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Abstract: Playas, as the flattest landforms in semiarid and arid regions, are extremely sensitive
to climate changes, such as changes in the hydrologic regime of the landscape. The changes in
these landforms due to irrigation, anthropogenic activities, and climate change could be a source of
disasters. In this study, we explored the spatial-temporal changes of the Abarkuh Playa in Central
Iran using the time series of the Sentinel-1 backscatter dataset in the three scales. Our results showed
that the western area of the Abarkuh Playa has been changed to other landforms with different
characteristics, which is clear from all backscatter maps. The spatial-temporal analysis of the time
series of backscatter data using the independent component analysis and time series of precipitation
revealed that the backscatter variations were associated with direct rainfall across the playa and the
surface was reacting to changes in the soil moisture content. The results of the power scale showed
that the boundary of the playa could successfully be recognized as the oscillating pattern from other
landforms in the study area. Moreover, the spatial-temporal analysis of backscatter in the power scale
showed that different polarizations could reveal different patterns of surface changes for the playa.

Keywords: Abarkuh Playa; radiometric terrain correction; spatial-temporal analysis; independent
component analysis; SAR backscatter

1. Introduction

Playas are the flattest landforms, with less than 0.02% slope, which are mostly observed
in interior desert basins and nearby coasts with semiarid and arid climates. Neal [1] has
reported at least 50,000 playas in the world’s semiarid and arid regions, with most extending
less than three square kilometers. Playas are seasonally covered by water that gradually
infiltrates the underlying aquifers or evaporates, resulting in salt and sediment deposition
at the bottom and edges of the playas and forming their surface properties. For example,
thick salts have created rugged crusts in the Devil’s Golf Course in Death Valley, California,
USA [2], and evaporative layers have resulted in a soft surface in the Bonneville Salt Flats in
Utah, USA [3]. Deposited sediment is exposed to shrinking and drying, and the contained
clay layers control sediment volume changes because clay-rich layers cause deep shrinkage
and dryness of the sediment during long-term droughts. Playas are extremely sensitive to
climate change and are influenced by changes in hydrologic regimes induced by climatic
changes. However, changes in their area are also controlled by other factors, such as
changes in groundwater inflow and evapotranspiration. Furthermore, playas are very
vulnerable to wind and can be considered a source of dust hazard [4] (e.g., in Owens Lake,
California, USA [5]; Urmia Lake, Iran [6,7]; and northwest China [8]). Since the hydrology
of desert and semi-desert regions has been critically stressed due to the growing population
and industrial and agricultural activities, investigating and mapping the spatial-temporal
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changes of playas are necessary to assess how irrigation, anthropogenic activities, and
climatic changes can influence the natural balance of these landforms [9] in desert and
semi-desert regions and cause the disasters [4].

Generally, various landforms are mapped using field observation, pre-existing maps,
and other collected data sources with different spatial and temporal resolutions, resulting
in outdated, limited, and imprecise information [10–12]. The increasing number of remote
sensing satellite systems with different spatial resolutions and repeat cycles, accompanied
by the recent technological advancements in remote sensing methods and surveying tech-
niques, have enabled us to access sufficient information on spatial distribution and temporal
changes of landforms, surface and subsurface composition, and to prepare geomorphologic
maps with a high level of accuracy at the small-to-large scales [13–16]. High-resolution satel-
lite data are used for detailed geomorphological mapping, while low-resolution satellite
images are used for global monitoring and reconnaissance mapping. Another advantage
of satellite remote sensing is the deployment of hyperspectral sensors that can capture
more comprehensive information across hundreds of bands (e.g., the Hyperion of the EO-1
satellite with 220 bands covering visible, short-wave infrared, and near-infrared). For
example, hyperspectral data were well used for identifying minerals in regolith and surface
deposits [17]. Additionally, remote sensing techniques provided insights into geomorphol-
ogy through new applications [18,19], enhancement of measurement accuracy [20], new
datasets to assess new ideas [21], development of data processing capability [22], imaging
inaccessible regions [23], and advanced technologies such as airborne electromagnetics and
radiometric data to offer information about landform composition and depth [24].

Active remote sensing systems (e.g., Synthetic Aperture Radar (SAR)) that can operate
independently from daylight and weather conditions are great resources for mapping and
monitoring landforms [25]. Compared to optical sensors, SAR sensors have several advan-
tages, such as penetration of the signal into landforms to obtain subsurface information,
sensitivity to moisture content and surface roughness to discover spatial-temporal changes
in the landforms, and usage of cross-polarization data to attain detailed information about
landform properties. Digital Elevation Models (DEMs), which are derived using the SAR
dataset and the Interferometric Synthetic Aperture Radar (InSAR) technique, have widely
been used for geomorphological mapping. Joint DEM-image data allow us to generate 3D
image models and enable more powerful interpretation and visualization tools [26,27]. For
example, Schneevoigt and Schrott [28] showed that alpine landforms could be detected
using a multiscale and hierarchical classification derived from ASTER imagery and DEM.
Smith and Clark [29] also reviewed different methods of DEM visualization for geomor-
phological mapping. DEM can also be used to calculate the geomorphometric parameters
for quantitative analyses. For example, Burberry et al. [30] used stream networks derived
from DEM data as a proxy index to define the underlying tectonic landform. Potts et al. [31]
and Bubenzer and Bolten [32] also used the Shuttle Radar Topography Mission (SRTM)
dataset to quantify dune morphologies within the Aeolian geomorphology. However,
other products of SAR sensors, such as backscatter maps derived from the SAR data and
coherence maps generated by the InSAR approaches, can be used to assess their potential
in mapping the landforms and their spatial-temporal changes.

SAR backscatter has widely been used in various applications, such as crop monitor-
ing [33–36], wetland mapping [37–39], land classification and change detection [40–42],
disaster response and detection of natural hazards [43–48], and delineation of wet snow-
covered areas [49]. Several studies also used the Sentinel-1 SAR data for the playa landforms
to reveal morphodynamics and explore the evolution and surface properties. For example,
Ullmann, et al. [50] used the Sentinel-1 data and InSAR coherence to determine the fluvial
morphodynamics changes and to detect the surface disturbances and mass movements
in the Damghan Playa, Iran. Moreover, Eibedingil et al. [51] used Sentinel-1 SAR images
with InSAR techniques to identify land surface variations and sinks for sediment loading
from the surrounding catchment in the Lordsburg Playa, New Mexico, USA. Given these
recent studies, the present study is the first to investigate the spatial-temporal changes in
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the Abarkuh Playa using Independent Component Analysis (ICA) and SAR backscatter
time series data. Additionally, it combines the ICA results with the time series of climatic
parameters to explore the driver and control of the spatial-temporal changes of natural
balance in the Abarkuh Playa.

2. Materials and Methods
2.1. Study Area

The Abarkuh Playa is located in a district with a dry climate in central Iran between
30.82◦ and 31.24◦ N latitude and 50.41◦ and 53.84◦ E longitude. It covers an area of
1307 km2, with an average elevation of 1459 m above mean sea level (m.s.l) and a slope
of 2.8%, respectively (Figure 1). The playa is divided into five main parts: seasonal river,
alluvial fans, dry mud flat, salty mud flat, and salty flat, and is mostly covered by evaporite
sediments, i.e., chalk and salt formation, accompanied by saline clay. Figure 1 shows
that the seasonal rivers and streams charge the playa from the eastern, western, and
southern borders. Moreover, the geochemistry and mineralogy of the playa have strongly
been influenced by the surrounding rock outcrops and rivers, which transport salts and
sediments to the playa.
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to-date high-resolution optical imagery in 2022, respectively. The red dashed and blue lines indicate 
the faults and main rivers, respectively. The orange- and red-hatched polygons demonstrate the 
traces (alluvium) and Salt Flat, respectively. The inset map indicates the location of the Abarkuh 
Playa in Central Iran, shown by a red rectangle. The blue rectangles in the inset indicate the outline 
of frames from the ascending and descending dataset of Sentinel-1. 

Figure 1. The geographical location of the Abarkuh Playa. Background: Sentinel-2 30 m RGB image.
The red line shows the boundary of unconfined aquifer. The black line and blue-colored polygon
demonstrate the initial and current boundaries of the playa, respectively. The initial and current
boundaries of the playa are derived from the geological map at a scale of 1:250,000 in 2005 and
up-to-date high-resolution optical imagery in 2022, respectively. The red dashed and blue lines
indicate the faults and main rivers, respectively. The orange- and red-hatched polygons demonstrate
the traces (alluvium) and Salt Flat, respectively. The inset map indicates the location of the Abarkuh
Playa in Central Iran, shown by a red rectangle. The blue rectangles in the inset indicate the outline
of frames from the ascending and descending dataset of Sentinel-1.
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2.2. Datasets
2.2.1. Satellite Data

In this study, we used the Sentinel-1 Ground Range Detected (GRD) and Single Look
Complex (SLC) dual-polarization (VV + VH) images from both ascending and descending
orbits in the Interferometric Wide-swath (IW) mode. Sentinel-1 images were acquired
between March 2017 and December 2022 from both descending and ascending orbits at a
spatial resolution of 20 m by 5 m in the azimuth and range directions, respectively (outline
of frames shown in the inset in Figure 1).

Sentinel-2A/B Multi-Spectral Imager (MSI) Level-1C (L1C) datasets that provide or-
thorectified Top-Of-Atmosphere (TOA) reflectance were also used to calculate the Sentinel-2
Water Index (SWI = (VNIR − SWIR)/(VNIR + SWIR)), where VNIR and SWIR correspond
to Bands 5 and 11 of the Sentinel-2 image, respectively [52,53].

2.2.2. Geological and Meteorological Data

A geological map at a scale of 1:250,000, provided and distributed by the Geological
Survey and Mineral Exploration of Iran (GSI) [54], was used to force the initial boundary of
the Abarkuh Playa (see Figure 1).

The monthly average precipitation derived from the ECMWF Reanalysis v5 (ERA5)-
Land hourly data was used to restrain weather data over the last few decades at a resolution
of 0.1

◦ × 0.1
◦

[55]. We used MOD11A1.006 Terra Land Surface Temperature (LST) and
Emissivity Daily Global 1km products and Climate Hazards Group InfraRed Precipitation
with Station Data (CHIRPS Pentad) [56,57], accessible through Google Earth Engine Data
Catalog, to generate the long-term time series of LST (January 2001–January 2023) and
Precipitation (January 1981–January 2023), respectively. CHIRPS is a 30+ year quasi-global
rainfall dataset and incorporates 0.05-degree resolution satellite imagery with the in situ
dataset to create gridded rainfall time series for trend analysis and seasonal drought
monitoring [56]. MOD11A1.0006 product provides daily LST and emissivity values in a
1200 × 1200 km grid so that the temperature can be derived from the MOD11_L2 swath
product [57]. The details of these two products are provided in Table 1.

Table 1. Information about the meteorological parameters.

Name Resolution Units Description

precipitation 0.05 degree mm Precipitation
LST_Day_1 km 1000 m Kelvin Daytime Land Surface Temperature

2.3. Methods
2.3.1. Radiometric Terrain Correction

SAR data suffers from inherent radiometric and geometric distortions due to the
side-looking acquisition in which the geometric distortions lead to geolocation errors in
terrain features, and the radiometric distortions increase the uncertainties in any further
analysis and applications. The main distortions of SAR data are described as follows [58]:

1. Shadow: When the back slope’s angle is such that the sensor cannot image it entirely,
it receives no information for a steep back slope;

2. Foreshortening: In this case, the backscatter from the front side of the mountain will
be compressed altogether with returns from a large area arriving back to the sensor,
which results in the front slope being shown as narrow;

3. Layover: In this case, returns from the back slope, the front slope, and part of the area
before the slope arrived back to the sensor simultaneously. Thus, an area in the front
of the slopes is projected onto the back side in the slant range direction of the image,
and the data from the front slope is missed.

Radiometric Terrain Correction (RTC) addresses the geometric distortions of the SAR
imagery using a DEM and adjusts the brightness or radiometry in the affected layover and
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foreshortening regions through estimation of the actual area contributing returns to the
sensor. Thus, RTC provides imagery with the values directly linked to the backscatter of
the scene. During the RTC process, the input images are in the units of digital numbers
(DNs), whereas the output images are in the units of β0, γ0, or σ0, which are related to each
other using the incidence angle (θ) (Equation (1)).

σ0= γ0 × cos θ, β0=
γ0

tan θ
(1)

β0 is the reflectivity per unit area in slant range that has not been corrected for incidence
angle while σ0 and γ0 are the reflectivity per unit area, taking into account the incidence
angle (from the metadata) and the local incidence angle through a DEM, respectively.

The Alaska Satellite Facility (ASF) has established Hybrid Pluggable Processing
Pipeline (HyP3) service in which the pixel-area integration RTC approach is used [49]
to process all Sentinel-1 SLC and GRD images to the fully geocoded and radiometrically
terrain-corrected products [58,59]. The parameters of the RTC process of ASF’s HyP3 ser-
vice (see Table 2) can be adjusted for different applications. For example, the RTC products
can be produced in three power, amplitude (square root of the power scale), and decibel
(dB; 10 times the Log10 of the power scale) scales. Although the nature of three scales is the
same, the power scale is appropriate for the statistical analysis of RTC dataset, which may
not always be the best option for data visualization. In some cases, it may be desirable to
convert the actual pixel values to a different scale [40,45].

Table 2. Customizable parameters of the RTC process in the ASF’s HyP3 service.

Parameters Options

Radiometry Gamma0 (γ0) Sigma0 (σ0)

Scale Power Decibel Amplitude

Pixel Spacing 30 m 10 m

DEM Copernicus NED 1/SRTM 2

Co-registration Dead Reckoning DEM Matching

Filtering Do Not Apply Enhanced Lee Speckle Filter
1 National Elevation Dataset (NED), 2 Shuttle Radar Topography Mission (SRTM).

Using ASF’s HyP3 service, we generated SLC and GRD RTC products at a pixel size
of 30 m and in the unit of γ0 and Universal Transverse Mercator (UTM) projection. We
selected Copernicus DEM data for the RTC processing and geocoding. An enhanced Lee
filter [60] was also applied to the datasets to decrease the SAR inherent speckle noise. The
enhanced Lee filter uses the local statistics within individual filter windows to decrease
speckle [61,62]. Finally, all three scales of products (power, amplitude, and decibel) were
considered to assess the effect of different SAR scales in this study.

2.3.2. Independent Component Analysis

ICA has recently been used in studies to separate linear combinations of components,
which are statistically independent and follow the non-Gaussian probability distribution
from a mixed source, such as time series of deformation [63]. The connection between the
original signal and independent components is described as (Equation (2)):

On×p= Dn×l × Sl×p (2)

where D is a mixing matrix in which each column associates to the coefficients of the
contribution of each independent component; S is the decomposed source matrix of the
original observation matrix in which each row belongs to an independent component; O is
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the matrix of original signal; and l, n, and p are the number of independent components,
the SAR epochs; and the pixels at each epoch, respectively.

In this study, we used the fast fixed-point algorithm, FastICA [64], to apply the ICA
approach to the Sentinel-1 SLC and GRD data in the power, amplitude, and decibel scales,
which have 974,492 samples per epoch, and 160 and 173 epochs (between 2017 and 2022)
for the descending and ascending orbits, respectively. The FastICA algorithm whites and
centers the original times series data by preconditioning them with Principal Component
Analysis (PCA) and the truncation of variance rule to impose the number of independent
components (ICs) and produce an orthogonal mixing matrix. Thus, the algorithm linearly
transfers the original signal to be expressed as statistically independent components with a
variance equal to 1 by whitening. The mix is represented by W, and the problem turned
to W = D̂·S, where D̂ is the orthogonally adjusted mixing matrix. Then, the source matrix
is estimated by equation S = D̂−1·W, where D̂−1 is called the unmixing matrix U. Then, a
fixed-point iteration algorithm built into FastICA is used through maximizing spatial non-
Gaussian sources to derive the source matrix (S), mixing matrix, and unmixing matrix (U).
The ICA results are a temporal eigenvalue for each IC to determine its magnitude at each
epoch and a score map, which has been scaled by the contribution of retained components
to the mixed source and highlights the pixels with the observed eigenvalue [65].

3. Results and Analysis
3.1. Variations of Precipitation and LST

The long-term trends of precipitation and LST in the Abarkuh Playa are analyzed.
Figure 2 shows the time series of monthly and yearly precipitation from January 1981 to
January 2023, as well as monthly, maximum, minimum, and average annual LST from
January 2001 to January 2023. The Abarkuh Playa experienced an average annual LST of
36.79 ◦C during the period of study (2017–2022), ranging from 14.97 ◦C (January 2021) to
53.90 ◦C (July 2019), with the lowest LST in January (average LST in January: 17.92 ◦C) and
the highest in July (average LST in July: 52.34 ◦C). Figure 2 reveals that the Abarkuh Playa
experienced an increase in the annual LST by 0.12 ◦C/year from 2001 to 2021, while an
increase in the global surface temperature by 0.86 ◦C/year has been reported [66,67].
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Figure 2. Time series of monthly (a) LST (January 2001–January 2023) and (b) precipitation (January
1981–January 2023). (c) Time series of maximum (blue-full bars), minimum (blue-edge bars), and
average (black line) annual LST. The red dashed line shows the best fitting to the average annual LST
with a slope of 0.12 ◦C/year. (d) Time series of annual precipitation. Black full and dashed lines show
the best fitting to the time series between 1981 and 2003, and 2003 and 2021, respectively, with slopes
of 2.4 mm/year and −3.1 mm/year. The purple-shaded time span in (a–d) shows the study period.
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Figure 2d indicates that the annual precipitation ranged from 94 mm (2020) to 159 mm
(2018) over a given hydrological year (defined as 1 October to 30 September) between 2018
and 2022. The majority of precipitation falls from October to May, while the minority of
precipitation happens from June to September (see Figure 2b). Figure 2d shows that the
playa experienced the maximum annual precipitation in 2003, while the precipitation had
an increase and a decrease by 2.4 mm/year and 3.1 mm/year, respectively. It suggests
that the Abarkuh Playa has experienced a critical situation in the recharge components for
two recent decades (2003–2023), caused by the most severe historical droughts across the
area [68].

3.2. Spatial Patterns of Backscatter

Figures 3 and 4 illustrate the spatial pattern of average SAR backscatter in three
scales (i.e., amplitude, decibel, and power) derived from the 2017–2022 Sentinel-1 SLC
and GRD dual-polarization ascending and descending dataset, respectively. The results
reveal that the SAR backscatters from the Sentinel-1 SLC and GRD datasets have similar
spatial patterns and values (see Figure 5a–l,m–x). It suggests that although SLC products
are originally processed at a natural pixel spacing, and GRD products are multi-looked
to reduce the impact of speckle noise, the type of Sentinel-1 products (i.e., SLC and GRD)
does not influence the spatial analysis of the playa landform. Comparing the results of
VV and VH polarizations shows that in all scales, VV polarization has more sensitivity to
the landform and moisture changes than VH polarization inside the playa boundary, as
well as in the northeast and southwest of the area covered by mountains and represents
the higher values than VH polarization. Figure 3a,b,e,f,i,j displays that a part of the playa
on the west side takes almost the same value of backscatter as the outside, suggesting
that this part has changed to Salt Flat (shown by the red-hatched polygon in Figure 1)
and possibly lost the playa characteristics. The low backscatter values are associated with
old and high-to-medium levels of terraces (alluvium) across the plain, as demonstrated in
Figure 3a,b,i,j, while the high values primarily belong to the playa and mountainous areas
in the northeast and southwest of the region.
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power scales, derived from the 2017–2022 Sentinel-1 SLC dual-polarization ascending and descending
datasets. Black lines in (a–l) show the initial boundary of the playa. The Sen(A) and Sen(D) in (a–l)
refer to the Sentinel-1 ascending and descending datasets, respectively.
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We selected the backscatter values in a 40 m grid inside the boundaries of Terraces 
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amplitude, decibel, and power) and plotted their histograms in Figure 5. Figure 5 reveals 
that the average backscatter values for the Terraces and Salt Flat landforms are similar to 
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Figure 4. The maps of the average SAR backscatter in the (a–d) amplitude, (e–h) decibel, and
(i–l) power scales, derived from the 2017–2022 Sentinel-1 GRD dual-polarization ascending and
descending datasets. Black lines in (a–l) show the initial boundary of the playa. The Sen(A) and
Sen(D) in (a–l) refer to the Sentinel-1 ascending and descending datasets, respectively.
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Figure 5. The histograms of the average SAR backscatter in the three scales of the amplitude (first and
fourth columns), decibel (second and fifth columns), and power (third and sixth columns), derived
from the 2017–2022 Sentinel-1 SLC (a–l) and GRD (m–x) dual-polarization ascending and descending
datasets. Red, blue, and green colors indicate the backscatter values for the Terraces (T), Playa Lake
(P), and Salt Flat (S) landforms, respectively. The Sen(A) and Sen(D) in (a–x) refer to the Sentinel-1
ascending and descending datasets, respectively.

We selected the backscatter values in a 40 m grid inside the boundaries of Terraces
and Salt Flat (see Figure 1) and the current boundary of the playa for the three scales
(i.e., amplitude, decibel, and power) and plotted their histograms in Figure 5. Figure 5
reveals that the average backscatter values for the Terraces and Salt Flat landforms are
similar to each other in all cases, while the average backscatter values for the playa is
different from two other landforms. In all three scales and landforms, the average and
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ranges of backscatters from both ascending and descending are almost similar to each other,
suggesting an insignificant effect of acquisition tracks on the ranges of backscatters. In the
amplitude scale, the backscatters range from 0.45 to 0.55 for the playa and from 0.2 to 0.45
for the Terraces and Salt Flat landforms for the VV polarization. In the decibel scale, the
backscatters range from −10 to −7 for the playa and from −20 to −10 for the Terraces and
Salt Flat landforms for the VV polarization. In the power scale, the backscatters range from
0.1 to 0.3 for the playa and from 0 to 0.2 for the Terraces and Salt Flat landforms.

3.3. Seasonal Backscatter Changes

Figure 6 displays the time series of monthly precipitation generated from the spatial
accumulation of the ERA5-land hourly data over the playa. It shows that the playa mostly
experiences no rainfall from June to September each year (2017–2023) and has low-to-high
rainfall rates in other months, well-correlated with the long-term time series of precipitation
in Figure 2b. We considered June to September as the dry period and October to May as
the wet period of the study area to explore how the backscatter changes spatially during
the dry and wet periods. We divided the Sentinel-1 SLC VV polarization descending and
ascending datasets into two groups associated with the wet and dry periods and calculated
the temporal average backscatter across the study area, shown in Figure 7.
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Figure 7. The maps of the average SAR backscatter in the (a–d) amplitude, (e–h) decibel, and (i–l)
power scales, derived from the Sentinel-1 SLC VV polarization ascending and descending datasets.
Black lines in (a–l) show the boundary of the Abarkuh Playa.

Based on the results illustrated in Figure 7, in both amplitude and decibel scales,
there is no significant difference between the backscatter values during the wet and dry
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periods inside the boundary of the playa. In the score maps of the power scale, a slight
difference in the south to southwest of the playa is observed between the backscatter values
during the wet and dry periods. This suggests that the direct rainfall over the playa cannot
influence the significant changes in the surface properties, or the outflows through streams
are late in reaching the playa, leading to changes in the backscatter values. Additionally,
Figures 3 and 7 show that although the epochs of ascending and descending datasets are
not the same, a significant difference cannot be seen in the backscatter values, suggesting
that the average backscatter cannot possibly disclose slight changes in backscatter values
caused by different polarizations (i.e., VV and VH) and acquisition tracks (i.e., ascending
and descending).

3.4. Controls on Spatial-Temporal Variations of Backscatter

To explore the spatial-temporal variations of backscatter, we resampled the time series
of SAR backscatter in three different scales (i.e., amplitude, decibel, power) into a 40 m
grid, extracted 974,492 samples per epoch and 173 and 160 epochs for the ascending and
descending datasets, respectively. Then, the datasets were imported into the ICA in the
form of two-dimensional matrixes for each dataset with the size of the number of epochs ×
the number of samples. As discussed in Section 2.3.2, we applied the FastICA [64] to
solve an ICA. The results for each IC include the temporal eigenvectors to show the signal
magnitude at each epoch and the score map, scaled by the contribution of retained ICs to the
original data, showing the pixels that are experiencing the observed temporal eigenvectors.

A single component explains more than 92% of the variance for all twelve resampled
datasets (i.e., three scales for dual-polarization of both ascending and descending orbits).
Figure 8 shows the ICA score maps and the temporal eigenvector results using a single
component for the amplitude, decibel, and power scales of the backscatter. The score maps
of all scales show similar backscatter patterns from the ascending and descending datasets
inside the boundary of the playa, except in the amplitude scale of the VV polarization
(Figure 8a,b). In all scenarios, the backscatter differences between the playa landform
and other parts of the plain (Terraces and Salt Flat in Figure 1) are observed, especially
in the power scale that is clearer with almost two different patterns from the VV and
VH polarizations. Moreover, the western parts of the playa are different from the rest of
its area, suggesting that these parts have been changed to other landforms with various
natural and surface properties but exploring the reasons and time of this change is still
challenging due to the short time of used data. In the VH polarization, both score maps and
temporal eigenvectors from the amplitude, decibel, and power scales of the ascending and
descending datasets are consistent with each other, while in the VV polarization, the score
maps show a similar pattern with the differences in the temporal eigenvectors between the
ascending and descending datasets. The mountainous parts in the northeast and southwest
of the region show high score values, especially in the power scale in both VV and VH
polarizations, which confirms the sensitivity of the backscatter to the moisture changes in
high-altitude regions.

Although the temporal eigenvectors shown in Figure 8e,j,o seem to be noisy, the
annual and seasonal patterns can still be seen in reaction to the changes in the parameters,
which can change the SAR backscatter. Figure 9 shows the time series of precipitation
over the playa with the temporal eigenvectors. It is obvious that by increasing the rate of
precipitation during the wet period, the backscatter has increased, while in the dry period,
the backscatter across the playa has quickly decreased due to no rainfall in the dry months.
It confirms that the playa’s surface and backscatter from the surface have reacted to (1) the
direct rainfall over the playa area that was not obvious by focusing on the average SAR
backscatter during the wet and dry periods and (2) outflows from the seasonal rivers and
streams, which have arrived late to the Playa and recharged it. The delayed recharge and,
as a result, changes in SAR backscatter can be seen in 2019 and 2020 in Figure 9c.
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To investigate the changes in characteristics of the playa’s surface revealed by the
spatial-temporal analysis of backscatter using the ICA, we selected several epochs in
Figure 9c, while the backscatter shows the peak and minimum values from 2018 to 2020.
Table 3 shows the details of the selected epochs and the Sentinel-2 images with the minimum
time interval with the selected epochs. Figure 10 displays the maps of the calculated SWI
across the boundary of the playa in the selected Sentinel-2 epochs. Figure 10a–c reveals that
during the dry epochs, the effects of moisture and inundation areas cannot be observed
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inside the boundary of playa, while the SWI maps of wet epochs in Figure 10d–f show the
inundation areas in the east and south of the area, affected by seasonal rivers and streams
flows from the mountainous areas to the flattest part of the region.

Table 3. Details of the selected Sentinel-1 and 2 epochs to calculate the SWI maps shown in Figure 10.

Dataset
Epochs

Dry Period Wet Period

Sentinel-1 2018.03.03 2019.01.21 2019.11.29 2018.05.02 2019.04.03 2020.05.03
Sentinel-2 2018.03.03 2019.01.20 2019.12.01 2018.05.02 2019.03.28 2020.05.04
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Figure 10. The maps of Sentinel-2 Water Index (SWI) for selected Sentinel-1 SLC epochs (see Table 3)
in the (a–c) dry (no rainfall) and (d–f) wet (low-to-high rainfall) periods of the study area. Positive
values show the water-effected or inundation areas inside the initial boundary of Abarkuh Playa.

4. Discussion

Playas are mostly formed from a mixture of salt, clay, and silt and seasonally covered
by water that gradually infiltrates the underlying aquifers or evaporates, resulting in the
salt and sediment deposition at the bottom and edges of the playas. Therefore, an oscillating
reaction of rising and falling of the surface can be possibly observed due to the changes
in the soil moisture contents. On the other hand, playas are the flattest landforms in the
environment and are located in very low-altitude regions with less than a 0.02% slope.
Therefore, their surface properties can be changed between the wet and dry seasons due
to accumulate sediments transported by rivers and streams (Figure 1). The InSAR time
series analysis could observe the oscillating pattern of rising and falling in the playa’s
surface, but there are uncertainties. For example, this oscillating pattern in the InSAR
results may be interpreted as noise due to several sources of errors and uncertainties in the
InSAR time series processing (i.e., unwrapping error and tropospheric effects). In the lack
of time series dataset from controls and drivers, such as the volume of sediment transport
by rivers, or low resolution of the parameters, such as soil moisture and precipitation,
employment of other independent data can help to interpret the oscillating pattern of rising
and falling in the playa’s surface. The time series analysis of backscatters derived from the
radiometrically terrain-corrected SLC or GRD datasets could be very helpful in interpreting
the InSAR results and explore whether they represent the data or noise. Moreover, our
results show that the results of spatial-temporal analysis of backscatter are completely
compatible with the SWI calculated from the Sentinel-2 data in disclosure of the inundation
areas as explored in the Black Rock Playa, Nevada, USA [69].

There is a common problem in SAR acquisitions called Radio Frequency Interference
(RFI), which often occurs near airports or other infrastructures that emit strong radio/radar
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signals. There are several studies with presenting methods for mitigation [70], but it
is still challenging to solve the corresponding models, and the presented approach is
mathematically complex. This problem will not cause serious issues or uncertainties in the
InSAR processing and offset-tracking of SAR images, but it interferes with the analysis of
the backscatter time series that works on the original SLC or GRD datasets. However, the
analysis of the backscatter time series using the ICA displays that the ICA could successfully
recognize and separate this issue from the affected epochs.

5. Conclusions

It is critical to investigate the geohazards and the surface characteristic changes trig-
gered by climate changes in the desert and semi-desert areas and landforms, such as playas,
using advanced solutions. In this study, we used the time series of SAR backscatter and
precipitation across the Abarkuh Playa to discover the spatial-temporal changes of the
playa’s surface. The time series of backscatter in three scales (i.e., amplitude, decibel, and
power) are analyzed from the Sentinel-1 SLC and GRD dual polarization ascending and
descending datasets. The results show that the backscatters returned from the playa’s sur-
face are different from the other landforms (i.e., Salt Flat and Terraces) across the plain and
have an oscillating pattern between the wet and dry periods. It was also observed that the
temporal change in the backscatter time series in the boundary of the playa coincided with
the changes in the time series of precipitation, suggesting that the playa’s surface properties
react to the direct rainfall, although it is charged by the inflows through the rivers and
streams by a time lag. The results of the backscatter time series reveal that the oscillating
pattern of rising and falling in the playa landform surface could be interpreted from the
InSAR time series processing. Finally, the backscatter time series show a good consistency
with the SWI maps calculated from the Sentinel-2 data, which show the inundation areas in
the playa’s surface between the dry and wet periods.
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