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Abstract: Snow plays an important role in the water cycle and global climate change, and the
accurate monitoring of changes in snow depth is an important task. However, monitoring snow
properties is still challenging and unclear, particularly in the Tibetan Plateau, which has rough land
and uneven terrain. The traditional monitoring methods have some limitations in monitoring snow
depth changes, and the Global Navigation Satellite System-Reflectometry (GNSS-R) provides a new
opportunity for snow monitoring. This paper employed data from the Cyclone Global Navigation
Satellite System (CYGNSS) to discover the effect of snow properties. Firstly, the observations of
CYGNSS were used to find the sensitive to snow properties, and the relationships between signal to
noise ratio (SNR), leading edge slope (LES), surface reflectivity (SR), and snow depth were studied
and analyzed, respectively. It is found that the correlation between the first two parameters and snow
depth is poor, while SR can indicate the changes in snow depth, and is proposed as an indicator of SR
change, namely, surface reflectivity–difference ratio factor (SR–DR factor). Furthermore, the long-time
series data in the Tibetan Plateau (2018–2019) are used to analyze its effects on the time series of
the SR–DR factor, while the influences of the soil freeze/thaw (F/T) process and soil moisture are
excluded during the analysis. The results indicate that the SR–DR factor can be a good indicator and
discriminator for snow depth. Our work shows that space-borne GNSS-R has the potential for the
monitoring of snow properties.

Keywords: CYGNSS; GNSS-R; snow depth; the Tibetan Plateau; soil moisture; soil freeze/thaw process

1. Introduction

One of the fundamental components of the water cycle and global energy is the change
in snow, which is of great importance for regional climate change, water use, and natural
disaster monitoring [1]. The Tibetan Plateau is a sensitive area, and an ecologically fragile
zone at risk of climate change, due to its harsh climate and environment, fragile ecology,
and frequent snow disasters. It is the region with the highest average elevation in the
world. The Tibetan Plateaus is rich in glaciers, snow, and underground ice resources [2],
including the headwaters of many rivers in China, and snowmelt water is an important
supplementary source of rivers. In the last few years, due to the climate change, the melting
of snow and ice on the Tibetan Plateau has accelerated, and the accumulated total amount
of snow is also decreasing. The snow on the Tibetan Plateau has an influence not only
on the climate of the Chinese mainland, but also on the water circulation and climate
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systems of the East Asian region. Therefore, the research on snowpack in this area is of
great hydrological and climatic importance [3,4]. The Tibetan Plateau is one of the main
snow distribution areas in China, and is also an important pastoral area in China. The
development of local agriculture and animal husbandry is also closely related to the change
in snow cover. As a result, the study of snow cover on the Tibetan Plateau is of great
significance for the sustainable development of the regional ecological environment, and
agriculture and animal husbandry [5–7].

The Tibetan Plateau is a rough land, and has uneven terrain with an average altitude
of more than 4000 m. The ground observation stations are rare with the uneven spatial
distribution, and the observation time is discontinuous, which cannot meet the needs of
research on large-scale snow distribution characteristics [8].

Satellite observations are an effective way to monitor snow cover. Space-borne optical
passive sensors provide useful information for monitoring snow cover, but cannot work
in high altitude and cloudy areas, due to the limitation of cloud cover [9,10]. Passive
microwave remote sensing data are one of the main means of monitoring snow changes,
as this method can penetrate through the porous soil layer, cloud, fog, and so on. It
can penetrate a certain depth of surface to obtain information on the surface physical
parameters. Therefore, microwave remote sensing is the best technology to obtain regional
snow depth and snow water equivalent monitoring [11–13].

Global Navigation Satellite System-Reflectometry (GNSS-R), using the reflected signals
from navigation satellites, was used for remote sensing in recent years [14–16]. This method
mainly works in the L-band, with strong penetrability, so it is essentially a microwave
remote sensing technology. It has the advantages of low cost, low power consumption,
and high spatial and temporal resolution, due to the continuous use of navigation satellite
signals as a signal source, which does not require the development of a special transmitter.
It is a useful supplement to the traditional polar orbit satellites [17].

In 2004 and 2014, the United Kingdom Disaster Monitoring Constellation (UK-DMC)
and Techdemosat-1 (TDS-1) test satellites were launched for GNSS-R remote sensing re-
search [18]. In December 2016, the Cyclone Global Navigation Satellite System (CYGNSS)
was launched by the National Aeronautics and Space Administration (NASA). The main
scientific goal of the system is to measure the ocean surface wind field information during
tropical storms and hurricanes [19]. It also provides an important opportunity for the study
of land surface parameters, such as soil moisture, vegetation, flood inundation, and wetland
monitoring [20–23]. To the best of our knowledge, there is no reported research on snow
cover using CYGNSS data. In this study, the CYGNSS data in the Tibetan Plateau from 1
January 2018 to 31 December 2019 are selected for snow cover analysis. This provides a new
method for expanding the research field of satellite-borne CYGNSS, and provides a unique
remote sensing method for the study of snow characteristics on the Tibetan Plateau. With
the advantages of CYGNSS, using it in the remote sensing of the surface snow depth will
improve the temporal resolution of snow depth data, and reduce the effects of background
brightness temperature and radio frequency interference (RFI).

The data description and processing method are presented in Section 2. The analysis
using CYGNSS surface reflectivity (SR) and the surface reflectivity–difference ratio (SR–DR
factor) are carried out in Section 3. Finally, the conclusions are given in Section 4.

2. Method
2.1. Data Description

The Tibetan Plateau is the highest plateau in the world, located between 26◦N to
39◦47′N latitude and 73◦19′E to 104◦47′E longitude. The topography is complex, and it has
large altitude differences in various regions (Figure 1). The average annual temperature
decreases from 20 ◦C in the southeast to below −6 ◦C in the northwest. In this study, we
employed five public datasets to investigate the potential of CYGNSS for the study of snow
cover on the Tibetan Plateau: (1) CYGNSS Level-1 (L1) data [24], (2) the Terra and Aqua
combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Climate
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Modeling Grid (CMG) (MCD12C1) version 6 data (0.05 ◦C) [25], (3) long-time series dataset
of snow depth in China (1979–2019) [26], (4) Soil Moisture Active and Passive (SMAP) L3
radiometer global daily 36 km EASE-grid soil moisture, version 7 [27], (5) European Centre
for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) soil temperature data [28].
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2.1.1. CYGNSS Data

CYGNSS was successfully launched in December 2016. Eight small satellites carrying
GNSS reflection signal receivers make up its constellation. Each CYGNSS satellite is
equipped with four delay-Doppler map instruments (DDMI), and each DDMI includes
two left-hand circularly polarized (LHCP) antenna and one right-hand circularly polarized
(RHCP) antenna. The LHCP antenna receives GNSS signals from specular and scattering
points on the Earth’s surface. The RHCP antenna receives GNSS signals directly, to calculate
its position and velocity. Each CYGNSS satellite can measure and observe reflections in
four directions simultaneously, which means that the CYGNSS system can obtain data from
32 reflection points [29]. The delay-Doppler mapping (DDM) obtained by the receiver is a
function of the surface medium, antenna gain, distance, statistical properties, and scattering
geometry. The CYGNSS data used in this study were from level 1, version 2.1.

At present, most studies consider that the receiver primarily collects the coherent
scattered energy in the first Fresnel region. When only the coherent energy is considered,
we can calculate the DDM based on the Friis transmission formula and the Fresnel reflection
coefficient of an equivalent smooth surface [30].

Pcoh =
PTGTλ2GR

(4π)2(RR + RT)
2 Γ(s, θi, ε) (1)

PT : The transmitted power of GNSS satellite;
GT : The GNSS satellite antenna gain at specular point direction;
GR: The receiver antenna gain;
PTGT : The GNSS equivalent isotopically radiated power (EIRP);
λ: The wavelength;
RR and RT : The distance between the receiver and the specular point and the distance
between the transmitter and the specular point, respectively.

According to Equation (1), the reflectivity can be expressed as:

Γ(s, θi, ε) =
(4π)2Pcoh(RR + RT)

2

λ2GRGT PT
(2)
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where s is the surface rms height, which can characterize the surface roughness, θi is the in-
cidence angle and the dielectric constant of the geophysical parameters. Surface reflectivity
(SR) is usually a small positive value, which is converted to decibel for visualization and
data analysis according to Equation (3). Table 1 shows the main parameters for the L1 data
used in this study.

dB = 10log10(Γ(s, θi, ε)) (3)

Table 1. The Cyclone Global Navigation Satellite System (CYGNSS) level 1 data variables.

Name Comment

ddm_timestamp_utc DDM sample time
sp_lat Specular point latitude, in degrees north
sp_lon Specular point longitude, in degrees east

sp_inc_angle The specular point incidence angle, in degrees
sp_rx_gain The receive antenna gain in the direction of the specular point, in dBi

gps_eirp
The effective isotropic radiated power (EIRP) of the L1 C/A code
signal within ± 1 MHz of the L1 carrier radiated by space vehicle,

sv_num, in the direction of the specular point, in Watts

rx_to_sp_range The distance between the CYGNSS spacecraft and the specular point,
in meters

tx_to_sp_range The distance between the GPS spacecraft and the specular point,
in meters

power_analog 17 × 11 array of DDM bin analog power, Watts

It is worth noting that the treatment of the coherent and incoherent scattering is an
open issue when dealing with the CYGNSS data [31]. When using CYGNSS data for soil
moisture retrieval, the coherent energy comes primarily from specular reflections of water
inland within the GNSS-R footprint, which leads to the increase in DDM peak value. The
peak energy of the coherent part is many times greater than that in the non-coherent portion.
The satellite-based GNSS-R receiver mainly receives coherent scattered signals from the
first Fresnel zone around the specular reflection point [32]. In fact, the signals received
by GNSS-R receivers, in most cases, contain signals from both coherent and incoherent
scattered fields, due to variations in surface roughness. Most of the currently available
studies on satellite-based GNSS-R remote sensing of surface soil moisture simplify the
scattering mechanism of the L-band on the actual surface, assuming that only coherent
scattering occurs on the terrestrial surface, and incoherent scattering is ignored [31]. We
removed data with SNRdB less than 2 dB and CYGNSS antenna gain of less than 0 dB. The
elevation angle of the specular points is less than 65◦.

2.1.2. IGBP Land Cover Classification

The land surface scattering process is complex. In addition to the influence of surface
roughness, the surface scattering signals received directly by GNSS-R receivers are also
impacted by other factors such as vegetation layer and topography. There are various types
of land cover on the Tibetan plateau, and different vegetation covers have different effects
on the received signals. In order to reduce their influence on the received signal power,
the consequent analysis is performed in relatively uniform land cover categories. In this
way, we can ensure that the features in each zone are comparatively unified, so that the
differences in the CYGNSS observations caused by various types of surface coverage can
be considered.

The MODIS Land Cover Climate Modeling Grid Product (MCD12C1) provided are
the sub-pixel proportions of each land cover class in each 0.05◦ pixel and the aggregated
quality assessment information for the IGBP scheme [25]. Here, we have employed the
IGBP of 2020 to obtain the land cover information of the Tibetan Plateau region (Figure 2a).
The Tibetan Plateau region is dominated by four categories: high-vegetation-covered area;
moderate-vegetation-covered area, low-vegetation-covered area, and barren or desert area
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(Figure 2b). In this paper, we conducted the analysis of snowpack characteristics within the
same land cover type, as far as was possible.
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Plateau are reclassified into four types.

2.1.3. Long Time Series Dataset of Snow Depth in China

The long-term series of daily snow depth dataset in China (1979–2019), released by
the National Tibetan Plateau Data Center (NTPDC), provides daily snow depth distri-
bution data for China from 1 January 1979 to 31 December 2019. The raw data used to
invert this snow depth dataset are from the scanning multichannel microwave radiometer
(SMMR) (1979–1987), the special sensor microwave imager (SSM/I) (1987–2007), and the
special sensor microwave imager/sounder (SSMI/S) (2008–2019) daily passive microwave
bright temperature data (EASE-grid), processed by the National Snow and Ice Data Center
(NSIDC). It has a spatial resolution of 25 km, which can be used for climate analysis, hydro-
logical modeling, and water management on a large scale and in long time series [33–35].
During the processing of the data, the brightness temperatures of different sensors are
first cross-calibrated, and the observations affected by the snow depth observation errors
of ground stations, the surface water, and the liquid water content in the snow layer are
removed before the inversion of the snow depth.

Using this dataset, we calculated the snow cover change in the Tibetan Plateau between
January 2018 and December 2019, and the corresponding snow depth changes for four
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different land cover types. The snow accumulation trend under different land cover types
is similar. From October every year, the Tibetan Plateau gradually enters the snowfall
period, reaching the peak of snowpack in January and February of the following year. The
snow gradually melts after April as the temperature rises. Figure 3 shows the snow depth
map of the Tibetan Plateau for one month in summer and winter using this dataset.
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By comparing the values with the daily reflectivity data of CYGNSS in the same region,
the correlation between snow depth and reflectivity can be inferred, and the potential of
CYGNSS in snow feature research can be verified.

2.1.4. SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 7

Previous studies show that GNSS signals reflected from the surface are sensitive to
changes in soil moisture, and the soil moisture also changes the SR [22]. This soil moisture
product provides a composite of daily estimates of global land surface conditions retrieved
by the Soil Moisture Active Passive (SMAP) passive microwave radiometer. The data are
on a regular latitude/longitude grid, with predictable disparities in space and time. We
used the soil moisture data to plot a time series of mean snow depth with SMAP mean soil
moisture with different land cover types on the Tibetan Plateau. For more detail, please see
the following. By analyzing the variations in soil moisture over the same period, the effect
of SR changes due to soil moisture can be excluded; thus, we believe that the variations of
SR are due to the changes of snow coverage.

2.1.5. ERA5 Soil Temperature Data

The dataset is the soil temperature at level 1 (in the middle of layer 1). The European
Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System
(IFS) has a four-layer indication for the soil, where layer 1 ranges from 0 cm to 7 cm. Soil
temperature is measured in the middle of each layer. When a freeze–thaw transition occurs
in soil, the water in the soil changes from solid ice to liquid water. The dielectric constants
of water and ice differ significantly, so the reflectivity changes accordingly. By analyzing
the changes in snow depth and SR during the period when the surface temperature does
not change from positive to negative (or from negative to positive), we assessed whether
the snow depth can be monitored by CYGNSS.

2.2. Calculation of the Surface Reflectivity

The incidence angle is an important factor affecting the reflectivity of GNSS constel-
lation; the incidence angle of CYGNSS ranges from 0 to 70◦. To improve data quality, the
incidence angle greater than 60◦ is eliminated and the data in the direction of the lowest
point are used for normalization. Based on the data of CYGNSS L1 from 1 January 2018
to 31 December 2019 in the Tibetan plateau, we calculated and converted all the values to
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the dB scale, according to Equations (1)–(3). In this paper, we assume that the energy of
CYGNSS data is coherent, and incoherent scattering is not considered in the analysis. The
effective sampling range of CYGNSS is between approximately 38◦N to 38◦S, while the
latitude range of the Tibetan Plateau is about 26◦N to 40◦N, so some areas in the north lack
data [29]. Figure 4 shows the surface reflectivity of CYGNSS specular points in the Tibetan
Plateau on 1 March 2018. Comparing with the satellite image in Figure 1, we can see that
the SR is higher in the area with water and snow. In order to exclude the influence of water
bodies on the results, these data should be removed from the analysis.
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Figure 4. CYGNSS specular point surface reflectivity in the Tibetan Plateau on 1 March 2018.

In order to be consistent with the time series analysis, the raw SR of the specular points
was transformed into gridded data. Considering the study area and the spatial resolution of
snow data (Section 2.1.3), a grid was generated with a resolution of 0.25 along the geodetic
latitude and longitude. The data values for each grid cell were defined as the average value
of the specular points falling into that grid.

To test the reaction of SR to the changes in surface parameters on the Tibetan Plateau,
the SR at the CYGNSS specular reflection points for January 2019 and July 2019 are given
in Figure 5a,b. As seen in the figure, the reflectivity increases in the whole region in July
compared to January. To exclude differences in CYGNSS observations due to different
ground cover types, the variation in SR in response to surface snow depth is analyzed
under the same ground cover types.
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3. Results and Analysis
3.1. Comparison of Surface Reflectivity and Parameters on the Tibetan Plateau

The CYGNSS daily SR and snow depth were analyzed and compared under different
land cover types. The snow depth in the Tibetan Plateau region was calculated using the
long-term series of daily snow depth dataset in China (1979–2019). Figure 6 shows the
time series of CYGNSS SR and snow depth, and we assess the ability of CYGNSS data to
monitor changes in snow cover depth by comparing them.
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The SR varies with the surface dielectric constant, so there are differences in SR for
different ground objects. The snow on the Tibetan Plateau is mainly produced from October
to April each year, during which the Tibetan region enters a period of high snow frequency,
and SR increases as the snow depth increases. A portion of the SMAP data was lost between
June 2019 and July 2019, due to data sampling issues with the satellite. Figure 6 shows the
variation of CYGNSS reflectivity (blue left axis), which is consistent with the oscillation
of snow depth (red right axis) during the months with snow accumulation. In addition,
the part of the anomalous oscillation is mainly caused by the attenuation and volume
scattering of vegetation. The change trend of SR and snow depth is closest in the high-
vegetation-covered area. In the low-vegetation-covered area and barren/desert area, the
CYGNSS time series fluctuates more by the noise, but shows an overall increasing trend.
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The analysis results show that the CYGNSS SR has a certain correlation with the variation
in snow depth, which can be used for snow monitoring on the Tibetan Plateau.

Soil moisture is an important factor affecting SR. To exclude its influence on the results,
we plotted the time series of soil moisture using the SMAP surface soil moisture data
and examined it with the variation of snow depth over time, in order to investigate the
correlation between them. It can be seen from Figure 7 that the interannual variation of
soil moisture is closely related to the variation in snow cover, and the soil moisture content
fluctuates greatly when the snow cover melts. The low-vegetation-covered area has the
largest change in soil moisture. In addition, when the snow cover on Tibetan Plateau is
obvious (November 2018–February 2019), the value of soil moisture under different land
cover types fluctuates around 0.1 cm3/cm3, and does not change significantly. Therefore,
we learn that it is not the change in soil moisture that causes the oscillation of SR.
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To further verify the effect of snow depth on the SR, we also used the ERA5 soil
temperature data to obtain the monthly average soil temperature over this four month
period (Figure 8). We found that there is no inversion from negative to positive values of
surface temperature in most areas of the Tibetan Plateau during this period. The northern
region shows the relatively large temperature variation. However, as this region is beyond
the detection zone of CYGNSS, we exclude the effect of surface temperature variations.
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(a) November 2018, (b) December 2018, (c) January 2019, (d) February 2019.

Table 2 shows the mean values of snow depth, SR, and soil temperature for the four
different land cover types over a four month period. It can be seen that the trends of snow
depth and SR over time are approximately the same when the soil temperature is negative
without more significant changes. For other commonly used evaluation metrics, such as
leading edge slope (LES) and signal to noise ratio (SNR), we provide a brief discussion in
Appendix A.

Table 2. The mean values of snow depth, SR, and soil temperature for the four different land cover
types over a four month period.

Time Snow Depth (cm) Surface Reflectivity (dB) Soil Temperature (◦C)

(a) Mixed–Forest

2018.11 0.30817 –27.36039 –0.43541
2018.12 0.75975 –26.51822 –0.72392
2019.01 1.15806 –25.96435 –1.34392
2019.02 0.99447 –27.32706 –0.82510

(b) Open–Shrubland (Desert)

2018.11 1.98258 –35.25758 –3.73655
2018.12 3.66645 –33.51377 –7.68061
2019.01 4.54840 –32.83397 –9.16413
2019.02 4.04246 –34.33123 –7.49004
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Table 2. Cont.

Time Snow Depth (cm) Surface Reflectivity (dB) Soil Temperature (◦C)

(c) Grassland

2018.11 3.38779 –34.03826 –2.11510
2018.12 6.08088 –33.24549 –4.36104
2019.01 6.35053 –33.78475 –5.42212
2019.02 5.02427 –34.37498 –4.49595

(d) Barren/Desert

2018.11 1.86681 –31.47885 –1.29014
2018.12 2.97565 –30.19818 –7.56332
2019.01 3.60599 –31.14914 –8.23865
2019.02 3.38220 –30.62580 –4.55624

3.2. Surface Reflectivity Difference Ration Factor

In Section 3.1, we evaluated the effects of snow depth on surface reflectivity, and find
that it is more sensitive than the other GNSS-R observables, i.e., SNR and LES (Appendix A).
Therefore, we provide an indicator in this section to illustrate its effect on the detection
of snow properties. Here, we define this indicator as surface reflectivity–difference ratio
factor (SR–DR factor) [36]. The factor SR–DR is defined as follows:

F(t) =
Γ(t)− Γmin

Γmax− Γmin
(4)

where Γ(t) is the SR at time t, and Γmax and Γmin are the maximum and minimum SR in the
time range, respectively. It should be noted that within the form of this equation, the snow
water equivalent (SWE) can be achieved when the SWE is in quite good relationship with
snow depth.

The CYGNSS data for 2019 was studied as a case study. Figure 9 shows the SR–DR
factor for the Tibetan Plateau in January, February, March, and July 2019, which has the
same resolution of 25 km as SR. Analyzing the factor for the Tibetan Plateau in 2019, we
found that the SR–DR factor increases in summer compared to winter for the whole region.
It also changes with snow depth in winter when there is snow cover on the Tibetan Plateau.
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Figure 10 shows that the SR–DR factor for January 2019 is mainly concentrated between
0 and 0.4. In February and March 2019, SR–DR factor shows an increase, without a large
change in soil moisture during this period. In July, it shows a higher value, mostly greater
than 0.4. The snow depth is also lower at this time, due to the arrival of summer.
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Figure 10. Histogram of the SR–DR factor distribution on the Tibetan Plateau in January (a),
February (b), March (c), and July (d) of 2019.

We selected a 1◦ × 1◦ size area with different land cover types for the analysis of the
relationship between the SR–DR factor and snow depth as follows: (a) barren or desert
area (79◦–80◦E, 33◦–34◦N); (b) low-vegetation-covered area (81.5◦–82.5◦E, 31.5◦–32.5◦N);
and (c) moderate-vegetation-covered area (95◦–96◦E, 29◦–30◦N). We removed the high-
vegetation-covered area because this part of the Tibetan Plateau is small and mostly con-
centrated in mountainous areas with complex topography. The topographic relief and
vegetation roughness may have a great impact on the effective surface reflectivity, which
will make the results inaccurate. The time with snow cover on the Tibetan Plateau is
concentrated from November to March of the following year, so we choose CYGNSS data
from November 2018 to March 2019, and the snow depth at the coordinates of the center
point of the area is used to express the change in snow accumulation. Figure 11 presents the
time series of SR–DR factor versus snow depth in the research area. From the simulation,
we can see that the oscillation of the snow depth in the barren area is, in general, consistent
with the daily CYGNSS SR–DR factor. The differences become progressively larger as the
vegetation cover level increases.
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4. Conclusions

Since the launch of GNSS-R satellites, many scholars have used them to study the
parameters of wetland dynamics, sea surface wind speed, and soil freeze/thaw. This paper
takes CYGNSS as an example to study its potential application in snow monitoring on the
Tibetan Plateau. The CYGNSS data collected from January 2018 to December 2019 were
processed and analyzed to calculate surface reflectivity and compare it with snow depth.
Soil moisture from SMAP and temperature data from ERA5 were used to study the changes
in both when the snow depth varied significantly.

With the help of typical GNSS-R observables (LES, SNR, and SR), we found that SR
can be a good potential parameter to indicate the snow depth. Therefore, based on the
SR, the finally developed indicator, which is the SR–DR factor, shows an apparent good
relationship with snow depth. This factor can represent the snow water equivalent to some
extent through the ratio form in the equation.

Compared with conventional remote sensing satellites, the sampled data from CYGNSS
have high spatial and temporal resolution. This demonstrates the potential of satellite-based
GNSS-R to monitor snow depth at a high spatial resolution.

In the analysis of GNSS-R data, it is generally believed that the signal received by the
receiver is mainly composed of coherent scattering along the mirror direction, but, in fact,
the incoherent scattering affects the results, and their relative contribution depends on the
receiver height, surface roughness, and vegetation coverage. In this paper, only the case of
coherent scattering is considered.

The CYGNSS was originally intended for sea surface wind field research, and many
of its applications on land are exploratory studies. This paper qualitatively proves that
satellite-based GNSS-R can be used for snow monitoring, but still lacks a quantitative
evaluation to determine the specific value of snow depth as retrieved from SR. It can
be further analyzed with other estimators in future research. In addition, the coverage
of CYGNSS is mainly concentrated in the middle and low latitudes, so there is a lack
of effective data in some areas of the northern Tibetan Plateau. In practical application,
it may be necessary to combine the traditional remote sensing satellite data to achieve
high-precision snow monitoring.
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Appendix A

In addition to the qualitative analysis, we also investigated the relationship between
the LES of the delayed power waveform commonly used in satellite-based GNSS-R surveys
and the snow depth. The LES-SD scatterplot drawn from November 2018 to February 2019
without limiting the satellite observation angle shows there is some relationship between
snow properties and LES or SNR. However, the results are not as obvious as SR; therefore,
for we employ SR for our analysis.

Appendix A.1. LES and Snow Properties

LES is one of the most important CYGNSS observables. Figure A1 presents the rela-
tionship between LES and snow depth. Figure A1a–c are the corresponding relationships
for high-, moderate-, and low-vegetation-covered area, while subfigure d is for the barren
or desert area. At present, from the relationship shown in Figure A1, we can see that LES
has a poor relationship with the snow depth. Since LES is one of parameters that reflects the
surface roughness condition, it cannot present the snow depth information in the CYGNSS
pixel, which has a spatial resolution of 7 × 2.5 km. However, it isa potential good indicator
of snow depth for complex mountain terrain.
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Figure A1. The LES of CYGNSS observations in relation to snow depth in winter. (a) High-vegetation-
covered area; (b) moderate-vegetation-covered area; (c) low-vegetation-covered area; (d) barren or
desert area.

Appendix A.2. SNR with the Snow Properties

SNR is also one of the most important output parameters of the CYGNSS observables.
During our analysis, we also compared the relationship between snow depth and SNR
(Figure A2). In order to reduce the influence of different land geophysical parameters, we
also plotted the relationship for four different surface types, i.e., high-vegetation-covered
area (a); moderate-vegetation-covered area (b); low-vegetation-covered area; (d) barren or
desert area (c). We can see that the SNR also cannot reveal the relationship between the two
parameters. More detailed analysis to retrieve this information for the detection of snow
properties will occur on in our future research.
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