.

Table 4. Five-fold CV accuracy of various classification methods across different spatial resolutions.
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5. Discussion

In this study, chl_a concentration is used to determine the level of algal blooms. chl_a
is a general indicator for phytoplankton and a specific marker for cyanobacteria. Most
current remote sensing methods, including the one used in this study, cannot accurately
distinguish between “green” algae and “blue–green” algae (cyanobacteria). The term
“green algae” refers to a broad group encompassing many different types of phytoplankton,
whereas cyanobacterial blooms, especially toxic ones, are relatively rare compared with
green algal blooms [9,10]. Although cyanobacteria and phytoplankton blooms differ in
nature, they share similar reflectance characteristics in the visible and near-infrared (VIS-
NIR) spectral regions, making them hard to distinguish [9,10]. This study does not attempt
to differentiate phytoplankton species but instead detects algal blooms by utilizing the
characteristic of biomass correlation as chl_a smooths the water surface. As a result, it
focuses on detecting “algal blooms” without differentiating between green algae and
cyanobacteria, or distinguishing between plant and bacterial life.

CYGNSS (Cyclone Global Navigation Satellite System), by measuring the intensity
and phase of reflected GPS signals, can capture water surface roughness [18–20]. Since
changes in algal blooms are often related to wind speed, ERA5-Land wind speed data are
integrated into the model for better results [26,36]. CYGNSS, consisting of a constellation
of eight small satellites, provides a high temporal resolution by frequently scanning Earth’s
surface [14]. This is a significant advantage over traditional passive radar satellites, which
have lower temporal resolution. By leveraging the high temporal resolution and CYGNSS’s
sensitivity to surface roughness, combined with wind speed data, a machine learning
model is constructed to explore CYGNSS’s potential for early warning of harmful algal
blooms (HABs).

However, this study is limited by the availability of in situ chl_a concentration data,
which are insufficient to validate the model at a higher temporal and spatial resolution.
Therefore, this study first utilizes Sentinel-3 OLCI imagery and the MPH algorithm to
estimate chl_a concentration in lakes, validating the retrieved values. These verified chl_a
concentrations are then used as the ground truth to train and test the algal bloom monitoring
model, ultimately yielding a graded early-warning system for HABs. In addition, given
the limitations of the CYGNSS sampling process, it was impossible to sample all data
ranges within the lakes in a short period of time. This is also a primary reason for utilizing
chl_a concentration values obtained from OCLI satellite data for modeling purposes, rather
than relying solely on field measurements. Future studies can consider combining data
from multiple lakes and extending the time series. More in situ measurements collected in
different seasons should be used for robust validation of the model.

Two separate legends are used to better distinguish between the retrieval and field
results. These legends have different classification criteria and ranges, which primarily
resulted in the retrieved chl_a concentration values not agreeing with the field data. Despite
using different symbols, we can observe that the overall trends between the retrieval and
field results are largely consistent, showing higher values near the lake bank and lower
values in the center. The scatter plot also demonstrates a strong correlation between the
two datasets. Additionally, the classification and early-warning results in waters near the
lake bank are still reliable and accurate. For example, as shown in Figure 11, in regions
where algal blooms are more severe (higher bloom values), the classification for level “4”
has 27 correct predictions and only two misclassifications, demonstrating high accuracy.

The performance of the algal blooms monitoring model, based on CYGNSS data,
is evaluated using a confusion matrix. The confusion matrix is a tool used to assess
the performance of classification algorithms, particularly for multiclass problems [13]. It
compares the model’s predictions with actual labels, providing a breakdown of correct and
incorrect classifications. Each element Cij in the matrix represents the number of samples
predicted to be class j when the actual label is class i. A sufficient sample size helps the
model learn the true distribution of the data, thereby improving prediction accuracy and
robustness. In this multiclass scenario, most data are categorized as “No Bloom” or “Mild”,
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resulting in relatively stable and accurate prediction accuracy for the “No Bloom” class
compared with other categories (over 90%). This is due to data imbalance, which could be
addressed in future research by adjusting the distribution of bloom and no-bloom samples
to further explore the model’s ability to detect algal blooms [48].

Increasing the number of classification categories does not always lead to better pre-
diction performance. The effectiveness of classification depends on the model’s complexity,
data quality, feature distinctiveness, and generalization ability [18–23]. More categories
introduce greater complexity, potentially resulting in higher computational costs and issues
like overfitting or underfitting [29]. If the differences between categories are subtle, in-
creasing categories may reduce the model’s ability to differentiate between similar classes,
decreasing accuracy. In cases of insufficient training data or imbalanced class distributions,
adding categories could worsen performance for certain classes due to poor generalization.
Therefore, adding more categories does not guarantee improved results; effectiveness must
be evaluated based on the specific dataset and model. Additionally, false positives can
occur across all classes, not just adjacent ones. In imbalanced datasets, increasing categories
might lead to poorer performance in predicting some categories, and the occurrence of
false positives could become more random [48].

This study uses OLCI satellite data and the MPH algorithm to derive chl_a concen-
tration. Although the MPH algorithm was initially developed based on MERIS satellite
data, the OLCI satellite inherits the technology of MERIS, and the central wavelengths
of its bands are consistent with those of MERIS (see Table 5), making the OLCI data well
suited for the algorithm [49]. Furthermore, although the MPH algorithm was originally
developed for specific regions, the results of this study demonstrate that the algorithm
performs reliably in new areas as well, proving its adaptability and showing potential for
broader application in other regions.

Table 5. Corresponding bands between MERIS and OLCI Center.

Wavelength of the Band MERIS Bands OLCI Bands

619 6 Oa7
664 7 Oa8
681 8 Oa10
709 9 Oa11
753 10 Oa12
885 14 Oa18

CYGNSS’s high temporal resolution provides a significant advantage to this study.
Despite its lower spatial resolution, its frequent revisit times compensate for this limitation,
particularly in conditions with cloud cover or adverse weather, where CYGNSS can still pro-
vide consistent observations. This high temporal resolution is crucial for capturing rapidly
evolving water surface phenomena, such as the early stages of algal blooms. Compared
with other satellites that offer high spatial resolution but lower revisit frequencies, CYGNSS
provides a more continuous time series, enabling real-time monitoring and response to dy-
namic changes. While there is a trade-off in detection precision, CYGNSS’s high-frequency
observations exhibit significant potential for application in rapidly changing environments.

6. Conclusions

In this study, an integrated approach is proposed to monitor algal blooms in Hongze
Lake using CYGNSS data, Sentinel-3 OLCI data, and ERA5-Land meteorological data. By
combining multiple data sources with learning techniques, reliable results were obtained.
Sentinel-3 OLCI data offers high-resolution watercolor information, essential for accurately
estimating chl_a concentration when processed with the MPH algorithm. CYGNSS data
demonstrates great potential in identifying and classifying algal blooms, with GNSS-R
technology providing stable and reliable data for monitoring water surface changes due to
its high temporal resolution and the ability to penetrate clouds.
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The Extreme Gradient Boost (XGBoost) model was successful in predicting chl_a
concentration and classifying algal bloom levels using CYGNSS reflectivity and ancillary
meteorological data. During this study, K-means clustering was employed to classify chl_a
concentration, with a five-fold CV performed to assess model performance. The results
show significant improvement in classification accuracy as the spatial resolution increased
from 3 km to 2 km and 1 km. Specifically, the three-class clustering model at 1 km resolution
achieved the highest overall accuracy of 0.955, while the standard classification results in
Guangdong Province have a relatively low accuracy of 0.698. This indicates that the spatial
resolution of the data and the classification standard significantly affect the results.

The research findings in this paper provide new insights and methods for algal bloom
monitoring, which are of great significance for the protection of lake ecosystems. By
further optimizing the model and improving data resolution, the accuracy of algal bloom
classification can be enhanced, enabling more effective responses to algal bloom problems
and better protection of the ecological environment.
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