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Abstract: The Great Lakes (GL) wetlands support a variety of rare and endangered animal and plant
species. Thus, wetlands in this region should be mapped and monitored using advanced and reliable
techniques. In this study, a wetland map of the GL was produced using Sentinel-1/2 datasets within
the Google Earth Engine (GEE) cloud computing platform. To this end, an object-based supervised
machine learning (ML) classification workflow is proposed. The proposed method contains two main
classification steps. In the first step, several non-wetland classes (e.g., Barren, Cropland, and Open
Water), which are more distinguishable using radar and optical Remote Sensing (RS) observations,
were identified and masked using a trained Random Forest (RF) model. In the second step, wetland
classes, including Fen, Bog, Swamp, and Marsh, along with two non-wetland classes of Forest and
Grassland/Shrubland were identified. Using the proposed method, the GL were classified with
an overall accuracy of 93.6% and a Kappa coefficient of 0.90. Additionally, the results showed that
the proposed method was able to classify the wetland classes with an overall accuracy of 87% and
a Kappa coefficient of 0.91. Non-wetland classes were also identified more accurately than wetlands
(overall accuracy = 96.62% and Kappa coefficient = 0.95).

Keywords: Great Lakes; wetlands; remote sensing; Google Earth Engine; random forest classification

1. Introduction

Wetlands have significant impacts on a variety of plant and animal species, ecosys-
tem dynamics, the energy exchange between the atmosphere and soil, and terrestrial
biodiversity [1]. Despite their ecological significance, wetlands have been degraded as
a result of agricultural activities, construction projects, population growth, and natural
processes such as global warming, precipitation reduction, and coastal destruction [2,3].
Thus, wetland mapping and monitoring are critical, especially in developed countries that
require adequate infrastructure for landscape planning, land and livestock management,
and water resource management [4,5].

Although field-based measurements are the most accurate data for wetland monitor-
ing, they are costly, labor-intensive, time-consuming, and associated with safety risks. The
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availability of consistent archived and near-real-time satellite imagery, their reasonable
spatial and temporal resolutions, and their global coverage have made remote sensing
(RS) an important tool for wetland studies [6,7]. Over the last few decades, considerable
advancements have been made in both algorithms and practical applications of wetland
classification using RS datasets [8,9].

Wetland classification methods are usually divided into three groups: pixel-, sub-
pixel-, and object-based techniques [10]. Pixel-based techniques, or per-pixel classifi-
cation approaches, identify the best label for a pixel using different methods and cost
functions [11,12]. Sub-pixel-based methods have been established to overcome one of the
main restrictions of pixel-based approaches, namely the spectral blending problem. This
problem is mainly encountered in medium and coarse spatial resolution RS images [13].
Usually, both pixel- and sub-pixel-based classification methods identify the labels of the pix-
els or sub-pixels using their spectral features without considering their particular location
or their neighbors in the image. However, object-based classification methods consider both
the spectral and spatial characteristics of a group of pixels [14,15]. Briefly, in object-based
classification approaches, pixels are first grouped into specific objects (i.e., segments) using
an image segmentation algorithm. The segments are then classified based on the average
values of the defined features of each segment [16]. For all three groups of classification
approaches, the spatial resolution of the satellite imagery, number of spectral bands, repe-
tition time of the RS datasets, and complexity of the study area have direct effects on the
precision of the final classified wetlands [11]. Overall, it has been frequently reported that
using object-based classification techniques improves the accuracy of the classified map,
particularly when using high-resolution RS datasets [8,12,17–19].

Classification techniques are also divided into unsupervised and supervised algo-
rithms, depending on the approach used to identify different types of land covers. In
unsupervised classification algorithms, the objects/pixels of an input image are classified
into a set of classes based on the statistical criteria of the image, without utilizing prior
knowledge of the area [20]. A supervised classification method, on the other hand, is based
on prior knowledge about the classes of some pixels in the image (training samples). In this
method, a suitable number of pixels with known labels are first selected as training samples.
Then, other pixels in the image are classified based on their spectral properties and the
developing classification decision rules [21]. Some of the most well-known supervised
classification methods are the Maximum Likelihood Classifier (MLC), Artificial Neural
Network (ANN), Decision Tree (DT), Boosted DT (BDT), Random Forests (RF), Support
Vector Machine (SVM), k-Nearest Neighbor (k-NN), and Genetic Algorithms (GA). Among
the various supervised and unsupervised classification methods, Machine Learning (ML)
methods have become a prominent focus of RS for wetland mapping [22]. It has been
widely reported that among different ML classification techniques, RF achieves better
performance for wetland mapping [8,23–25].

Researchers have also shown that Sentinel-1/2 and Landsat satellite data are among
the most popular RS data for wetland studies [7,8]. This is mainly due to their open
access policy and relatively suitable spatial, spectral, and temporal resolutions. However,
processing and analyzing large geospatial datasets over large areas using commonly used
software packages is time-consuming and not efficient in terms of computation cost [26–28].
To overcome this problem, cloud computing platforms with large computational capacities,
such as Amazon’s Web Services, NASA Earth Exchange, Google Earth Engine (GEE), and
Microsoft’s Azure, have been developed [29,30].

GEE is a cloud-based computing platform that includes massive amounts of open
access earth observation datasets, image processing, and classification algorithms [25,30].
The availability of many datasets and ready-to-use image-driven products, easy download-
ing and uploading of data in various formats, and access to many image processing and
ML algorithms are some of the features that have contributed to the widespread use of
GEE [30–33].
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So far, numerous studies have mapped vast wetland areas using GEE. For instance,
Hird et al. [34] used GEE to develop a model predicting the probability of wetland occur-
rence in a 13,700 km2 study area in northern Alberta. They applied a strengthened Boosted
Regression Tree (BRT) model using various RS datasets. Results showed that high-quality
topographic variables, along with optical and radar variables, significantly improved the
model’s performance in mapping wetland distribution, achieving a best overall accuracy
of 85%. McCarthy et al. [35] proposed a method for mapping large-scale forested wetland,
upland, cultivated land, un-vegetated land, and water in a 6500 km2 watershed using
WorldView-2 satellite imagery. Their method identified forested wetlands and uplands
with an overall accuracy of 78% and 64%, respectively. Additionally, Amani et al. [26]
used GEE to process around 30,000 Landsat-8 data and generated the first wetland map of
Canada. They utilized the RF classification approach to classify wetlands into five major
classes defined by the Canadian Wetland Classification System (CWCS), including shallow
Water, Marsh, Swamp, Fen, and Bog.

To monitor and map the coastal wetlands of China, Wang et al. [36] used GEE and
2798 Landsat images (ETM+/OLI) from 2018. They proposed a new pixel- and phenology-
based algorithm to classify a wetland area of 7474.6 km2, including tidal, evergreen, and
deciduous wetlands. The results showed the high potential of GEE, with the highest
overall accuracy of 98%, for coastal wetland classification at large scales. Furthermore,
Mahdianpari et al. [37] produced a 10 m spatial resolution map of wetlands in Canada
using Sentinel-1 and Sentinel-2 images within GEE. For this purpose, they developed an
object-based RF method using a large number of reference samples within GEE, resulting
in an individual accuracy of 74% to 84% depending on the province. Ghorbanian et al. [38]
also developed a pixel-based RF algorithm in GEE to map the mangrove ecosystem using
a combination of Sentinel-1/2 datasets. Additionally, Fekri et al. [39] developed a RF
algorithm and an automatic change detection method in GEE to map and identify changes
in the International Shadegan Wetland (ISW) areas in southwestern Iran from 2018 to 2021
using a combination of Sentinel-1 and Sentinel-2 data. Finally, DeLancey et al. [40] used
Sentinel-2 imagery from 2017 to 2020 in GEE to monitor the seasonal flooding dynamics of
wetlands in a prairie pothole wetland landscape in Alberta, Canada.

Among the previously mentioned studies on wetland classification and monitoring
using RS data, there are some examples of publications that highlight wetland mapping
and monitoring in the Great Lakes (GL) region using RS from both Canadian and American
authors [9,41–43]. The GL, which are along the Canada–United States (US) border, contain
a large number of wetland types [44]. The GL’s wetlands support a variety of rare and
endangered animal and plant species. Despite the astonishing amount of biodiversity and
the ecohydrological importance of the wetlands of the GL, these ecosystems are under
severe threat, mainly from climate change, as well as agricultural and urban growth [2,3].
For instance, the Michigan subbasin of the GL has lost about 50% of the coastal wetlands
since European settlement [45]. Considering the population growth and wetland loss in
the GL, it is highly required to develop accurate methods for wetland classification and
monitoring in these regions. Previous efforts have focused only on the coast or on only one
country. There are dozens of examples of case studies.

Despite numerous studies on the application of RS and GEE for large-scale wetland
mapping, there is only one study [46] which has used Sentinel data in GEE to classify
the GL into two major classes, overlooking the importance of differentiating wetland
types and capturing the ecological diversity and functional differences within the region.
Additionally, the broad grouping of upland land covers fails to account for the spatial
heterogeneity and variability of upland areas, and the simplified classification scheme may
not accurately represent the complex land cover patterns in the GL region. Moreover, the
inability to address specific conservation and management needs for different land cover
categories may hinder targeted efforts. This oversimplification could also have implications
for environmental policies and decision making.
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To address the aforementioned limitations, the objective of this research is to gener-
ate a more detailed and accurate 10 m resolution wetland map of the GL region within
GEE based on the well-established CWCS. This objective was accomplished by utilizing
the Sentinel-1 and Sentinel-2 datasets in conjunction with an object-based supervised ML
algorithm. To achieve this goal, we focused on distinguishing between four wetland classes
(Bog, Fen, Marsh, and Swamp) and five non-wetland classes (Open Water, Forest, Grass-
land/Shrubland, Cropland, and Barren). The GEE computing platform was also used
for data access, preprocessing, implementing the proposed classification algorithm, and
evaluating its accuracy. By adopting this approach, the study aims to achieve a more de-
tailed and nuanced classification of wetland types while also improving the differentiation
and characterization of upland land covers. The ultimate goal is to enhance the accuracy
and utility of the wetland mapping results, which will provide valuable information for
informed conservation and management efforts in the GL region.

2. Study Area and Data
2.1. Study Area

The study area was the GL region, which has a total area of 765,370 km2 and is
located between 93.7–73.9W and 40.5–50.8N (see Figure 1). The GL region consists of five
interconnected freshwater lakes or sub-basins, including Superior, Michigan, Huron, Erie,
and Ontario. The core of the GL region is located in the central-eastern part of North
America and is connected to the Atlantic Ocean by the St. Lawrence River.
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2.2. Field Data

Field samples of wetlands and non-wetlands were collected from different GL basins
by various organizations, including the National Aeronautics and Space Administration
(NASA), Michigan Tech Research Institute (MTRI), Dalhousie University (Dal), Environ-
ment and Climate Change Canada (ECCC), Ontario Parks (OP), and the Ministry of North-
ern Development, Mines, Natural Resources, and Forestry (NDMNRF). The primary pur-
pose of providing these datasets was to allow researchers to monitor, assess, and analyze the
number and types of wetlands in the GL region accurately, for a timely and cost-effective
response to environmental problems. In this study, we used the corresponding datasets to
train and evaluate the classification models. The numbers of polygon samples used in this
study are provided in Table 2 for each class separately.
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Table 1. Number (area/km2) of polygon samples for the wetland and non-wetland classes collected by different organizations.

Class MTRI 1 NASA 2 Dal 3 ECCC 4 OP 5 NDMNRF 6 This Study
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Table 2. Number (area/km2) of polygon samples for the wetland and non-wetland classes collected by different organizations.
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As shown in Table 2, almost half of the samples collected by MTRI, NASA, Dal, ECCC,
OP, and NDMNRF belong to the wetland classes. However, it is expected that a large part
of the study area shown in Figure 1 is covered by non-wetland classes. This issue can
cause inaccuracies in classification. It is a basic principle of machine learning classification
methods that the number and distribution of samples from different classes have a major
impact on the output accuracy [22]. In this regard, the number of samples for each class
should be balanced with the area covered by that class. For this reason, and to maintain
balance between ground samples in different classes, we generated additional samples
using high-resolution images from GEE. The number of these samples is also provided in
the last column of Table 2. Given the classification method proposed and developed in this
study (Section 3), samples were collected for five classes: Barren, Cropland, Open Water,
Forest, and Other, including wetland classes and Grassland/Shrubland.

It is important to note that in addition to the four wetland species considered in this
study, there are several other invasive species in the GL region, such as Phragmites australis,
Lythrum salicaria, and Typha angustifolia, which are significant concerns for monitoring and
studying GL wetlands. Although these invasive species are prevalent in the area, our study
did not specifically focus on them due to the limitations of the existing dataset.

2.3. Satellite Data

Archived multitemporal Sentinel-1 and Sentinel-2 images from between 1 January
2020 and 1 January 2022, available on GEE (https://developers.google.com/earth-engine/
datasets/catalog/sentinel, accessed on 6 July 2023), were used in this study. Additionally,
Digital Elevation Models (DEMs) derived from Shuttle Radar Topography Mission (SRTM)
data were combined with other multispectral and radar data to develop classification
results (Figure 2).
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Figure 2. Satellite and in situ data applied in this study for wetland mapping in the GL region.

Using these datasets was mainly based on previous experience with classification
methods. It has been widely reported that multitemporal imagery and the features ex-
tractable from them are the most useful RS data for wetland classification due to the
dynamic characteristics of wetlands [47–49]. The radar backscattering coefficient also con-
tributes to the accuracy of wetland classification [50]. Moreover, due to the difference in
topography between wetlands, which are usually located in flat areas, and non-wetlands,
DEM data also improve the classification results [51].

The Copernicus Sentinel-1A and Sentinel-1B C-band (5.405 GHz) radar mission pro-
viding all-weather and day and night data was developed by the European Space Agency

https://developers.google.com/earth-engine/datasets/catalog/sentinel
https://developers.google.com/earth-engine/datasets/catalog/sentinel
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(ESA). Sentinel-1A and 1B observe the values of the backscattering coefficient at the multi-
polarizations of vertical-vertical (VV), horizontal-horizontal (HH), HV, and VH at a tem-
poral resolution of 6 days in both ascending and descending orbits [38]. In GEE, the
interferometric wide swath (IW) mode of the ground range detected (GRD) of Sentinel-1
is processed and is available at one of three spatial resolutions of 10, 25, or 40 m and four
possible band combinations, including single co-polarization VV, single co-polarization
HH, dual-band cross-polarization VV + VH, and dual-band cross-polarization HH + HV.
In this study, the ortho-corrected backscattering coefficient product of the dual-band cross-
polarization VV + VH of Sentinel-1 at the spatial resolution of 10 m in both ascending and
descending orbits was utilized.

Similar to the Sentinel-1 mission, the Sentinel-2 mission has been developed by the
ESA to provide a spectral dataset over land and coastal waters [52,53]. Generally, Sentinel-2
is a wide-swath, multi-spectral, and multi-resolution imaging mission that observes in
13 different spectral bands: aerosols and water vapor (at 60 m spatial resolution); blue,
green, red, and near-infrared (NIR at 10 m); four red-edge bands (at 20 m); and two
shortwave infrared (SWIR at 20 m) bands [54]. In this study, three visible, NIR, and SWIR
bands of Sentinel-2 were utilized.

The GEE database provides the reprocessed version of STRM data, enhanced by the
auxiliary data from the ASTER GDEM, ICESat GLAS, and PRISM datasets (NASADEM).
In NASADEM, the phase unwrapping is improved using ICESat GLAS data for controlling
and reducing the voids. In this study, the NASADEM (NASA/NASADEM_HGT/001) with
a spatial resolution of 30 m was utilized.

3. Methodology

Figure 3 schematically illustrates the proposed classification method for wetland
mapping in the GL region. As shown in Figure 3, the proposed method had several steps,
each of which is described in the following subsections.
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3.1. Data Preparation

The preprocessing step was applied to both in situ and RS datasets. Additionally,
several features were extracted from the RS data for utilization in the classification model.

3.1.1. Field Data Preprocessing

All field samples were independently separated into two groups of training (70%)
and testing (30%). Training and test data were randomly selected using GEE. All training
samples were then reclassified into four classes of Barren, Open Water, Cropland, and Other.
The Other class included samples of all wetland classes, Grassland/Shrubland, and Forest.

3.1.2. RS Data Preprocessing

Initially, all Sentinel-1 backscattering data and Sentinel-2 reflectance images were
preprocessed. For the Sentinel-1 radar data, mean values were obtained every four months
between January 2020 and January 2022 to reduce the effects of speckle noise, which is
a common error in radar data. It should be noted that some data preprocessing, such
as orbital file correction, GRD boundary correction, thermal noise reduction, radiometric
calibration, terrain correction, and foreshortening masking, was also applied to Sentinel-1
data by GEE developers.

The preprocessing of Sentinel-2 data included radiometric calibration and resampling,
as well as cloud, snow, and shadow masking [55]. Additionally, median values were
calculated for all four months of pixels for the Sentinel-2 images from January 2020 to
January 2022. Considering the four-month extraction based on seasonal changes and
obtaining the median across the Sentinel-2 observations helped in masking clouds, snow,
and other unwanted pixels.

3.1.3. Feature Extraction

Different features were extracted from both Sentinel-1 and Sentinel-2 mosaic images.
In the case of Sentinel-1, the VV and VH polarizations were considered, while in the case of
Sentinel-2, three visible, one NIR, two SWIR bands, the normalized difference vegetation
index (NDVI), and the normalized difference water index (NDWI) were considered. These
features were selected because they have proved useful for wetland discrimination [56–58].
The relevant features were calculated using various formulas and band ratios within
the GEE platform, separately for Sentinel-1 and Sentinel-2. Finally, two mosaic images
containing 12 Sentinel-1 feature layers and 48 Sentinel-2 feature layers were produced to be
used in the classification model.

3.2. Classification Model

As mentioned earlier, an object-based supervised classification algorithm was imple-
mented in this study due to its higher accuracy and better quality in terms of visual perspective
(e.g., fewer salt-and-pepper effects compared with pixel-based methods) [19,39,47,48,59]. The
proposed method in this study can be divided into three distinct steps: image segmentation,
first segment classification, and second classification. The novelty of this approach lies in
the two-step classification process, which is explained in detail in the following sections.
Each step plays a crucial role in achieving accurate and reliable wetland mapping results.

3.2.1. Segmentation

The first step of an object-based classification algorithm is segmentation, involving
grouping homogeneous pixels into spectrally similar image segments. The primary ob-
jective of the segmentation process is to enhance the interpretability and classification of
the image by transforming its characteristics into more meaningful representations. By
utilizing image segments that better capture the objects within the landscape compared
with individual pixels, each stage of the classification process, from defining training sites
to classifying based on these segments, becomes more streamlined. Furthermore, this
approach can lead to improved accuracy in classification outcomes. In this study, the
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Simple Non-Iterative Clustering (SNIC) segmentation algorithm [60], available in GEE [61],
was implemented. SLIC is a developed Simple Linear Iterative Clustering (SLIC) seg-
mentation technique that was enhanced by removing the iterative process and enforcing
the connectivity restrictions from the first step [33]. In the SNIC segmentation algorithm,
a user-defined number of seed points were placed on a regular grid in image space, which
were then grown using four-axis connectivity rules and a distance measure. In segments
containing point-based samples, the segment labels were determined based on the class
that had the highest number of points within that segment. All segments with labels were
also separated randomly using GEE into two groups of training (70%) and testing (30%).

3.2.2. Classification

After segmentation, all segments must be classified. In this study, the RF classification
method was utilized. The RF classifier is a non-parametric ML algorithm that consists of
an ensemble of decision trees, each of which consists of several nodes to divide the input
objects into mutually exclusive groups [23]. Previous studies have evaluated various ML
classification methods, and most of them introduced RF as the most effective classification
algorithm for wetland mapping [48,59,62].

In this study, we used the RF classification algorithm with a novel strategy to produce
the wetland map. In the proposed method, training and applying the RF model were
performed in two steps. The two-step RF classification model used in this study had two
main objectives: (1) initial separation of classes that can be distinguished with much greater
accuracy using optical, thermal, and radar RS measurements, and (2) avoiding systematic
errors incurred by the unequal distribution of training samples across different classes.
The underlying concept of this method was that the Open Water, Cropland, and Barren
classes might be easily distinguished using elevation data and time-series optical and radar
observations due to their distinctive spectral properties. In general, croplands are usually
found in flat areas with slopes of less than 2% and have very high vegetation index values
twice a year (usually spring and fall or both). Furthermore, water bodies, mountains, arid
terrain, and urban areas are highly identifiable with radar data and optical observations
due to their texture and spectral properties. On the other hand, the spectral properties of
wetlands differ from those of the corresponding classes and are typically similar to both
grasslands (for example bogs and grasslands) and forests (swamps and forests).

• Initial classification

First, an RF model was applied to all segments to classify them into four classes
of Barren, Cropland, Open Water, and Other segments which were for wetland, Grass-
land/Shrubland, and Forest classes. To achieve this, the initial Random Forest (RF) model
was trained using all available features, utilizing 70% of the training segments that be-
longed to the Barren, Cropland, Open Water, and Other classes. Subsequently, the trained
RF model was tested using the remaining 30% of the segments that were labeled. If the
accuracy of the trained RF model met the predetermined acceptable accuracy threshold for
classification, the trained RF model was then applied to classify all segments within the
study area. The output of this step was an initial map with four classes: Barren, Cropland,
Open Water, and Other. This map was used as the input for the next step to create the final
wetland map.

• Final classification

After generating the initial map, the segments classified as “Other” during the first
classification were specifically selected for the subsequent RF model. In this step, these
segments were further divided into four distinct wetland classes (Fen, Bog, Swamp, and
Marsh), as well as the Forest and Grassland/Shrubland classes.

Four types of wetlands, including Bog, Fen, Marsh, and Swamp, were defined based
on CWCS for wetland classification in GL. According to [7], CWCS differentiated these
classes based on the soil properties, nutrition conditions, water sources, water table, hydrol-
ogy, and vegetation characteristics. Bog is an ombrotrophic peatland with organic soil and
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an acidic and oligotrophic nutrition environment. This class is dominated by bryophytes
(sphagnum moss), graminoids (sedges), and ericaceous shrubs. On the other hand, Fen
is a minerotrophic peatland, indicating precipitation, underground, and surface flows
as water sources. Fen is mainly covered by Bryophytes (brown and sphagnum mosses),
graminoids (sedges), and shrubs with organic soil and variant nutrient condition (such
as Eutrophic, mesotrophic, and oligotrophic) which lead to rich and poor fens. Swamp is
a minerogenous woody wetland dominated by woody vegetation, including trees and
shrubs greater than 1 m and forbs. Swamps can have a higher degree of water level
fluctuation compared with bogs and fens. Swamps on mineral or organic soils are consid-
ered the driest wetland type due to their lower water table and reduced water saturation
levels. Marsh is a minerogenous wetland characterized by mineral soil and standing or
flowing water with high water-level fluctuation from daily to annually. Aquatic emergent
graminoids and shrubs are the dominant vegetation types that typically cover marshes.

To train the RF classifier during this step, the training samples originally belonging to
the aforementioned classes, which had been labeled as “Other” during initial RF classifica-
tion, were reclassified back into their original classes. These reclassified training samples
were then utilized to train the RF classifier in order to accurately classify the segments into
the specific wetland, Forest, and Grassland/Shrubland classes. Consequently, the output of
this step was the final wetland map with nine classes.

3.3. Accuracy Assessment

To assess the accuracy of the proposed method and the resulting wetland map, we
initially conducted a visual interpretation using high-resolution imagery available in Ar-
cGIS. This step aimed to ensure the reliability of the final wetland map by comparing
several random locations with various classes against the high-resolution images. This
assessment helped us evaluate the level of agreement and identify any discrepancies or
misclassifications. Furthermore, a statistical accuracy assessment was performed using an
independent 30% of field samples to quantify the accuracy of the final wetland map. To
accomplish this, we created a confusion matrix and utilized several metrics, including:

Overall Accuracy (OA)—This metric represents the proportion of correctly classified
wetland pixels relative to the total number of pixels in the assessment dataset. OA provides
a general measure of the classification accuracy.

Kappa coefficient (KC)—The KC is a statistical measure that evaluates the agreement
between the predicted and actual wetland classes, considering the agreement that could be
expected by chance. It considers the distribution of the observed and predicted classes and
provides a more robust measure of classification accuracy than OA alone.

Producer Accuracy (PA)—PA refers to the proportion of correctly classified wetland
pixels for each specific wetland class. It assesses how effectively the proposed method
identifies a particular wetland class.

User Accuracy (UA)—UA represents the proportion of correctly classified wetland
pixels for each predicted wetland class. It measures the reliability of the proposed method
in assigning a specific wetland class.

4. Results
4.1. Classified Wetland Map

Figure 4 shows the final wetland map generated by the proposed object-based super-
vised classification algorithm in GEE at a spatial resolution of 10 m. Based on the results,
the Open Water bodies of Superior, Michigan, Huron, Erie, and Ontario lakes represent
a major part of the study area. The terrestrial portion of the study area is mostly covered
by woodland and forest in the north and a large portion of croplands in the south and
southeast regions. Additionally, the distribution of the Barren class is more visible in the
southern regions.
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Figure 4. GL wetland map.

Eight zoomed areas from the final wetland map are also illustrated in Figure 5 to show
the visual accuracy of the produced wetland map. The results of the visual investigation
demonstrated the high potential of the proposed method within GEE to identify various
wetland classes in regions like the GL with diverse climate conditions (Figure 5a,g,h). More-
over, the proposed methodology correctly identified non-wetland classes, such as urban
areas. Notably, despite the high similarity between forests and croplands, the proposed ap-
proach accurately differentiated between them (Figure 5a–d). The classification method also
effectively distinguished Marsh from Croplands, although there were occasional challenges
in visually differentiating them in certain areas (Figure 5a,b). However, there were instances
where certain classes were misclassified as Marsh (Figure 5b,f). This misclassification can
be attributed to the intrinsic complexity and variability of the land cover patterns in those
specific areas, making it challenging to accurately distinguish Marsh from other land cover
classes. Overall, based on Figure 5, there were complex land covers in some areas which
were challenging to identify. For example, swamps (tree wetlands), which were distributed
all over the study area, were difficult to identify from aerial or satellite imagery, and in
many cases, they were visually confused with forests (Figure 5d,e).
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wetland land cover that exists in the study area.

4.2. Distribution of the Wetland Classes in the GL

Figure 6 shows the distribution of different classes in five sub-basins of the GL. Based
on the results, Open Water and Forest are the dominant classes across all sub-basins except
Erie. For example, these two classes account for 89% and 66% of the Superior and Michigan
sub-basins. Across both of these sub-basins, Open Water is the dominant class, which
covers 45% of Superior and 35% of Michigan. In the Ontario and Huron sub-basins, the
Forest class is dominant, with coverages of 34% and 39%, respectively. In Erie, Cropland
with a coverage of 47% is the dominant class, followed by Open Water with 26% coverage.
Cropland also covers 26%, 23%, and 17% of the Ontario, Michigan, and Huron sub-basins.
Finally, the results showed that Cropland, Barren, and Grassland/Shrubland are rarely
found in the Superior sub-basin, and Grassland/Shrubland also covers equal to or less than
2% of the other sub-basins.
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Based on Figure 6, wetlands (i.e., Bog, Fen, Marsh, and Swamp) contain less than 10%
of all sub-basins. Superior has the most wetland coverage (~9%) compared with other
sub-basins. In Superior, Fen, with 42.9%, is the most dominant wetland class, followed by
Marsh (37.5%) and Swamp (17.6%). In the Huron and Michigan sub-basins, Marsh is the
dominant wetland class, followed by Fen and Swamp. Swamp, with a coverage of 45.7% of
wetland areas, is the most observed type of wetland in Ontario. After Swamp, Marsh, with
39.8%, and Fen, with 13.2%, of wetland coverage are found as the main wetland species
in Ontario. Moreover, Marsh, with a coverage of 46.4%, and Swamp, with a coverage of
41.3%, are the most dominant wetlands in Erie. The Bog class has the least coverage in all
the sub-basins. Overall, Bog has an average coverage of 2% of the total wetland areas.

4.3. Statistical Accuracy Assessment

Table 3 provides the confusion matrix of the proposed method using the indepen-
dent test data. Nine LULC classes’ UAs and PAs are also included in Table 3. Accord-
ing to Table 3, the PAs and UAs of the nine classes ranged between 55.45–99.64% and
30.29–98.62%, respectively. Based on the PAs, the Open Water and Forest classes were
classified with the highest accuracies (i.e., PAs were 99.64% and 98.16%, respectively).
Moreover, Barren, Cropland, and Fen were classified with PAs of more than 90%. Grass-
land/Shrubland, with a PA of 55.45%, had the lowest PA. This was mainly because there
were many Grassland/Shrubland reference samples that were wrongly classified as Crop-
land (494 samples) and Forest (215 samples). Regarding the UAs, all classes, except Forest,
Grassland/Shrubland, and Barren, were classified with accuracies of more than 90%. Bog,
with a UA of 98.62; Swamp, with a UA of 97.98; and Open Water, with a UA of 97.01,
were classified with the highest UAs. However, similar to the results of the PAs, Grass-
land/Shrubland, with a UA of 30.29%, had the lowest UA. The main reason was the
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fact that there were many Marsh samples (1826 samples) that were incorrectly classified
as Grassland/Shrubland. Thus, there was an overestimation in the classified areas of
Grassland/Shrubland in the produced wetland map.

Table 3. The confusion matrix of the wetland map of the GL, along with UAs and PAs of each class.

Predicted Samples

Barren Bog Cropland Open
Water Fen Forest Grassland/

Shrubland Marsh Swamp PA

R
ef

er
en

ce
Sa

m
pl

es

Barren 21,784 1 1193 90 69 67 213 455 5 91.23%
Bog 1 1862 335 5 41 257 0 34 3 73.36%

Cropland 2218 15 217,888 79 1027 5985 483 483 94 95.45%

Open
Water 23 0 140 56,495 1 14 0 24 3 99.64%

Fen 26 1 323 5 13,878 212 2 29 4 95.84%
Forest 46 3 587 17 29 45,488 9 50 114 98.16%

Grassland/
Shrubland 90 0 494 3 4 215 1104 60 21 55.45%

Marsh 252 6 3855 1535 71 488 1826 15,827 44 66.21%
Swamp 845 0 673 5 30 1113 8 29 13,999 83.82%

UA 86.15% 98.62% 96.63% 97.01% 91.60% 84.49% 30.29% 93.15% 97.98%

Figure 7 summarizes the OA, KC, Average PA (APA), and Average UA (AUA) for
the wetland and non-wetland classes. Based on Figure 7, the classification algorithm
obtained an OA, KC, APA, and AUA of 87%, 0.91, 79.81%, and 95.34% for wetland classes,
respectively. Overall, the results also showed that the non-wetland classes were identified
more accurately than the wetland classes. For instance, the OA, KC, APA, and AUA for
non-wetland classes were 96.62%, 0.95, 87.98%, and 78.91%, respectively.
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of the proposed method for wetland and non-wetland classes.

Figure 8 provides the accuracies of all classes for each sub-basin of the GL. In all
sub-basins, the OAs were more than 90%. The highest and lowest OAs of the final classified
wetland map were over Huron (OA = 97.8%) and Ontario (OA = 90.6%). Moreover, Erie
and Michigan had the highest (KC = 0.94) and lowest (KC = 0.84) KC values. The details of
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the statistical metrics of each of the nine considered classes of all five sub-basins are also
provided in Tables A1–A5 and Figure A1 in the Appendix A.
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5. Discussion

Applying the proposed ML classification method or alternative classification methods
to identify and map different wetland types can present certain challenges within the GEE
environment. These challenges may arise from factors such as in situ data availability, RS
data quality, the characteristics of the study area, and the diversity of wetland types.

In this study, we took a comprehensive approach by utilizing extensive in situ wetland
samples collected by various organizations in Canada. This allowed us to enhance the
accuracy and reliability of our wetland classification results. However, the distribution
and number of samples of different wetland classes can cause some errors for wetland
classification using RS techniques. For example, according to the areas of different classes
in the produced wetland map of the GL (Figure 4), Forest (46.85%), followed by Open
Water (26.30%) and Cropland (10.49%), are the most dominant land covers in the study
area. Moreover, each of the Bog, Marsh, Fen, and Swamp classes only covers less than 10%
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of the study area. However, according to Table 2, out of 3215 in situ samples, 1080 (33% of
the samples) belong to the Marsh class, and only 555 (17%) and 83 (2%) belong to the Forest
and Barren classes, respectively. The asymmetry between the coverage and the number
of in situ samples of each class resulted in classification errors [63,64]. This issue can pose
a significant challenge when applying the proposed method to map wetlands of the area
with fewer in situ samples. In general, to effectively implement supervised classification,
an adequate number of samples that accurately represent the various types of land cover,
considering both the sample quantity and the coverage area, is crucial.

Moreover, acquiring representative samples of wetlands can be particularly challeng-
ing due to their spatial extent and ecological complexity. Wetlands encompass a wide
range of ecosystems, including marshes, swamps, bogs, and floodplains, each with distinct
vegetation, hydrological patterns, and soil compositions [7,26,65,66]. Therefore, to achieve
reliable wetland mapping, it is crucial to ensure that the collected samples capture the full
range of variability within wetland ecosystems.

Furthermore, the size of the study area also plays a critical role in determining the
number of required samples. Larger study areas with extensive wetland coverage demand
a more comprehensive sampling strategy to ensure adequate representation of the dif-
ferent wetland types present. Insufficient samples within such areas can result in biased
classification results and limited applicability of the proposed method.

Moreover, the spectral and backscattering responses of different wetland ecosystems
can be similar to each other and other non-wetland classes. This was the main reason for
the confusion between several classes in the classified map (Table 3). For example, there
were many Barren samples that were wrongly classified as Cropland (i.e., 1193 samples).
This can be explained by the fact that many croplands were cultivated and, therefore, were
similar to Barren in the satellite imagery. As another example, the Marsh class was confused
with either Cropland, Grassland/Shrubland, or Open Water, where many Marsh samples
were wrongly classified as these three classes (i.e., 3855, 1826, and, 1535, respectively).
These misclassifications could be explained by the seasonal changes in these classes. For
example, during spring, most Marsh areas are inundated and, thus, some of them can have
a similar spectral response to Open Water. This shows the importance of multi-temporal
satellite images for distinguishing wetland classes.

GEE offers an extensive collection of geospatial datasets accompanied by a diverse
range of image processing and ML algorithms. The availability of numerous satellite
images, including those that have been atmospherically and noise-corrected, in conjunc-
tion with a coding workspace and a wide array of toolboxes and ML algorithms, greatly
facilitates continental- and global-scale wetland mapping studies. The comprehensive
capabilities provided by GEE significantly reduce the necessity for multiple software pack-
ages dedicated to data reading, processing, and coding. As a result, GEE emerges as an
invaluable resource for researchers conducting large-scale wetland mapping endeavors.
However, GEE has several limitations which hinder obtaining the highest possible classifi-
cation accuracy. For example, implementing an ML model in GEE is restricted to a limited
number of training samples and, therefore, it was not possible to increase the number of
samples to improve the classification accuracy. One solution might be employing other
cloud computing platforms, such as Amazon’s Web Services and Microsoft’s Azure in
future studies.

GEE has recently enhanced its platform to deploy DL classification techniques in
addition to current ensemble ML algorithms. Although RF has resulted in a high classi-
fication accuracy in many studies, DL models demonstrated better accuracies in recent
studies [67–70]. Consequently, it is suggested to implement object-based DL classification
algorithms to possibly obtain better accuracies.

The proposed wetland classification method can effectively be applied to produce
yearly and seasonal wetland maps in the GL. Therefore, it is suggested to use the proposed
GEE method to generate wetland change maps at a 10 m spatial resolution from 2016
to the present. This wetland change analysis would provide crucial information about
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deforestation, urbanization, and crop expansion and, consequently, would improve better
wetland management in the GL.

6. Conclusions

Wetlands are threatened by agricultural activities, construction work, population
increase, and natural processes, such as global warming, changing precipitation patterns,
and coastal erosion. Therefore, it is necessary to produce accurate wetland maps. In this
study, the most recent wetland map of the GL, including Fen, Swamp, Marsh, and Bog, was
produced in GEE. To this end, a novel two-step object-based supervised RF classification
algorithm was implemented using Sentinel-1 backscattering data, Sentinel-2 multispectral
imagery, and DEM data. In the first step, all image segments were divided into four classes
of Barren, Cropland, Open Water, and Other. In the second step, the Barren, Cropland, and
Open Water segments were excluded from the classification, and the remaining segments
were divided into six classes of Forest, Grassland/Shrubland, Fen, Bog, Swamp, and Marsh.

The combination of Sentinel-1/2 imagery and DEM data in GEE offers powerful syn-
ergies for diverse applications. Integrating radar and optical data enables comprehensive
surface understanding, enhancing land cover classification, change detection, and vegeta-
tion monitoring. Incorporating DEM data enables terrain analysis, feature extraction, and
flood mapping. These datasets, easily accessible in GEE, empower efficient analysis and
provide valuable insights for various applications.

The accuracy of the GL wetland map was investigated from different perspectives.
The proposed method was able to classify the wetland classes with an OA, KC, APA,
and AUA of 87%, 0.91, 79.81%, and 95.34%, respectively. The results also demonstrated
that non-wetland classes were identified more accurately (OA = 96.62%, KC = 0.9498,
APA = 87.98%, and AUA = 78.91%). More details about the accuracy of each class all
over the study area, the accuracy of the wetland map over each sub-basin, the accuracy
of every class in each sub-basin, and the distribution of LULC classes in five sub-basins
were also reported in this study. The results of this study showed that GEE was a very
powerful platform for large-scale wetland mapping and monitoring tasks. Additionally,
the proposed method can effectively be applied to study wetland changes in the future.
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Appendix A

Table A1. The confusion matrix of the LULC map over Erie, along with UAs and PAs of nine LULC
classes. Erie, OA = 95.65%, Average PA = 84.38%, Average UA = 80.35, KC = 0.9384.

MAP

In
si

tu

Erie Barren Bog Cropland Open
Water Fen Forest Grassland/

Shrubland Marsh Swamp PA

Barren 5063 0 28 0 1 21 108 7 0 96.84%

Bog 0 0 0 0 0 0 0 0 0 0

Cropland 260 2 29,263 1 21 277 356 51 16 96.75%

Open
Water 20 0 21 6860 0 2 0 1 1 99.35%

Fen 15 0 1 0 11 9 0 0 0 30.56%

Forest 12 0 13 0 1 6047 1 3 43 98.81%

Grassland/
Shrubland 17 0 81 0 1 54 501 1 27 73.46%

Marsh 139 1 406 35 21 137 41 4696 19 85.46%

Swamp 78 0 41 0 0 231 6 7 5585 93.90%

UA 90.35% 0 98.02% 99.48% 19.64% 89.22% 49.46% 98.53% 98.14%

Table A2. The confusion matrix of the LULC map over Michigan, along with UAs and PAs of nine
LULC classes. Michigan, OA = 87.20%, Average PA = 85.16%, Average UA = 74.56%, KC = 0.844.

MAP

In
si

tu

Michigan Barren Bog Cropland Open
Water Fen Forest Grassland/

Shrubland Marsh Swamp PA

Barren 3154 0 66 0 9 20 68 18 7 94.37%

Bog 0 703 131 1 6 84 0 15 1 74.71%

Cropland 19 3 2899 1 0 410 0 1 0 86.98%

Open
Water 6 0 78 392 0 4 0 2 0 81.33%

Fen 3 0 283 1 1863 45 0 10 0 84.49%

Forest 4 0 6 0 2 1980 2 6 4 98.80%

Grassland/
Shrubland 0 0 0 0 0 0 69 0 0

Marsh 47 0 339 123 9 39 0 1714 1 75.44%

Swamp 0 0 0 0 0 0 0 0 0

UA 97.56% 99.58% 76.25% 75.68% 98.62% 76.68% 49.64% 97.06% 0.00%

Table A3. The confusion matrix of the LULC map over Superior, along with UAs and PAs of nine
LULC classes. Superior, OA = 93.75%, Average PA = 86.84%, Average UA = 83.59%, KC = 0.918.

MAP

In
si

tu

Superior Barren Bog Cropland Open
Water Fen Forest Grassland/

Shrubland Marsh Swamp PA

Barren 1953 2 180 4 55 19 26 439 0 72.93%

Bog 0 872 0 1 22 76 0 3 2 89.34%

Cropland 1 0 935 0 32 0 295 1 0 73.97%

Open
Water 0 0 0 3164 0 0 0 3 0 99.91%

Fen 0 0 0 0 9486 115 0 10 1 98.69%

Forest 2 2 1 5 18 9021 0 12 22 99.32%

Grassland/
Shrubland 0 0 0 0 0 11 53 0 0 82.81%

Marsh 0 4 0 33 9 70 0 998 1 89.51%

Swamp 1 0 2 4 29 308 1 13 1082 75.14%

UA 99.80% 99.09% 83.63% 98.54% 98.29% 93.77% 14.13% 67.48% 97.65%
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Table A4. The confusion matrix of the LULC map over Huron, along with UAs and PAs of nine
LULC classes. Huron, OA = 94.51%, Average PA = 83.09%, Average UA = 85.56%, KC = 0.897.

MAP

In
si

tu

Huron Barren Bog Cropland Open
Water Fen Forest Grassland/

Shrubland Marsh Swamp PA

Barren 6228 0 34 74 4 0 0 1 0 98.22%

Bog 1 286 204 3 12 99 0 15 0 46.13%

Cropland 2074 14 149,127 77 988 5413 140 429 70 94.19%

Open
Water 0 0 0 40,522 1 5 0 0 0 99.99%

Fen 2 1 9 4 2393 28 0 3 1 98.03%

Forest 19 1 20 10 8 17,275 2 11 39 99.37%

Grassland/
Shrubland 3 0 97 2 3 143 529 43 1 64.43%

Marsh 65 0 702 1302 30 191 4 4141 22 64.13%

Swamp 2 0 33 0 1 496 0 1 2675 83.39%

UA 74.20% 94.70% 99.27% 96.49% 69.56% 73.04% 78.37% 89.17% 95.26%

Table A5. The confusion matrix of the LULC map over Ontario, along with UAs and PAs of nine
LULC classes. Ontario, OA = 91%, Average PA = 73.28%, Average UA = 74.66%, KC = 0.872.

MAP

In
si

tu

Ontario Barren Bog Cropland Open
Water Fen Forest Grassland/

Shrubland Marsh Swamp PA

Barren 5951 0 305 13 0 14 30 0 0 94.27%

Bog 0 0 0 0 0 1 0 0 0 0.00%

Cropland 262 3 32,514 5 46 2040 181 84 16 92.50%

Open
Water 0 0 0 5617 0 0 1 15 0 99.72%

Fen 6 0 0 0 155 16 2 7 3 82.01%

Forest 14 0 17 0 2 11,762 8 6 5 99.56%

Grassland/
Shrubland 122 0 88 0 1 25 169 18 1 39.86%

Marsh 18 0 1923 46 1 39 20 4748 1 69.86%

Swamp 800 0 228 0 0 78 2 4 4994 81.79%

UA 82.96% 0.00% 92.70% 98.87% 75.61% 84.16% 40.92% 97.26% 99.48%
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