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Abstract
Co-seismic ionospheric disturbances (CIDs) can help understand the coupled dynamics of earthquake-atmospheric coupling 
geophysical processes. On September 19, 2022, an earthquake occurred at UTC = 18:05:08 near the Pacific Coast of Mexico 
as the result of shallow thrust faulting with magnitude of 7.6 and depth of around 26.9 km. The epicenter of the earthquake is 
located at (18.455°N, 102.956°W). In this study, observation data from the global navigation satellite system (GNSS) are used 
to identify CIDs about 12 min after the earthquake occurred. The significant CIDs signals are observed with extending outward 
from the epicenter. The CID characteristics like amplitude, frequency, and waveform are also investigated and discussed. The 
waveform is a standard and inverse N-type, suggesting a connection to plate movement and geomagnetic field. In addition, 
the center frequency is within the range of acoustic wave frequency from 2 to 4 mHz. The propagation speed is approximately 
0.81 km/s for PRN G18, 1.01 km/s for G23, and 1.16 km/s in the east and 1.44 km/s in the west for G32 between 18:00 and 
19:00. For R21, the propagation speed is close to 1.06 km/s. It demonstrates that the main source of the CIDs is the acoustic 
wave. Also, it is discovered that the CID propagation velocity varies significantly depending on the azimuth. At the direction 
closed to the strike angle (287°), the maximum propagation speed is found. The rupture mainly occurred in the western region, 
and the rupture velocity is larger in the western region, which might cause the quicker CID in this direction.
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Introduction

Earthquakes are normally generated by the quick release 
of energy from the Earth's crust, which have a tremendous 
destructive effect on the Earth's surface and can result in 
massive human losses. Thus, it is of vital importance to 
monitor and investigate the earthquake. When an earthquake 
occurs, the generated power not only harms the Earth's sur-
face, but also spreads to the ionosphere, leading to a change 

in ionospheric electron density. As a result, ionospheric 
anomaly induced by earthquakes can be detected.

Satellite observation provides worldwide, short-cycle, 
high efficiency, and the high-quality data to monitor earth-
quakes that effectively compensate the drawbacks from con-
ventional observation methods. Global positioning system 
(GPS) provides a powerful and easy way for remoting sens-
ing of the ionosphere and monitor earthquake ionospheric 
disturbances (Calais and Minster 1995). In comparison to 
conventional observation methods, multi-GNSS systems and 
dense GNSS observation networks can cover and monitor 
the whole ionosphere. GNSS observations deliver high spa-
tial and temporal resolution ionospheric total electron con-
tent (TEC) data, which have impactful scientific and practi-
cal importance for ionospheric delay correction and space 
environment monitoring (Heise et al. 2002). Geodesy, space 
physics, and other fields have paid close attention to GNSS 
ionosphere study and development (Astafyeva et al. 2014a, 
b; Cahyadi and Heki 2015; Zakharov and Gorchakov 2017; 
Virgile et al. 2017).
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Calais and Minster (1995) utilized GPS observation 
data to detect the obvious ionospheric disruption around 
the epicenter of the Northridge earthquake. According 
to the disturbance period and velocity, the atmospheric 
acoustic-gravity wave was considered to be the main 
source of this disturbance. The ionospheric disturbance 
in the far field has a faster propagation speed, which is 
equivalent to the speed of seismic Rayleigh waves (Ducic 
et al. 2003). The far-field ionospheric disturbance propa-
gates in the same mode as seismic Rayleigh waves as it 
is regarded to be a secondary acoustic disturbance trig-
gered by these waves in the crust of the Earth. Later, Artru 
et al. (2004) discovered that the propagation velocity of 
the ionospheric disturbance was between 150 and 250 m/s 
using GPS observation data. In 2011, a Mw = 9.0 earth-
quake occurred in Tohoku, Japan. With the dense GNSS 
network around, cases studies showed that 2 h after the 
earthquake, the ionospheric disturbances were driven by 
gravity waves moving at several hundred meters per sec-
ond, acoustic waves traveling at around 1 km/s second, 
and seismic Rayleigh waves transiting at about 2–4 km/s 
(Tsugawa et al. 2011; Liu et al. 2011; Jin et al. 2015). Till 
now, many studies have shown that CIDs have many dif-
ferences in propagation speed, frequency, direction and 
amplitude (Afraimovich et al. 2001; Heki and Ping 2005; 
Astafyeva et al. 2009; Chai and Jin 2021). On the whole, 
there are three different categories of seismic ionospheric 
disturbance: direct acoustic wave from the earthquake 
area, gravity wave propagating obliquely upward from the 
focal area, and secondary acoustic wave excited in areas 
away from the epicenter by Rayleigh surface wave.

Nonetheless, there are still uncertain issues and diffi-
culties in the study of CIDs. For instance, the relationship 
between detailed propagation characteristics of CIDs and 
focal surface deformation (Astafyeva et al. 2013) is still not 
clear. Also, the ground-based GNSS network distribution 
is uneven without all-azimuth coverage near the epicenter. 
For the quantitative investigation, the coupling mechanism 
of earthquake-atmosphere–ionosphere still needs to be 
confirmed. The propagation of CIDs is affected by seismic 
parameters, geomagnetic field, and atmosphere (Heki and 
Ping 2005; Astafyeva et al. 2009; Heki et al. 2006; Rol-
land et al. 2011, 2013; Afraimovich et al. 2001; Bagiya et al. 
2019). In addition, GNSS detection of CIDs is also affected 
by the geometric position of the GNSS line of sight signal 
(Afraimovich et al. 2001; Astafyeva et al. 2014a, b). There-
fore, the investigation on different kinds of earthquakes is 
important to clarify CID characteristics and the coupling 
mechanism of earthquake-atmosphere–ionosphere, particu-
larly full-azimuth satellite coverage for the Mexico earth-
quake on September 19, 2022. However, the study of CIDs 
on the 2022 Mexico earthquake is still very limited and in 
particularly CID characteristics in different azimuths are 

unknown in the term of speed, amplitude, frequency, and 
waveform.

In this study, the seismic ionospheric disturbances char-
acteristics are estimated and analyzed following the 2022 
Mexico earthquake from GNSS observations. Some coupling 
mechanism is also discussed. In the following sections, data 
and methods are introduced, results and analysis are presented 
as well as discussion, and finally summary is given.

Data and methods

This section provides some details about the 2022 Mex-
ico earthquake and presents the datasets and methods in 
this study. An overview includes the Mexico earthquakes 
occurred in history and the details of this event like surface 
rupture and so on in the next part. The datasets and method 
in this study are described.

The 2022 Mexico earthquake and GNSS data

On September 19, 2022, a Mw = 7.6 earthquake (18.455°N, 
102.956°W) occurred near the Pacific Coast of Mexico at 
UTC = 18:05:08 with a focal depth of about 26.9 km accord-
ing to U.S. Geological Survey National Earthquake Information 
Center (USGS-NEIC). Tectonic strain accumulation along the 
Mexican subduction zone is produced by the Rivera and Cocos 
plates underthrusting the North American plate at from 2.5 to 
7.0 cm per year (DeMets et al. 2010). Before September 19, 
2022, there were several earthquakes occurred in this region, 
such as June 3, 1932 Jalisco earthquake (Ms = 8.2) (Singh et al. 
1985), the Colima-Jalisco megathrust earthquake (Mw = 8.0) 
on October 9, 1995 (Mendoza and Hartzell 1999; Ortiz et al. 
1998), a megathrust rupture earthquake on January 30, 1973 
(Mw = 7.6) (Reyes and Brune 1979; Santoyo et al. 2006), an 
earthquake on September 19, 1985 (Mw = 8.1) (Mendoza and 
Hartzell 1989), the Tecoman earthquake (Mw = 7.6) on January 
22, 2003 (Yagi et al. 2004), and other smaller earthquakes. As 
shown in Fig. 1, the W-phase solution suggests a predominantly 
shallowly dipping thrust mechanism with strike Φ = 287°, dip 
δ = 18°, and rake λ = 86°. Slip is concentrated offshore and 
below the coast at depths from 10 to 30 km with a peak value of 
∼2.9 m, and there is no detected co-seismic slip near the trench. 
The total seismic moment is 3.1 × 10^20 N·m (Mw 7.6), and 
72% of which is concentrated in the first 30 s. Most aftershocks 
are distributed in an up-dip area of the mainshock with small 
co-seismic slip, suggesting near-complete strain release in the 
large-slip patch (Liu et al. 2023).

The ionospheric disturbance may be influenced by space 
weather. To exclude the factor, the space weather indexes from 
September 18–20 are shown in Fig. 2 from space physics data 
facility (SPDF, https:// cdaweb. gsfc. nasa. gov/). The Dst was 
more than − 40 nT, and Kp was less than 5, which means it 

https://cdaweb.gsfc.nasa.gov/
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was a geomagnetic calm day on September 19, 2022. Here, 
the GNSS observation data were downloaded from UNAVCO 
(https:// www. unavco. org/ data/), which are shown in Fig. 3.

Method of CID estimation

To obtain the ionospheric disturbances during the earthquakes, 
the TEC is calculated from the dual-frequency GNSS observa-
tion by the following equations (Brunini and Azpilicueta 2009; 
Jin et al. 2017):

(1)

STEC =
f12f22

40.3
(

f12 − f22
)

(

L1 − L2 + �1(N1 + b1) − �2(N2 + b2) + �L
)

(2)STEC =
f12f22

40.3
(

f12 − f22
)

(

P1 − P2 − (d1 − d2) + �P

)

Fig. 1  Surface projection of the 
slip distribution superimposed 
on GEBCO bathymetry (https:// 
earth quake. usgs. gov/ earth 
quakes/ event page/ us700 0i9bw/ 
finite- fault). Thick white lines 
indicate major plate boundaries 
(Bird 2003)

https://www.unavco.org/data/
https://earthquake.usgs.gov/earthquakes/eventpage/us7000i9bw/finite-fault
https://earthquake.usgs.gov/earthquakes/eventpage/us7000i9bw/finite-fault
https://earthquake.usgs.gov/earthquakes/eventpage/us7000i9bw/finite-fault
https://earthquake.usgs.gov/earthquakes/eventpage/us7000i9bw/finite-fault
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where STEC is the slant total electron content in TECU (1 
TECU = 1e16  m−2), L1 and L2 are the GPS carrier phase in 
different frequencies, �1 and �2 are the GPS signal wave-
length in different frequencies, N is the ambiguity, b is the 
instrument biases for carrier phase, d1 and d2 are the dif-
ferential code biases, and ε is the residual.

With the mapping function below, the STEC is transferred 
to vertical TEC (VTEC) (Jin et al. 2012; Gao et al. 2020):

where Rearth is the earth radius, Hion is the height of single 
shell ionosphere, � is the zenith distance of the satellite rela-
tive to the sub-ionospheric piercing point (SIP), and � is the 
altitude angle of the satellite relative to the receiver. In this 
case, the Hion is assumed as 350 km of average maximum 
ionospheric electron density height. In order to obtain the 
GNSS-TEC residual time series, which represents the rela-
tive change in VTEC, a fourth-order Butterworth filter is 
utilized. Above the ionospheric height, the acoustic cut-off 
frequency is around 2 mHz (Chai et al., 2020). The Nyquist 
frequency for GNSS observation is greater than 8 mHz fol-
lowing the Nyquist sampling theory, because the GNSS 
sampling interval is 15 s. Therefore, the 2–5 mHz passband 
frequency filtering is used to extract the co-seismic iono-
spheric disturbance (CID) in this case.

Results and analysis

In this section, we first estimated and analyzed the CID at 
several stations following the 2022 Mexico Earthquake and 
conducted spectral analysis. The propagation details of dif-
ferent satellites and station combinations are also discussed.

CIDs following the 2022 Mexico earthquake

The CIDs following the 2022 Mexico earthquake were 
detected and displayed in Fig. 4. Several satellite and station 
pairings are made. The filtered TEC range is different among 
different combinations, and the time period is from 18:00 to 
18:30. For the same satellite (subgraphs in the same row in 
Fig. 4), TEC from station TNLC is a little larger than station 
TNTM. Filtered TEC from satellite G32 is smaller than G18, 
G23 and R21, which is nearly one half numerically. For the 
same station like TNLC, the range of filtered TEC is about 
− 0.064 TECU to 0.090 TECU from G18. From G23, it 
is from − 0.071 TECU to 0.060 TECU. The filtered TEC 
obtained from G32 is from − 0.029 TECU to 0.040 TECU. 
As for the R21, it is from − 0.067 TECU to 0.079 TECU. 
Typical N-type signals are found with the combination of 
stations and G23 in Fig. 4c and d, while inverted N-type 
signals are found with the combination of stations and G18, 
G23 and R21.

After applying a short-time Fourier transform, Fig. 5 
shows the spectrograms of the TEC time series that have 
been filtered from the various combinations of stations and 

(3)
F(�) =

STEC

VTEC
=

1

cos �
=

1
√

1 −

(

Rearth

Rearth+Hion

cos (�)

)2

Fig. 2  Space weather situation on September 19, 2022 with F10.7 
(top panel), Kp index (middle panel) and Dst index (bottom panel)

Fig. 3  GNSS Stations and the earthquake location. The blue dia-
monds represent the GNSS stations, and the red star represents the 
earthquake epicenter
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satellites. Although the combinations are various, the cen-
tral frequencies are similar, which are approximately 3 mHZ 
during 18:00–18:30.

In Fig. 6, the SIP tracks of G18, G23, G32 and R21 are 
shown during 18:06–18:30. The range of color bar is from 
− 0.1 TECU to 0.1 TECU. The time interval is 6 min. It 
demonstrates that the obvious CIDs are appeared in the 
northwest region. For the northwest region, the SIP tracks 
are less. Thus, it is hard to get details in this region. With 
Figs. 4 and 6, the CIDs appear 10 min after the earthquake 
and disappear 20 min after the earthquake.

Propagation velocity

The CID propagation velocity is estimated and analyzed in 
this section. G18, G23, G32 and R21 are chosen to calcu-
lated the CID speed in different directions, and the results 

are shown in Figs. 7, 8, 9, 10 and 11 (The G32 is divided into 
two figures because of the azimuth). The SIP tracks can be 
seen in Figs. 7, 8, 9, 10 and 11 on the right top panels. The 
velocities are 0.81 km/s, 1.01 km/s, 1.16 km/s, 1.44 km/s 
and 1.06 km/s, respectively. The speeds are the same as the 
acoustic wave velocity. The CIDs with such kind of speeds 
might be caused by the rupture and deformation of the epi-
center plate. However, the velocity is a little different from 
each other especially 1.44 km/s. CID speeds in different 
azimuth directions are summarized in Fig. 12. It is demon-
strated that maximum velocity appears at about 283°, which 
is close to the strike (287°).

Among Figs. 7, 8, 9, 10 and 11, it is found that the filtered 
TEC is more obvious in near region and the amplitude is 
decreased with the increase in the distance from the epi-
center. Moreover, the velocity steadily is decreased with the 
time passing by, and the ionosphere is calm around 20 min 
after the earthquake.

Fig. 4  Filtered TEC time series following the 2022 Mexico earth-
quake from the combination of station and satellites during 18:00–
18:30

Fig. 5  Spectrograms of filtered TEC from the combination of station 
and satellites during the 18:00–18:30
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Discussion

The CIDs following the 2022 Mexico earthquake were 
extracted from GNSS observation data for G18, G23, 
G32 and R21. They were detected within about 12 min 
of the shock and vanished after about 20 min. The CIDs 
appeared mainly in the north of the region and then, prop-
agated away from the epicenter. Fault dislocation of an 
earthquake causes vertical movement of the earth surface 
and excites atmospheric waves. They propagate upward 
and often disturb the ionosphere. Its first phase starts 
about 12 min after an earthquake, when acoustic waves 
reach the ionospheric F region. Such CIDs usually occur 
as transient disturbances with periods of several min-
utes, but may last for hours after very large earthquakes. 
On the other hand, physical mechanisms responsible for 

ionospheric changes immediately before large earth-
quakes remain elusive.

For the same station like TNLC, the range of filtered TEC 
is about − 0.064 TECU to 0.090 TECU from G18. For G23, 
it is from − 0.071 TECU to 0.060 TECU. The filtered TEC 
obtained from G32 is from − 0.029 TECU to 0.040 TECU. 
As for the R21, it is from − 0.067 TECU to 0.079 TECU. 
The range is different from each other and the station with 
G32 is especially small, which is near half of the values from 
other combinations. The mean elevation angle and distance 
of the different satellites with TNLC are calculated, which 
are shown is Fig. 12. The angle between the wave front and 
the line of sight affects the visible disturbance’s amplitude, 
which increases if the two are parallel at ionospheric height. 
To the similar elevation angle like G18 and G32, the dis-
tance of G32 is larger. These kinds of geometry effects have 
been noticed in the previous studies (Heki et al. 2006; Chai 
et al. 2020).

The waveform can be divided to typical “N-type” and 
inverted N-type waves (Heki and Ping 2005; Afraimovich 
et al. 2001). The final wave form is affected by factors such 
as the geometry of line of sight, disturbance wavefront, 
geomagnetic field and filtering method. Furthermore, it is 
known Tsemplen theorem states that a rarefaction shock 
wave cannot exist as a discontinuity. According to the 
observation findings, the reverse N-type wave’s amplitude 
is smaller than that of the normal wave, which may reflect its 
inherent instability. Thus, the effect of the geomagnetic field, 
geometric factors and filtration parameters may be responsi-
ble for the appearance of the inverted N wave.

From Fig. 5, the CID center frequency is around 3.3 mHz. 
Due to the atmospheric filtering effect (Blanc 1985), only 
frequency components with durations of a few minutes can 
pass to the ionosphere without substantial attenuation. The 
original atmospheric waves would have a broad range of 
frequency spectra in the case of co-seismic ionospheric dis-
turbances, but those close to the acoustic cut-off (periods 
4–5 min) would stay at the ionospheric height.

In addition, the CID propagation speed shows some 
intriguing characteristics, although seismic ionospheric 
effects ought to be isotropic based on earlier studies. The 
velocity varies significantly with various combinations. The 
velocity is 0.81 km/s, 1.01 km/s, 1.15 km/s, 1.44 km/s, and 
1.06 km/s, respectively, as shown in Figs. 7, 8, 9, 10 and 11. 
According to the analysis in Fig. 13, the CID spreads more 
quickly in the direction of azimuth around 283°. From beach 
ball in the same Figure, the strike is 287°. From Fig. 1, the 
rupture mainly occurred in the western region. The rupture 
velocity in the western region is about 0.10–0.15 m/s from 

Fig. 6  Filtered TEC distribution maps extracted from GNSS observa-
tion data during 18:06–18:30 on September 19, 2022, and the time 
interval is 6 min. The red star is the earthquake epicenter. The dots 
present the SIPs, and the color bar is the variation range of filtered 
TEC
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Fig. 7  CIDs from GNSS sta-
tions for G18 during 18:00–
19:00 with the TEC time series 
(left panel), SIPs track (top 
right panel) and the travel time 
diagram (bottom right panel)

Fig. 8  CIDs from GNSS sta-
tions for G23 during 18:00–
19:00 with TEC time series 
(left panel), SIPs track (top 
right panel) and the travel time 
diagram (bottom right panel)
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Fig. 9  CIDs from GNSS sta-
tions for G32 during 18:00–
19:00 with TEC time series 
(left panel), SIPs track (top 
right panel) and the travel time 
diagram (bottom right panel)

Fig. 10  CIDs from GNSS sta-
tions for G32 during 18:00–
19:00 with TEC time series 
(left panel), SIPs track (top 
right panel) and the travel time 
diagram (bottom right panel)
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Fig. 14, while the velocity is 0–0.05 m/s in the east region. 
As Fig. 13 shows, most of the CIDs propagate quicker in the 
western region. There might be some relationships, while 
more studies and the data such as plate movement velocity 
would be helpful for the investigation and explanation in 
the future. In all, other factors can influence the amplitude, 
phase, and azimuthal asymmetry of seismic ionospheric dis-
turbances, which should be investigated in the near future.

Summary

In this study, the CIDs following the 2022 Mexico earth-
quake are analyzed and investigated in details by using 
GNSS observation. The main results are summarized as 
follows:

1. Significant CIDs are observed from about 12 min to 
about 20 min after the Mexico earthquake in the north-
ern region and propagate from epicenters to the far field.

2. The CID signals have a central frequency of about 
2–4 mHz, which is within the range of acoustic wave 
frequency.

3. The CIDs are the typical N-shaped and inverse N-shaped, 
which are related to the vertical crustal motion, the influ-
ence of geomagnetic field, geometric factors and filter-
ing parameters.

4. The amplitude of TEC is different, which may be caused 
by the observation geometry.

5. The propagation velocity is different in different azi-
muth directions with 0.81 km/s, 1.01 km/s, 1.16 km/s, 
1.44 km/s and 1.06 km/s, respectively, which are all 
close to the acoustic wave velocity. The difference 
between the velocities might be caused by the rupture 
direction and geomagnetic field.

These findings demonstrate that CIDs can potentially pro-
vide details on the particular earthquake process. More case 
studies are required to confirm the different propagation veloc-
ities in the various azimuth directions as well as the complex 
process underlying earthquake-atmospheric coupling in the 
future.

Fig. 11  CIDs from GNSS sta-
tions for R21 during 18:00–
19:00 with a) the TEC time 
series, b) SIPs track and c) the 
travel time diagram
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Fig. 12  TEC, elevation angle, 
distance and SIP track from 
epicenter with the combination 
of TNLC with different satel-
lites. a, b, c and d are elevation 
angle and distance with G18, 
G23, G32 and R21, respectively. 
e, f, g and h are TEC with G18, 
G23, G32 and R21, respectively. 
i) is the SIP track of the differ-
ent combination
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