
1. Introduction
In an aquifer system, both inelastic (irreversible) and elastic (recoverable) deformation take place (Wilson & 
Gorelick, 1996), relating to hydraulic head fluctuations, properties of deforming sediment layers, and the aqui-
fer's compaction history (Poland & Ireland, 1988). As long as the hydraulic head remains above the previous 
lowest level (i.e., the effective stress is less than the pre-consolidation stress), the deformation is elastic and takes 
place in both fine- and coarse-grained layers (Sneed, 2001). In contrast, when the hydraulic head falls below its 
previous lowest level, inelastic compaction is initiated predominantly in clay layers through irreversible rear-
rangement of fine grains. Compaction is greater in clays than in coarse sediments due to the inelastic skeletal 
specific storage being one-to-three orders of magnitude greater than the elastic skeletal specific storage (Guzy 
& Malinowska, 2020). Since inelastic and elastic processes often simultaneously happen in the same place, their 

Abstract Tracking the inelastic deformation of an aquifer is important to quantify the stress experienced 
by the aquifer system, so that the effects of the current extraction practices are put in the context of the 
hydrogeological settings of a region. However, transition of elastic to inelastic deformation is hard to be 
monitored, particularly in the Abarkuh Plain (AP) with a dry climate. In this study, we define the confined 
extent of aquifer system and track the spatial evolution of inelastic deformation based on the multi-sensor 
Interferometric Synthetic Aperture Radar time series in the AP in central Iran from 2003 to 2020. Our results 
demonstrate that many locations with experiencing no significant inelastic deformation a few years ago are now 
deforming inelastically, leading to partially irreversible lowering of ground surface and loss of aquifer storage. 
Lithological data shows that total thickness of compacted clay units controls the extent and timing of observed 
inelastic deformation, while joint geodetic-well data confirms that multi-decadal dropping of head in the 
confined extents of aquifer system is driving the long-term compaction. These results show that we are possibly 
near a tipping point between the sustainable conditions and permanent damage to underground water resources 
and the current decisions have the potential to permanently change the natural resources landscape.

Plain Language Summary Unsustainable extraction of groundwater is accompanied by inelastic 
land subsidence, lowering of surface elevation. Tracking the transition of elastic to inelastic deformation 
is critical to isolating a tipping point between sustainability and permanent damage to underground water 
resources. In this work, we present an approach based on the space geodesy to quantify the transition and 
spatial evolution of inelastic deformation. Our study reveals that many locations in central Iran that used to 
experience no significant inelastic deformation just a few years ago, are now deforming inelastically, leading 
to the significant subsidence and partially loss of the aquifer system storage. We find that while compaction is 
associated with multi-decadal groundwater levels decline, nature and thickness of sediments in the subsurface 
relative to local groundwater elevation control its timing. These results highlight the fact that recent and current 
groundwater management decisions have the potential to change the natural resources landscape permanently in 
central Iran.
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separation is challenging without relying upon the hydrogeological models (Hoffmann et al., 2003). However, 
quantifying these deformation components is essential to define sustainable pumping rates for resources manage-
ment and to potentially relocate infrastructures from the areas experiencing inelastic deformation (Shi et al., 2012).

Interferometric Synthetic Aperture Radar (InSAR) can quantify surface deformation from small to very large 
extents worldwide (tens to thousands of square kilometers) with a high-spatial resolution (tens of meters) (Chang 
et  al.,  2014; Pepe & Calò, 2017). Ground deformation linked to subsurface and solid-earth processes can be 
precisely measured with InSAR and explored to gain insights into the physical and hydro-mechanical processes 
at play (e.g., Bürgmann et al., 2000). InSAR has been broadly applied in the hydrogeology to derive the properties 
of aquifer systems and to guide water-storage management plans (Chaussard et al., 2021; Ezquerro et al., 2014; 
Lu & Danskin, 2001; Miller & Shirzaei, 2015; Rezaei & Mousavi, 2019).

Characterization of land deformation has been documented in several plains or sedimentary basins such as the 
Las Vegas Valley, Nevada, USA (Hoffmann et al., 2001), the Parowan Valley, Utah, USA (Smith & Li, 2021), the 
San Joaquin Valley and San Bernardino Basin, California, USA (Lu & Danskin, 2001; Smith & Knight, 2019), 
the San Luis Valley, Colorado, USA (J. Chen et  al.,  2017), the Phoenix and Tucson, Arizona, USA (Miller 
et al., 2017; Miller & Shirzaei, 2015), the Guadalentín Valley, Spain (Rigo et al., 2013), the Toluca Valley, Mexico 
(Calderhead et al., 2011), the National Capital Region (NCR), India (Kumar et al., 2022), the Cangzhou, North 
China Plain and Xi'an (Jiang et al., 2018; Li et al., 2023), and the Rafsanjan, Gorgan, and Salmas Plains, Iran 
(Motagh et al., 2017; Rezaei & Mousavi, 2019; Shahbazi et al., 2022). Chaussard et al. (2014, 2017) discovered 
land subsidence in the Santa Clara aquifer, CA, and presented that the elastic deformation can be spatiotemporally 
complex and reach amplitudes of centimeters each year. Ojha et al. (2019) studied vertical land deformation in the 
Central Valley, CA, with a 2015–2017 InSAR time series and used a functional curve fitting to isolate elastic from 
inelastic contributions, assuming the elastic component can be seasonal. Ezquerro et al. (2014) and Haghighi and 
Motagh (2019) reported land motion in Madrid, Spain and Tehran, Iran, respectively, with multi-sensor InSAR 
deformation time series, and isolated inelastic from elastic contributions, assuming inelastic component can be 
a long-term linear trend. Using an Independent Component Analysis (ICA) of the Sentinel-1 InSAR time series, 
Chaussard et al. (2021) and Mirzadeh et al. (2021) highlighted the detail of the inelastic and elastic deformations 
in the Mexico City and Yazd-Ardakan Plain, Iran, respectively. At both sites, surface deformation was shown to 
be dominantly inelastic and controlled by clay-layers thickness that compact in response to water levels drop-
ping below the previous lowest stands. Gualandi and Liu (2021) used variational Bayesian ICA (vbICA) and 
2015–2019 Sentinel-1 time series across the Central San Andreas Fault and southern Central Valley to isolate 
the contributions of deep and shallow aquifer deformation to displacements and distinct tectonic loading from 
the seasonal signals. Peng et  al.  (2022) applied an ICA to 2006–2020 time series of displacement from the 
ALOS-1 and Sentinel-1 data sets across the Willcox basin in Arizona and discovered two various spatiotemporal 
deformation zones in this basin. Using 2016–2018 InSAR observations, Y. Chen et al. (2022) showed the spatio-
temporal pattern of land motion in Lingang New City, Shanghai and discovered elastic and inelastic deformation 
through calculating the skeleton coefficients by the joint analysis of hydraulic head data and InSAR results. Zhu 
et al. (2022) applied an ICA to the 2015–2018 Sentinel-1 InSAR time series in the Santa Ana basin, Los Angeles, 
and discovered two various spatiotemporal deformation patterns in the basin; a long-term deformation zone with 
the large-scale pattern and a widespread seasonal deformation linked to the seasonal groundwater level changes. 
Smith and Li (2021) presented a new approach to model the elastic and inelastic deformation using the incom-
plete water level records and 2015–2020 Sentinel-1 deformation data across the Parowan Valley, Utah and found 
the deformation at the study site as a mixture of continued year-over-year drawdown and large seasonal variations 
in head. Lees et al. (2022) and Smith and Knight (2019) used the 1D groundwater flow (i.e., diffusion equation) 
in the San Joaquin Valley, California, that uses the hydraulic parameters and changes in head (i.e., stress) at the 
border of fine-grained units layers experiencing the inelastic land deformations, to estimate the deformation 
experienced by the clay layers in response to significant aquifer storage depletion. Jiang et al.  (2018) applied 
multichannel singular spectrum analysis (M-SSA) to 2003–2010 InSAR observations and hydraulic head changes 
to extract seasonal signal, and then estimate the elastic skeletal storativity, aquifer parameters and groundwater 
storage variations in Cangzhou, North China Plain. Shi et  al.  (2022) used a continuous wavelet transform to 
separate the seasonal and long-term components of 2015–2020 InSAR deformation time series and hydraulic 
measurements and then retrieved aquifer storage parameters in the Tianjin–Langfang area, North China Plain.

Although multi-sensor InSAR deformation time series data have been used worldwide to track the aquifer-related 
deformation, most have relied on a relatively short period of observations, which does not enable isolation the 
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transition between the elastic and inelastic surface deformation (Bai et  al.,  2022; Chaussard et  al.,  2021; Hu 
et al., 2018; Mirzadeh et al., 2021; Peng et al., 2022; Song et al., 2022). Recent studies that combine InSAR time 
series of the historical and recent SAR missions have assumed constant deformation rates in all periods when 
merging the time series or have used quantile–quantile adjustment and segmented linear interpolation methods, 
which are not applicable in all cases and often result in large uncertainties in the estimations of recoverable and 
irrecoverable storage values (Aimaiti et al., 2018; Li et al., 2023; Motagh et al., 2017; Wang et al., 2021).

In this paper, we extract the time-dependent evolution of the inelastic deformation through implementation of 
multi-sensor long-term time series analysis from both historical and recent SAR data combined with an ICA. 
The ICA enables exploring any time and space variability that may be embedded in the InSAR data and hidden 
by the dominant signal without relying on a prior constraints and prescribed functional forms. We focus on the 
Abarkuh Plain (AP), Iran, and resolve the primary controls by the hydrogeological factors of the spatiotemporally 
variable transition of elastic to inelastic deformation. We rely on a joint analysis of hydrogeological and geodetic 
data to constrain the spatial extent of the confined aquifer in the AP, which was unknown to this day, and track 
the locations of the AP that have switched from experiencing purely elastic deformation to facing some inelastic 
deformation in recent years due to the continued lowering of groundwater levels.

2. Study Area and Hydrogeology
The AP is a desert extending from 52.67 to 53.72°E longitude and 30.68 and 31.50°N latitude. Its elevation increases 
from 1,439 m in the Abarkuh Playa in the southeast to 3,277 m in mountains to the west (Figure 1a). According 
to 1967–2011 data, the AP has an average annual rainfall of ∼464.6 million m 3 and an annual evaporation of 
∼377.78 million m 3 (TAMAB, 2004). The AP is made up of one unconfined aquifer extending from the surface to 
shallow depths, which covers an area of 929.12 km 2 (Figure 1a) and has suffered from an average yearly decline of 
groundwater levels of 0.62 m between 1983 and 2017 (TAMAB, 2004). Underneath, a confined aquifer system has 
been suggested in the AP but its spatial extent remains unclear. The long-term (1981–2011) groundwater budget 
in the AP shows that the main component of recharge arises from the direct percolation and irrigation return flow 
from the agricultural sector at 61.1 million m 3 per year. Withdrawal by springs, qanats, and pumping wells reaches 
173.7 million m 3 per year, with the largest usage stemming from agricultural activities that extract 168.1 million m 3 
of water per year (Tables S1 and S2 in Supporting Information S2). The yearly storage loss of 32.4 million m 3 has led 
the local government to label the AP aquifer as the second-most imperiled aquifer in this region (TAMAB, 2004).

Figure 1a shows the geology of the AP. Quaternary sediments cover much of the area, consisting of alluvium 
(clays, silts, and sand along with gypsum) and salt flats. These Quaternary layers are underlain by Tertiary to 
Permian limestone and dolomite units and the thickness changes are controlled by several NWSE- and NS-trend 
strike-slip faults (profile A−A′ and the lithological data from several exploration wells in Figure 1b and Figure S1 
in Supporting Information S1, respectively).

3. Data Sets and Methods
3.1. Data Sets

3.1.1. SAR Data

Our analysis is based on 12 Envisat ASAR images of the AP acquired in StripMap (SM) mode, 14 ALOS-1 
PALSAR images acquired in Fine Beam Double (FBD) Polarization and Fine Beam Single (FBS) Polariza-
tion modes, and 243 Sentinel-1 images acquired in the Interferometric Wide-swath (IW) mode (inset map in 
Figure 1a). The Envisat descending data was acquired from October 2003 to September 2005 with a resolution 
of 4 × 8 m 2 (Azimuth × Range). The ALOS-1 ascending data was acquired from December 2006 to December 
2010 with a resolution of 3 × 8 m 2 (Azimuth × Range) (Table S3 in Supporting Information S2). The Sentinel-1 
data set in both descending and ascending orbits cover a period from October 2014 to March 2020 with a spatial 
resolution of 20 × 5 m 2 (Azimuth × Range) (Table S4 in Supporting Information S2).

3.1.2. Hydrogeological, and GNSS Data

We use monthly measurements from 28 piezometers (red dots in Figure 1a) to quantify the hydraulic head vari-
ations from March 2003 to March 2020, considering March 2003 as the reference date (Figure S2 in Supporting 
Information S1). We apply an Inverse Distance Weighted (IDW) interpolation method (Shepard, 1968) on the 
measurements from the piezometers to generate multi-annual hydraulic head change maps between October 
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2003, considered as the reference date, and consecutive years (2004–2019; Figure S3 in Supporting Informa-
tion S1), as well as the annual hydraulic head change maps in the periods of the Envisat, ALOS-1 and Sentinel-1 
data sets (Figure S4 in Supporting Information S1). October is considered as the start of the hydrological year. 
Logs data of several exploration wells (green dots in Figure 1a; TAMAB, 2004) are used to derive the lithological 

Figure 1. (a) Geological map of the Abarkuh Plain at a scale of 1:100,000, converted from the Geological Survey of Iran (1997). Dark outlines denote the boundary of 
aquifer. Green and red dots display the locations of available exploration wells and piezometers, respectively. The A−A′ line shows the location of SW-NE cross-section. 
The inset map shows outlines of frames from the Envisat descending, ALOS-1 ascending, and the Sentinel-1 descending and ascending orbit directions in red, blue, 
and pink, respectively, overlaying a hillshade map. (b) Geological cross-section of the aquifer along profile A−A′ using data from five exploration wells highlighted 
in (a) by pink squares. The black horizontal lines display the water table at the end of drilling process of exploration wells. The green vertical double arrows show the 
thickness of those parts of the aquifer system that are potentially confined. The bedrock is made of limestone units (yellow) and the aquifer unit's thicknesses atop (i.e., 
all non-limestone layers) decrease eastward.
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information from the upper ∼100 m (Figure S1 in Supporting Information S1). Stratigraphic data of the AP are 
also derived from the geological map at a scale of 1:100,000 (Geological Survey of Iran, 1997).

Global Navigation Satellite System (GNSS) can monitor multi-scale deformation and the water storage variations 
(Jin et al., 2022; Jin & Zhang, 2016; Najibi & Jin, 2013). One continuous GNSS station of the Iranian Permanent 
GNSS Network (IPGN) provided by the National Cartography Center of Iran (NCC) is available in the AP (see its 
location in Figure 3 with the black triangle). This GNSS station (ABRK) provides daily data since 2006 in the form 
of time series of 3D positions (E–W, N–S, and Up–Down) processed at NCC using the GAMIT/GLOBK software 
(Herring et al., 2015) in the International Terrestrial Reference Frame, ITRF2014 (see Figure S5 in Supporting Infor-
mation S1). We consider the first acquisition date (1 January 2006) as the reference of the displacement time series.

3.2. Methods

3.2.1. InSAR Approach

To track ground deformation over the period covered by each SAR data set, we use the InSAR Scientific Computing 
Environment software and Small BAseline Subset (SBAS; Berardino et al., 2002) time series method implemented in 
the Miami INsar Time-series software in PYthon (MintPy; Yunjun et al., 2019). We set perpendicular and temporal 
baseline thresholds to 1,070 m and 1,800 days for the Envisat and 1,500 m and 1,800 days for the ALOS-1 data sets 
to produce over 63 and 57 interferograms, respectively (see Figure 2). For the Sentinel-1 ascending and descending 
data sets, we generate over 506 and 446 interferograms, respectively, formed between each epoch and four preced-
ing and four subsequent epochs with temporal and spatial baselines between 12 and 168 days and −200 and 200 m 
(see Figure 2). We rely on the 1-arcsec Digital Elevation Model (DEM) of the Shuttle Radar Topography Mission 
(SRTM; Jarvis et al., 2008) to limit the topographical contributions. We resample the interferograms to 90 m for the 
Envisat and ALOS-1, and 30 m for the Sentinel-1 data sets to reduce the speckle noise and use the Statistical-Cost 

Figure 2. Spatial (perpendicular) and temporal baselines of the Envisat (a), ALOS-1 (b), and the Sentinel-1 ascending (c) and descending (d) interferograms 
color-coded by the average spatial coherence. Dashed lines in (a and b) show interferograms ignored when applying the average spatial coherence thresholds to the time 
series selection and the solid lines in (a–d) demonstrate interferograms inverted to get the time series of land deformation.
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Network-Flow Algorithm for Phase Unwrapping (SNAPHU; C. Chen & Zebker,  2003) for phase unwrapping 
step. We apply mean spatial coherence thresholds of 0.7 and 0.8 to exclude outliers (Figure 2) caused by unwrap-
ping error for the Envisat descending and ALOS-1 ascending data sets, respectively (Tizzani et al., 2007). We  use 
Python based Atmospheric Phase Screen (PyAPS) (Jolivet et al., 2011, 2014) and ERA-5 weather model with spatial 
resolution of 31 km (Hersbach et al., 2020) to decrease the tropospheric phase. We remove long-wavelength signals 
in the form of a linear ramp to mitigate the orbital and ionospheric artifacts. For the Envisat data, we correct the 
Local Oscillator Drift and improve the geo-location accuracy of Envisat interferograms using the empirical model of 
Marinkovic and Larsen (2013). Finally, all data sets are referenced to a single stable point that presents a coherence 
value ≥0.85 in all data sets (see Figure S6 in Supporting Information S1; cross in Figure 3; Pepe and Lanari, 2006).

We combine the Sentinel-1 descending and ascending time series to calculate the vertical and east-west deforma-
tion, supposing no contribution from the north-south component (Wright et al., 2004), through minimizing as:

⎡
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Figure 3. Annual mean vertical velocity maps, derived from the (a) Envisat, (b) ALOS-1, and (c, d) Sentinel-1 ascending and descending data sets, respectively. Red 
colors show zones of subsidence and white to light-blue colors show areas with little or no displacement. Black circles indicate the major cities, and black dashed lines 
display the positions of the two profiles (B−B′) and (C−C′) shown in Figure 4. The green dashed-line polygon in (a–d) shows the Abarkuh Plain aquifer boundary (see 
Figure 1). Black contours indicate the extent of subsiding areas with a rate of ≥12 mm/yr in each data set. Pink dashed lines highlight the Envisat boundary of Main 
Subsidence Zone. Blue contours in (b, c) and purple contours in (d) mark the extent of the Envisat and ALOS-1 subsiding areas overlaying the ALOS-1 and Sentinel-1 
observations. The cross (Ref.) marks the reference pixel located in a stable area. The black triangle in (a–d) shows the location of the ABRK Global Navigation Satellite 
System station.
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where (rA, rD) are the observation residuals; 𝐴𝐴 𝐴𝐴 = (𝐴𝐴𝑢𝑢, 𝐴𝐴𝑒𝑒)
𝑇𝑇  is 2D deformation vector (vertical, east-west), and 

� =
⎡

⎢
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cos(��) sin(��) ⋅ cos(∅�)

cos(��) sin(��) ⋅ cos(∅�)
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⎥

⎥

⎦

 is a matrix that includes the Line-Of-Sight (LOS) vectors, where θ 

and ∅ are the incidence angle for each Distributed Scatterer (DS) and satellite-heading angle for each orbit,  

respectively. RLOS contains the LOS observations for the descending and ascending orbits. If ΣR represents the 
covariance matrix for errors in the LOS observations, the deformation vector 𝐴𝐴 𝐴𝐴 = −

(

𝑉𝑉 𝑇𝑇
⋅ Σ

−1

𝑅𝑅
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)−1
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⋅ Σ

−1

𝑅𝑅
⋅ 𝑅𝑅 

can be calculated with a weighted least-squares inversion by minimizing the observation residuals. If the covari-
ance matrix for the vector components is 𝐴𝐴 Σ𝑣𝑣 =

(

𝑉𝑉 𝑇𝑇
⋅ Σ

−1

𝑅𝑅
⋅ 𝑉𝑉

)−1 and, as errors in the LOS observations are inde-
pendent in the descending and ascending measurements, we get

Σ𝑣𝑣 = 𝜎𝜎
2
(
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)−1 (2)
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 ; and 𝐴𝐴 𝐴𝐴2

𝐷𝐷
 and 𝐴𝐴 𝐴𝐴2

𝐴𝐴
 are the standard deviations of descending and ascending orbits, respec-

tively. The square root of diagonal terms of Σv gives a standard displacement error that can be used as spatial 
uncertainties.

As confirmed with the Sentinel-1 descending and ascending data (Figure S7 in Supporting Information S1), we 
observe minimal contributions of horizontal motions to LOS deformations and convert the LOS velocity maps 
of the Envisat descending, ALOS-1 ascending, and Sentinel-1 descending and ascending data sets (Figure S8 in 
Supporting Information S1) to vertical motions using the mean incidence angle value θ of each satellite. In addi-
tion, we convert the LOS velocity standard deviation maps (StdLOS), generated through the MintPy time series 
processing, into maps of the vertical deformation standard deviation (Stdu = 𝐴𝐴

StdLOS

cos𝜃𝜃
 ) (Figure S9 in Supporting 

Information S1). Temporal uncertainties are calculated by averaging a window of 13 × 13 pixels at the reference 
point for each time series epoch for the Envisat, ALOS-1, and Sentinel-1 data sets (Figure S10 in Supporting 
Information S1; Mirzadeh et al., 2021).

3.2.2. Transition of Elastic to Inelastic Deformation With InSAR-ICA

ICA is a statistical signal decomposition method that expresses random sources as a linear mixture of independent 
sources that follow a non-Gaussian probability distribution function. The ICA can solve the blind source sepa-
ration problem by maximizing the statistical independence of independent components (ICs) to separate mixed 
signal into a number of ICs with distinct temporal (eigenvectors) and spatial (score maps) patterns (Hyvärinen 
& Oja, 1997). However, a particular process does not certainly associate to a single component as it can contain 
multiple spatiotemporal patterns divided into several components.

We propose an ICA-based approach to constrain (a) the hydrogeological controls on the spatiotemporal changes 
in deformation, and (b) the transition from elastic to inelastic deformation in the AP. First, we resample the verti-
cal time series of deformation derived from all data sets into 90m grids and extract 254,550 samples per epoch 
and 12, 14, 114, and 129 epochs for the Envisat descending, ALOS-1 ascending and Sentinel-1 descending and 
ascending data sets, respectively. These data are the input to the ICA in the form of a two-dimensional matrix 
for each data set with size of number of epochs × number of samples. We use fixed-point algorithm, FastICA 
(Hyvärinen & Oja, 1997) to solve the ICA. Results for each IC are (a) temporal eigenvectors to present the signal 
magnitude at each epoch and (b) a score map scaled by the contribution of retained ICs to the mixed signal, show-
ing the pixels that are experiencing the observed temporal eigenvectors. To visually compare the ICs from all data 
sets, the score maps are standardized to a [−5, 5] range (Figure S11 in Supporting Information S1).

To determine the number of the ICs to retain, we use a Principal Component Analysis (PCA) and the 
truncation-of-the-variance-explained rule (Cattell,  1966; Jackson,  1993). Too many ICs lead to divid-
ing the components of interest into several “fake” ICs, while too few ICs introduce errors and noise mixing 
into  the  components of interest. In contrast to the ICA, the PCA does not require setting a number of components 
to retain but the variance explained by each component is used to determine the PC's significance. However, the 
PCA is limited by the forced orthogonality between components, which biases the interpretation of PCs in terms 
of physical processes. Here, we only use a PCA to identify the number of components explaining a high variance 
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of the original signal, then we use this number of PCs as the maximum number of ICs to extract. This approach 
enables bypassing the individual weakness of PCA (forced orthogonality of retrieved components) and ICA 
(unknown significance of the component to the mixed signal). Based on the PCA results (Table S5 in Supporting 
Information S2), a single Principal Component (PC) explains 94.6%, 92.8%, 97.2%, and 94.9% of the variance 
for the Envisat descending, ALOS-1 ascending, and Sentinel-1 descending and ascending data sets, respectively. 
To explain over 98% of the data variance and to explore the possibility of a secondary signal being “hidden” by 
the long term deformation captured by the first component, we consider first-four components. Four compo-
nents explain 98.9%, 98.3%, 98.6%, and 97.3% of the variance in the Envisat descending, ALOS ascending, and 
Sentinel-1 descending and ascending data sets, respectively (Table S5 in Supporting Information S2 and Figure 
S11 in Supporting Information S1).

Second, we use the 2-sigma spatiotemporal uncertainties of InSAR results (2 × maximum of the spatiotemporal 
uncertainties, giving 95% confidence; see Section 3.2.1) as the threshold to extract the spatial extent of significant 
surface deformation. This threshold is then converted from millimeters per year (mm/yr) to eigenvectors per year 
(eig/yr) for each data set:

threshold
eig∕yr

m =
threshold

cm∕yr

Scaled_Scorem
 (3)

where Scaled_Scorem is a maximum score scaled with % eigenvectors explained by the dominant IC for data set 
m. These thresholds are used to mask the score maps to facilitate the identification of the area affected by defor-
mation through time (i.e., the score values lower than the converted thresholds are masked out).

3.2.3. Least Squares-Based Time Series Decomposition

We use a model for the temporal evolution of deformation to estimate the linear trend and average periodic ampli-
tude (Goudarzi et al., 2015):

𝑌𝑌 (𝑡𝑡𝑖𝑖) = 𝑎𝑎 + b × 𝑡𝑡𝑖𝑖 + 𝑐𝑐 × sin(2𝜋𝜋 × 𝑡𝑡𝑖𝑖) + 𝑑𝑑 × cos(2𝜋𝜋 × 𝑡𝑡𝑖𝑖) + 𝑒𝑒 × sin(4𝜋𝜋 × 𝑡𝑡𝑖𝑖) + 𝑓𝑓

×cos(4𝜋𝜋 × 𝑡𝑡𝑖𝑖)
 (4)

where ti (i = 1, 2, …, N) are the time steps of the time series; a and b are offset and linear slope, respectively, and 
(c, d) and (e, f) are the annual and seasonal scales for sine and cosine functions, respectively. By considering the 
unknown coefficients as a vector X = [abcdef] T, the equation can be written for all time steps in a matrix form 
and solved using least squares method to isolate the nonlinear (seasonal) and linear (long-term) components of 
time series. We apply this approach to the GNSS and InSAR-derived time series of land deformation to derive the 
linear and seasonal components, as well as to assess the dominant IC.

4. Results and Analysis
4.1. Spatial-Temporal Patterns and Rates of Deformation

The multi-sensor analysis of deformation in the AP allows us to see the temporal changes in the patterns and 
rates of deformation. Figure 3 shows the mean vertical velocity maps converted from the mean LOS velocities 
(Figure S8 in Supporting Information  S1), and reveals three major subsidence features in the AP.  In terms 
of subsidence rates, the most substantial feature is a northwest-southeast elongated zone referred to as the 
Main Subsidence Zone (MSZ) that covers an initial area of 37.4  km 2 with a rate ≥12  mm/yr (three-sigma 
maximum spatiotemporal uncertainties; Figures S9 and S10 in Supporting Information  S1) in the Envisat 
period (2003–2005). The MSZ spatially expanded between the Envisat, ALOS-1 (2006–2010), and Sentinel-1 
(2015–2020) data sets and reaches 135 km 2 in the Sentinel-1 descending and ascending data set. In addition to 
the MSZ, a new deformation region appears in the ALOS-1 and Sentinel-1 data sets northwest of the Abarkuh 
city (black circle in Figures 3b–3d) with a subsidence rate of 13 mm/yr. The profile B−B′ (Figure 4, map loca-
tion shown in Figure 3) highlights the expansion of the MSZ toward the northwest between 2 and 8 km in both 
the Sentinel-1 and ALOS-1 data sets compared to the Envisat data (shaded area in Figure 4a). In the center of  the 
MSZ, we detect an increase followed by a decrease in the subsidence rates by 30 and 40 mm/yr, respectively, 
between 9.5 and 15 km (shaded area in Figure 4a). Hydrogeological data reveal a direct correlation between this 
deformation and the average rate of head level changes: head levels decline accelerated by ∼0.18 m/yr in the 
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MSZ between the Envisat and ALOS-1 data sets, while the average rate of head decline decreased by ∼0.26 m/yr 
between the ALOS-1 and Sentinel-1 data sets (Figures S4f–S4h in Supporting Information S1). Further changes 
in the extent and rates of deformation in north of Abarkuh city along the profile C−C′ are shown in Figure 4c. 
The observed deformation is consistent with an increased rate of head decline northwest and north of the AP 
aquifer between the Envisat, ALOS-1, and Sentinel-1 data sets (dark green areas in Figures S4d and S4e in 
Supporting Information S1).

Figure 4. Annual mean vertical velocities and sigma uncertainties derived from the Envisat (red), ALOS-1 (blue) and 
Sentinel-1 descending (black) and ascending (green) data sets along (B−B′) (a and b) and (C−C′) (c and d) profiles (profile 
lines shown in Figure 3). The shaded parts highlight the locations of considerably different subsidence rates in the Envisat, 
ALOS-1, and Sentinel-1 descending and ascending data sets. Lateral expansion of the subsiding areas is visible along 
both profiles. (e–g) Comparisons of the annual mean vertical velocities derived for resampled common points in a 90 m 
grid within the Main Subsidence Zone (MSZ) (pink dashed-lines in Figure 3a). The Sentinel-1 descending annual mean 
vertical velocity is used as the reference (shown on x-axis) and compared to the (e) Envisat, (f) ALOS-1, and (g) Sentinel-1 
ascending data sets. The dashed black and dashed-dotted pink lines in (e–g) show the identical vertical displacement rates 
and a 3-sigma range of ±12 mm/yr, respectively. (e–g) indicate that the subsidence rates from the Envisat, ALOS-1, and 
Sentinel-1 ascending data sets are highly correlated with the Sentinel-1 descending data set. (h–j) probability density function 
of differential annual mean vertical velocities derived for the resampled common points between the Sentinel-1 descending 
annual mean vertical velocity as the reference and (h) Envisat, (i) ALOS-1 and (j) Sentinel-1 ascending data sets. The dashed 
black and pink lines in (h–j) show the mean and 2-sigma values for the data sets. Both (g and j) also confirm that there is no 
significant horizontal deformation captured in the Sentinel-1 data set within the MSZ.
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Figure S5 in Supporting Information S1 shows the time series of vertical, north-south, and east-west displace-
ments from the daily GNSS data of the ABRK permanent GNSS station (see Figure 3 for location), and reveals 
subsidence of 2.9 mm/yr before July 2011 that increased to 5.6 mm/yr after July 2011 (red and blue dashed lines 
in Figure S5a in Supporting Information S1). In addition, Figures S5c and S5e in Supporting Information S1 
reveal displacement rate of more than 22 mm/yr in the north-south and east-west components possibly caused 
by an accommodation for shortening of the Arabian-Eurasian collision zone (Djamour et al., 2011; Khorrami 
et al., 2019).

4.2. Uncertainties and Consistency Assessment

We explore the uncertainties and consistency of mean vertical velocities from the Envisat, ALOS-1, and 
Sentinel-1 ascending and descending data sets. Figure S9 in Supporting Information S1 shows that the uncer-
tainties of velocities are mostly less than 4 mm/yr over the study area. Mean deformation rate uncertainties along 
profiles are shown in Figures 4b and 4d. The Sentinel-1 data sets have the smallest mean uncertainties: 0.3 mm/
yr for both ascending and descending. The ALOS-1 and Envisat data sets have mean uncertainties of about 1 and 
2 mm/yr along the profiles C−C′ and B−B′, respectively (see Figure S9 in Supporting Information S1 for maps of 
estimated sigma uncertainties). Figure S10 in Supporting Information S1 shows that the majority of epochs have 
vertical position uncertainties <2 mm in all data sets, with exception of three epochs (Figures S10b and S10c in 
Supporting Information S1), likely contaminated by atmospheric turbulences (Yunjun et al., 2019).

We compare the mean vertical velocities derived from the four time series for resampled common points in a 
90 m grid within the MSZ (pink dashed-lines in Figure 3a), with the Sentinel-1 descending data being used 
as the reference (Figures 4e–4g). Moreover, we explore the probability density function (PDF) of differential 
mean vertical velocities between the Sentinel-1 descending data and other data sets for these resampled common 
points (Figures 4h–4j). Correlation coefficients between the mean velocities of Sentinel-1 descending data and 
the other data sets range between 0.86 and 0.99, indicating strong consistency. The average differential veloci-
ties of 0.4 ± 1.9 mm/yr (Figure 4j) and the agreement between Sentinel-1 descending and ascending data sets 
(Figure 4g) support the assumption of no significant horizontal motion within the MSZ (more detail shown in 
Figure S7 in Supporting Information S1). The Envisat data displays the lowest correlation with the Sentinel-1 
descending data (0.86), likely due to spatiotemporal changes in the subsidence rates, and the average differential 
velocities of 0.9 ± 10.5 mm/yr also suggest that changes in deformation rates exist. The ALOS-1 data has a 
good agreement (0.90) with the Sentinel-1 descending data, but Figures 4f and 4i shows that the subsidence rate 
decreased by a mean of 12.5 mm/yr within the MSZ.

We compare the InSAR deformation time series derived from the ALOS-1 ascending and Sentinel-1 descending 
and ascending data sets with daily GNSS data from the ABRK permanent station for overlapping time-spans. 
Figure S5a in Supporting Information  S1 shows a good consistency between the subsidence rates from the 
Sentinel-1 ascending and descending data set (4.7 and 5.0 mm/yr) and GNSS data (5.6 mm/yr) between 2014 and 
2020. However, the subsidence rate from the ALOS-1 data (5.5 mm/yr) is greater than that from the GNSS data 
(2.9 mm/yr) during 2007–2011. This discrepancy is less than the estimated maximum spatiotemporal uncertain-
ties of the ALOS-1 data (Figures S9b and S10c in Supporting Information S1) and could not be attributed to the 
InSAR processing errors or difference in the scale of the InSAR pixel and GNSS footprint.

4.3. Controls on Temporal Changes of Inelastic Compaction

Groundwater pumping lowers water levels and decreases pore water pressure in an aquifer system, in turn, 
increasing the effective stress. Once the hydraulic head drops below the previous lowest level, inelastic deforma-
tion happens due to permanently collapsing pore spaces, especially in the fine-grained aquitards which are more 
prone to the inelastic deformation than coarse-grained aquifer layers (Meade, 1964; Wilson & Gorelick, 1996). 
Since pumping rates are inhomogeneous in space and time and sediment properties vary spatially, the elastic and 
inelastic contributions to the observed deformation can change spatially over time. To assess the spatiotemporal 
changes of inelastic and elastic deformations, we apply the ICA to the time series derived from the Envisat, 
ALOS-1, and Sentinel-1 descending and ascending data sets (Figure S11 in Supporting Information S1).

The first component (IC1) displays a spatial pattern similar to the mean deformation rate maps of all data sets 
(Figure 3; Figure S11 in Supporting Information S1). Each temporal eigenvector shows nearly linear trend with 



Journal of Geophysical Research: Solid Earth

MIRZADEH ET AL.

10.1029/2023JB026430

11 of 18

slopes of −0.55, −0.85, −0.61, and −0.65 eigenvectors/yr (−91.2, −102.2, −64.2, and −66.7 mm/yr) for the 
Envisat, ALOS-1, and Sentinel-1 ascending and descending data sets, respectively (Figures 5e–5h; Figure S11 in 
Supporting Information S1). IC2 shows positive score values limited to the northeast of the MSZ for the ALOS-1 
data (Figure S11b in Supporting Information S1) and a noisy signal (mix of positive and negative scores) within 
the MSZ for the Envisat data (Figure S11a in Supporting Information S1). IC2 has temporal eigenvectors with 
the slight descending slopes of −0.01, −0.09, −0.09, and −0.18 (in eigenvectors/yr) for the Envisat, ALOS-1, and 
Sentinel-1 ascending and descending data sets, respectively. IC3 shows no clear pattern in the score maps for the 
ALOS-1, and Sentinel-1 ascending and descending data sets, but has positive score values north of the MSZ in 
the Envisat data, with a temporal eigenvector slope of −0.22 (in eigenvectors/yr). IC4 score map shows a corre-
lated zone in the northeastern zone of subsidence in the Envisat and ALOS-1 data sets and in the northwestern 
zone of the land subsidence in the Sentinel-1 ascending and descending data set with temporal eigenvectors with 
the slight downward trends with slopes of −0.16, −0.07, −0.18, and −0.07 eig/yr for the Envisat, ALOS-1, and 
Sentinel-1 ascending and descending data sets, respectively.

Based on the temporal eigenvectors showing a linear signal and the score map pattern being consistent with the 
spatial pattern of the mean vertical deformation rate map (Figure 3; Figure S11 in Supporting Information S1), 
we consider that the IC1 highlights inelastic deformation, associated with severe aquifer storage depletion 
with a roughly linear head decline since 1984 (Figure S12a in Supporting Information S1). This assumption is 
backed up by observations of a roughly linear declining trend in (a) hydraulic head in most piezometers (Figure 
S2 in Supporting Information S1) and (b) aquifer storage values (Figure S12 in Supporting Information S1). 
The linear trend in long-term deformation may arise from the fact that the aquitards (mostly clay units) in 
the AP are very thick (up to 180 m thickness in P5 shown in Figure S1 in Supporting Information  S1) in 
comparison with the aquifer units (gravel and sand). Having a continuing severe storage depletion along with 
the presence of the thick aquitards in the AP, the roughly linear land deformation behavior may theoretically 
last for a long time up to the future (years or decades (Ireland et al., 1984)). In addition, having a roughly 
linear decline trend in both the head and deformation time series (Figures 5g and 5h; Figure S2 in Supporting 
Information S1), we assumed that a semi-equilibrium condition has occurred between the inelastic compaction 
and long-term change in the head, which has also been made for the Las Vegas Valley (Bell et al., 2008) and 
the Gorgan plain (Rezaei et al., 2020; Rezaei & Mousavi, 2019) to estimate the inelastic aquifer properties. 
Smith and Li (2021) also noted that inelastic deformation has an overall negative trend, whereas the elastic 
deformation is primarily seasonal with no long-term trend. There is a roughly thick fine-grained units layers 
(dominantly clay) surrounding the thinner aquifer units (please see wells P1–P4 in Figure S1 in Supporting 
Information S1). Figure 5 shows the spatiotemporal patterns of IC1 score maps that mostly highlight the evolu-
tion of the inelastic deformation. The growth in the spatial extent of IC1 positive score with time is clearly 
visible around the MSZ and two extra zones to the north between the Envisat and Sentinel-1 periods. The 
temporal eigenvectors of IC2 component derived from all data sets (Figures 5e–5h; Figure S11 in Supporting 
Information S1) display no clear elastic deformation during the study period, suggesting that inelastic deforma-
tion dominates. The results of temporal eigenvectors show that the rate of IC1 component decreases between 
the Envisat and Sentinel-1 data sets observation periods, with a peak occurring during the 2006–2010 period 
imaged by the ALOS-1 data (Figures 5e–5h). This is consistent with the head changes between the Envisat, 
ALOS-1, and Sentinel-1 periods within the MSZ (Figures S4f–S4h in Supporting Information S1), where the 
head decline experienced a rate increase followed by a rate decrease, confirming the inelastic deformation 
pattern extracted by the ICA.

In addition to this inelastic signal, a small portion of the deformation in the AP may be the elastic as suggested 
by the seasonal component of vertical deformation of GNSS data observed in Figure S5b in Supporting Informa-
tion S1 (Hoffmann et al., 2001; Rezaei et al., 2020; Riley, 1969; Smith & Li, 2021). However, no such seasonal 
signal has specially been captured by a single component. Instead, IC2–IC4 are dominated by the long-wavelength 
signals with the low-amplitude eigenvectors more likely to be reflecting orbital errors and atmospheric delay 
rather than subsidence. Despite the dry conditions, a seasonal signal of small magnitude is observed in part of 
the IC1 temporal eigenvectors of the Sentinel-1 ascending and descending data set (Figures 5g and 5h). This 
mixing within the long-term deformation emphasizes the variability and minimal contribution of this seasonal 
signal to the full deformation (see Section 5.1 for further discussion). Smith and Li (2021) suggested that inelastic 
deformation can follow a seasonally variable trend. Hence, this observed seasonality in IC1 could relate either 
to elastic or inelastic deformation. As the inelastic compaction lags behind water level fluctuations, the tempo-
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ral variability of the seasonal signal could help isolate its source when considered together with lithologic and 
hydrologic data (Section 5).

To investigate the initiation and controls on the inelastic deformation, we combine the score maps of the IC1 
components (Figures 5a–5d) with the spatiotemporal patterns of head changes (Figure S3 in Supporting Informa-
tion S1) and lithological data from five exploration wells (Figure S1 in Supporting Information S1, see the loca-
tions in Figure 6a). Figure 6a shows the overlap of IC1 score maps from all data sets. Red colors highlight areas 
of long-term inelastic deformation during all three observation periods. Light-blue colors indicate the growth 
in the extent of the inelastic deformation extents captured by the Envisat to ALOS-1 transition, referred to as 
Expansion(A). Dark blue colors demonstrate the expansion of inelastic deformation zone between the ALOS-1 
and Sentinel-1 periods, referred to as Expansion(S). Figures 6b–6e show the annual head changes (m/yr) for the 
periods of the Envisat, ALOS-1 and Sentinel-1 data sets, as well as for the full 2003–2019 period, respectively. 
Figures 6f and 6g show the differential maps of annual head changes (m/yr) between the Envisat and ALOS-1 
periods, and the ALOS-1 and Sentinel-1 periods, respectively. We see that, with time, the inelastic deformation 
has expanded to areas outside of the MSZ to the north of AP, correlated with hydraulic head declines. The 
maximum expansion in inelastic deformation is Expansion(A) (light blue in Figure 6a) with 119 km 2. The zone 
of long-term inelastic deformation common to all data sets (red in Figure 6a) and the Expansion(S) (dark-blue 
in Figure  6a) are estimated to be 90.4 and 24.2  km 2, respectively. Figure  6e confirms that the MSZ and its 
surrounding areas have the highest long-term rate of head decline. By combining the hydraulic data with litho-
logic data (Figure 6e; Figure S1 in Supporting Information S1), we observe that the head decline involves mostly 
fine-grained sediments for example, clay-rich unit layers. The increase in effective stress caused by such head 
decline likely triggered the compaction of the clay layers and resulting inelastic deformation.

Figure 5. (a–d) Score maps of IC1 component derived from the (a) Envisat, (b) ALOS-1, and (c and d) Sentinel-1 ascending and descending time series of inferred 
vertical motions. The cross marks the reference point placed in the stable area. The black polygon shows the boundary of the Main Subsidence Zone. Pink circles show 
the locations of the exploration wells (data shown in Figure S1 in Supporting Information S1). (e–h) Temporal Eigenvectors of IC2 (blue) and IC1 (black) components, 
derived from the (e) Envisat, (f) ALOS-1, and (g–h) Sentinel-1 ascending and descending data sets (see details of ICs1-4 in Figure S11 in Supporting Information S1). 
The red dash lines show the best-fit linear regression of the IC1. The black triangle in (a–d) shows the location of the ABRK Global Navigation Satellite System station.
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Figure 6f shows that the water heads mostly declined in the MSZ and its surrounding areas between the Envi-
sat and ALOS-1 periods, suggesting that this decline caused inelastic deformation expansion (Expansion(A), 
light-blue in Figure 6a) as extents experiencing elastic deformation can transition to experiencing the inelastic 
deformation once stress exceeds the preconsolidation stress (Ireland et al., 1984). In contrast, in most cases, the 
transition from the inelastic to purely elastic deformation cannot occur in a short time period (Ireland et al., 1984), 
explaining that the decrease in the rate of water head lowering during the ALOS-1 to Sentinel-1 transition in the 
MSZ did not coincide with a reduction of the area experiencing the inelastic deformation. A similar correla-
tion between the timing of expansion of the area experiencing inelastic deformation and water heads change is 
observed in the northwest of the AP. There, Expansion(S) dominates, which is consistent with the hydraulic heads 
declining between the ALOS-1 and Sentinel-1 periods.

5. Drivers and Discussion
5.1. Outline of the Confined Aquifer

Confined aquifers usually have much larger seasonal fluctuations in hydraulic head levels than unconfined 
aquifers, which drives the seasonal change in effective stress and deformation. In confined aquifers, seasonal 
deformation is mostly controlled by the compressibility changes of the sediment's skeletal matrix in response 
to seasonal hydraulic head fluctuations or seasonal recharge. In contrast, in unconfined aquifers, water volume 
fluctuations in the pore spaces is the dominant driver of storage variation (Rezaei, 2018), which induce only 
little deformation. Thus, deformation can be used to outline the spatial extent of confined aquifers, as previously 
done in the Gorgan and Salmas plains in northern Iran (Rezaei & Mousavi, 2019; Shahbazi et al., 2022). In the 
AP, a slight seasonality in the IC1 temporal eigenvectors of the Sentinel-1 descending and ascending data sets 
(Figures 5g and 5h), suggests a modest response to the seasonal fluctuations in pumping rates of wells (see Figure 
S12b in Supporting Information S1 for a plot displaying the seasonal signals in monthly storage variations), 
mixed with the dominant long-term inelastic deformation (Figure 6a). In addition, the vertical deformation time 
series from the GNSS station clearly shows seasonality, the amplitude of which seems to have increased since 
July 2011 (Figure S5b in Supporting Information S1). These observations suggest that the geodetic data capture 
the sum of the deformation processes occurring from the surface to stable substrate at a given location, and elas-
tic deformation may concurrently happen in coarse-grained aquifer units while the inelastic deformation occurs 

Figure 6. (a) Spatial extent of inelastic deformation in the Abarkuh Plain from the Envisat, ALOS-1, and Sentinel-1 ascending and descending data sets. Red color 
displays areas of long-term inelastic deformation in common between the four data sets. Light-blue and dark-blue colors show areas associated with the Expansion(A) 
(Envisat to ALOS-1) and Expansion(S) (ALOS-1 to Sentinel-1), respectively. (b–e) Interpolated maps of the annual head changes for the periods of the (b) Envisat, (c) 
ALOS-1, (d) Sentinel-1 data sets, and (e) 2003–2019, masked to show the areas experiencing inelastic deformation. (f–g) Interpolated differential annual head change 
between the (f) Envisat and ALOS-1 periods and the (g) ALOS-1 and Sentinel-1 periods. The cross shows the reference point in a stable area. Black circles show the 
locations of exploration wells (shown in Figure S1 in Supporting Information S1). The black polygon indicates the boundary of the Main Subsidence Zone. The black 
triangle in (a) shows the location of the ABRK Global Navigation Satellite System station.
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in fine-grained units (see gravel and sands sediments interbedded with thick clay layers at P1 in Figure 1). We 
further map the boundary of the seasonal vertical displacement across the AP aquifer (Figure 7a) using the IC1 
temporal eigenvector of the Sentinel-1 descending data (see Section 3.2.2 for the detail of data used), after remov-
ing the linear long-term (inelastic) displacement. Figure 7a shows that the extent of the seasonal deformation 
with an amplitude ≥3 mm/yr coincides with the extent of the long-term inelastic deformation (Figure 5d) where 
the exploration wells (e.g., P1 in Figure S1a in Supporting Information S1) show presence of the coarse-grained 
unit layers interbedded by the thick fine-grained aquitards. We interpret this seasonal deformation extent as 
marking the boundary of the confined aquifer in which most pumping wells are positioned (Figure 7b) (Rezaei 
& Mousavi, 2019; Shahbazi et al., 2022). This confined aquifer appears to extend deeper than 215 m, where the 
coarse-grained gravel and sand units are located underneath a thick (∼183 m) fine-grained clay and silt unit. 
This interpretation is supported by observations that the groundwater has risen above the top of aquifer at some 
of the exploration wells just after drilling termination, which is the typical behavior of confined aquifers. For 
example, a water rise of 22 m can be seen at P5 at the end of drilling process of exploration well (Figure S1e in 
Supporting Information S1). Notably, the maximum seasonal signal amplitude in the AP is smaller than those 
observed in the Gorgan (∼50 mm/yr) and Salmas (∼120 mm/yr) plains, most due to that the annual recharge (in 
turn, annual rebound) is less in the AP with highly drier climate (average annual rainfall of ∼86 mm/yr) than the 
Gorgan (244–800 mm/yr) and Salmas (∼264 mm/yr) plains, with wetter climates. However, we captured such 
small seasonal amplitude across the AP using ICA but not in a single component, signifying the usefulness of the 
ICA for land deformation investigation.

These observations suggest that even with the inelastic deformation dominating, the aquifer system still reacts to 
fluctuating seasonally-driven pumping rates or varying recharge components (Table S1 in Supporting Informa-
tion S2). When the head in fine-grained and clay-rich units is above the preconsolidation head, these units deform 
elastically together with the coarse-grained unit. In contrast, when the head in fine-grained and clay-rich units is 
below the preconsolidation head, these units deform inelastically while coarse-grained units deform elastically.

5.2. Drivers of Inelastic Compaction

Groundwater observations in the aquifer system over 33 years (1984–2016) (Figure S12a in Supporting Informa-
tion S1) reveal a mean water level drop of 20 m associated with ∼1,147 million cubic meters (MCM) of the stor-
age loss (Iran’s WRM Co., 2014). Where clay layers are present, such as massive drop in water levels is likely to 
cause the stress exceeding the preconsolidation stress, triggering the observed irreversible subsidence. Lithologic 
data at P1–P4 shows clay thicknesses exceeding 70 m, hinting at a direct correlation between the occurrence of 
inelastic deformation and the subsurface lithology in areas experiencing dropping the water heads. In contrast, 
lithologic data at P6–P9 where no significant subsidence is observed (less than 1 mm/yr) while water heads 

Figure 7. (a) Map of seasonal amplitude of vertical deformation from the Sentinel-1 descending data that highlights the 
boundary of confined aquifer. This seasonal amplitude map is mapped using the variation of each pixel between the dry and 
wet seasons through removing the inelastic component of land deformation. (b) Average Normalized Difference Vegetation 
Index in the 2019–2020 hydrological year across the Abarkuh Plain aquifer using the Sentinel-2 data. The black polygon 
shows the boundary of Main Subsidence Zone. The cross and black triangle show the reference pixel in a stable area and the 
location of ABRK Global Navigation Satellite System station, respectively. The pink dots in (b) display the pumping wells' 
locations.
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are dropping, reveal thick coarse-grained sediments (Figures S1f–S1i in Supporting Information  S1), further 
confirming that the subsidence is correlated with clay thicknesses.

Differential maps of the annual head changes across the area experiencing the inelastic deformation show a 
continuous decline in head levels during 2003–2019, with an acceleration in the rate of head decline during the 
ALOS-1 observation period. This rapid head decline resulted in the most substantial growth of areas affected 
by the inelastic deformation. This transition to the inelastic deformation is well captured by our multi-temporal 
InSAR-ICA approach and highlights the timing during which hydraulic heads reach a new low, which initiated 
the inelastic deformation driven by the stress in the clay unit layers exceeding the pre-consolidation stress. These 
results are similar to those documented in the Salmas Plain, Iran (Shahbazi et al., 2022), San Joaquin Valley, 
California (Smith et al., 2017), and San Luis Valley, Colorado, USA (Chen et al., 2016) where the link between 
an acceleration in the depletion of aquifer storage and inelastic subsidence driven by compaction of fine-grained 
units was shown.

5.3. Uncertainties

It is important to note that there are uncertainties associated with the InSAR results and with separation of inelas-
tic and elastic components of deformation that influence the assessment of aquifer properties.

First, tropospheric noise that biases the InSAR deformation field, is evident in the Envisat data (Figure 3a), when 
comparing the Envisat mean velocity map to those from the ALOS-1 and Sentinel-1 data sets likely due to the 
limited number of Envisat acquisitions. In addition, while we document minimal horizontal displacements during 
the Sentinel-1 period using the ascending and descending orbits, there may have been horizontal motion during 
the Envisat and ALOS-1 periods, which we could not quantify due to the lack of observations from two inde-
pendent orbits. Such horizontal deformation would bias the signal decomposition and the resulting vertical defor-
mation. Second, the thickness and extent of aquifers and aquitards layers are poorly resolved in lithological data 
due to the sparse nature of exploration wells. This causes potential biases when interpolating the lithologic  data 
and  then converting the observed deformation to aquifer storage values.

Another source of uncertainty comes from separating the elastic from inelastic components of the displacement 
in the aquifer system which can affect the calculation of elastic and inelastic skeleton coefficients, and recovera-
ble and irrecoverable groundwater storage loss. The linear trend maps of deformation using least squares method 
(Figures S13a–S13d in Supporting Information S1) display a good consistency with the dominant component of 
ICA results (Figure S11 in Supporting Information S1), suggesting that the ICA successfully isolated a nearly 
linear trend for all data sets. However, we also document an overlap between the IC1 and ICs3-4 in the Envisat 
data, which is likely associated with the larger noise component of Envisat data. Moreover, seasonality is seen in 
the IC1 temporal eigenvectors of both Sentinel-1 descending and ascending data sets. The lack of separation of 
signal into an individual component is likely due to (a) the small amplitude of signal, and (b) overlapping spatial 
patterns of the seasonal signal with that of the longer-term (see Section 5.1). It is essential to consider such super-
position of the signals when estimating the values of recoverable and irrecoverable groundwater storage, as well 
as elastic and inelastic skeleton coefficients.

6. Conclusions
To develop sustainable aquifer protection plans and assess the impact of current pumping practices, it is critical 
to quantify the spatially variable initiation of inelastic deformation. We used a 2003–2020 InSAR multi-sensor 
time series analysis combined with an ICA and hydrogeological data to pinpoint the timing of the transition to 
inelastic deformation within various parts of the AP aquifer system. Our work highlights (a) the need to revise 
current pumping practices to defend the groundwater resources in Central Iran, (b) the potential of using InSAR 
time series to determine the confined aquifer extension as well as evaluate the sustainability of such practices, 
and (c) the necessity to consider the spatiotemporal correlation of processes causing ground deformation when 
interpolating InSAR mean velocity maps.

Our data show a northwest-southeast elongated zone of land subsidence in the AP covering a maximum area of 
∼135.1 km 2 in the Sentinel-1 data (2014–2020). The ICA of the InSAR data set reveals that the majority of long-
term observed subsidence (partially recoverable) is inelastic and captured by a single component (IC1), consistent 
with hydrogeological settings and measurements. We displayed the areas with experiencing inelastic deformation 
have significantly extended over time as a result of water levels locally reaching new lows that result in clay units 
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experiencing stress exceeding the pre-consolidation stress. The high temporal sampling of Sentinel-1 data (as 
lows as 6 days) also enables detecting small-magnitude seasonal deformation in region of the confined aquifer 
system that still reacts to the seasonal fluctuations in groundwater storage, despite extremely dry climate condi-
tion with low annual recharge. The observations confirm that elastic deformation may incorporate into inelastic 
deformation and the observed land deformation is the result of these multiple process occurring simultaneously 
within different units of subsurface. Therefore, complicating interpretation of the surface deformation data in 
terms of physical processes when the signal is not decomposed. Our results highlight the significant loss of the 
underground water resources over the past two decades in the AP and point out that we are near a tipping point 
between sustainability and substantial damage to the underground water resources in Iran, emphasizing the fact 
that current decisions have the potential to change natural resources landscape permanently.

Data Availability Statement
The geological and hydrological (i.e., piezometers, logs of exploration wells, and pumping wells), and daily GNSS 
data are accessible by contacting the Geological Survey and Mineral Explorations of Iran (GSI), Regional Water 
Company of Yazd, and National Cartography Center of Iran (NCC) respectively. The Envisat and Sentinel-1 data 
sets are copyrighted by the European Space Agency (ESA) and freely accessible through the ESA archive and 
Alaska Satellite Facility (ASF) archive. The processed InSAR results, including the time series of deformation 
and velocity maps, as well as the GNSS and hydrogeological data and geological maps can be accessed in a 
public repository at the following link (https://doi.org/10.5281/zenodo.7786511).The ERA5 and SRTM DEM 
data are provided through the Copernicus Climate Data Store and NASA's Land Processes Distributed Active 
Archive Center (LP DAAC), located at USGS Earth Resources Observation and Science (EROS) Center, respec-
tively. InSAR Scientific Computing Environment, Miami INsar Time-series software in PYthon (MintPy), and 
Python 3 Atmospheric Phase Screen (PyAPS) are available in their pages: https://github.com/isce-framework/
isce2, https://github.com/insarlab/MintPy, and https://github.com/insarlab/PyAPS.
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