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Abstract: Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) enables the 

estimation the ionospheric vertical total electron content (VTEC) as well as the by-product of the 

satellite Pseudorange observable-specific signal bias (OSB). The single-frequency PPP models, with 

the ionosphere-float and ionosphere-free approaches in ionospheric studies, have recently been dis-

cussed by the authors. However, the multi-frequency observations can improve the performances 

of the ionospheric research compared with the single-frequency approaches. This paper presents 

three dual-frequency PPP approaches using the BeiDou Navigation Satellite System (BDS) B1I/B3I 

observations to investigate ionospheric activities. Datasets collected from the globally distributed 

stations are used to evaluate the performance of the ionospheric modeling with the ionospheric 

single- and multi-layer mapping functions (MFs), respectively. The characteristics of the estimated 

ionospheric VTEC and BDS satellite pseudorange OSB are both analyzed. The results indicated that 

the three dual-frequency PPP models could all be applied to the ionospheric studies, among which 

the dual-frequency ionosphere-float PPP model exhibits the best performance. The three dual-fre-

quency PPP models all possess the capacity for ionospheric applications in the GNSS community. 

Keywords: BDS; PPP; mapping function; ionospheric VTEC; pseudorange OSB 

 

1. Introduction 

As we all know, a large amount of the free electrons exists in the Earth’s ionosphere. 

Serving as the significant region of the Earth’s near space, the ionospheric delay is an im-

portant error source in satellite PNT services, which can cause the delay of several meters 

to several hundred meters in the GNSS signal transmission [1–5]. With the rapid devel-

opment of the GNSS, it has been the most important tool for ionospheric monitoring and 

correction due to its advantages of all-weather global coverage and high temporal and 

spatial resolutions. Since the ionosphere is a dispersive medium, the ionospheric delay 

can be eliminated by multi-frequency observations. Single-frequency GNSS users require 

external ionospheric information to eliminate the ionospheric delay. One commonly ap-

plied way is to use the empirical models such as the Klobuchar, NeQuick, BDGIM, NTCM 

and so on [6–10]. Another alternative way is to apply the ionospheric TEC map obtained 

from the globally distributed stations. 

The ways to extract the ionospheric STEC include the CCL and PPP [11,12]. CCL is 

known as the most convenient method in the ionospheric community, entailing a process 

of smoothing the pseudorange with the carrier phase observation, whose accuracy and 

reliability can be affected by the smoothing error, multipath effect and receiver DCB intra-

day variation [13,14]. When the number of the continuous epoch observations is sufficient, 
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the noise effect of the the pseudorange observations will be significantly reduced, whereas 

the error caused by multipath cannot be eliminated. MCCL is an alternative, simple and 

efficient method to estimate the ionospheric delay, in which the effect of the receiver DCB 

intra-day variation can be avoided [15,16]. Similarly, the multi-frequency PPP can also 

overcome the disadvantages of the traditional approaches. The DFPPP1 approach pro-

posed by Zhang et al. [14] is the typical method for extracting the ionospheric STEC, in 

which the STEC observations and multipath is reduced by more than 70% compared to 

the CCL approach. Tu el al. [17] also validated that the DFPPP1 approach in a real-time 

scenario can be applied for the ionospheric study, in which the accuracy of the estimated 

VTEC and satellite DCB is 1–2 TECU and 0.4 ns, respectively. Zhang et al. [18] modified 

and improved the DFPPP1 approach to estimate the slant ionospheric observables, in 

which the receiver pseudorange bias is considered as the time-varying parameter. Liu et 

al. [11] applied the multi-GNSS multi-frequency ionosphere-float approach for the iono-

spheric modeling. PPP has obvious advantages over the ionospheric observable extraction 

compared to the CCL. The ionospheric STEC extracted from PPP is consistent with that 

from the CCL method but with higher accuracy. The two methods have been widely ap-

plied in the ionospheric modeling [11,19–21]. 

Regarding the above literatures, the MF used in ionospheric VTEC modeling is based 

on the Earth ionospheric single-layer assumption. However, the influence of ionospheric 

single-layer MF may cause larger errors in the vertical direction due to the effect of iono-

spheric horizontal gradient and equilibrium condition deviation [22]. Hence, the iono-

spheric height is an important factor in the ionospheric MF [23,24]. Hoque and Jakowski 

[25] proposed the ionospheric multi-layer MF to describe the ionospheric vertical struc-

ture, in which the ionospheric projected error can be reduced by more than 50%. Thus, 

applying the ionospheric multi-layer MF is an effective way to improve the accuracy of 

ionospheric modeling. 

Su and Jin [26] has discussed the applications of the two single-frequency PPP models 

for the ionospheric study. However, the multi-frequency observations can improve the 

performances of the ionospheric modeling when compared with the single-frequency ap-

proaches. With a view to extend this work, this study presents three dual-frequency PPP 

models to investigate the ionospheric and hardware delay performance. The previously 

mentioned literature only concentrated on the ionosphere-float PPP solution for the iono-

spheric study. The comparison of this study can help the readers better understand the 

state-of-the-art approach for the ionospheric research and improve the real-time iono-

spheric services in the GNSS community [27]. The pseudorange OSB is estimated by view-

ing the undifferenced format of the DCB, which is more straightforward and directly ap-

plicable to the original GNSS measurements [28]. The three models provide alternatives 

for the pseudoraneg OSB estimation. The experimental data and analytical performance 

are introduced. Finally, the conclusions are given. 

2. Methods 

In this section, we begin with the BDS general observation model. Then, three dual-

frequency methods are discussed with respect to the extracted ionospheric observables. 

The approaches for the estimated ionospheric VTEC and satellite pseudorange OSB are 

also discussed. 

2.1. General Observations 

The BDS raw observations for the satellite s with regard to the receiver r at epoch t 

read [29]: 

, ,1 , , , ,

, ,1 , , ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

s s s s s s s s
r j r r r j r r j j r j j

s s s s s s s
r j r r r j r r j j p j

t t dt t dt t T t I t b b N t t

p t t dt t dt t T t I t d d t
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where , ( )
s
r j t  and , ( )

s
r jp t  denote the carrier phase and pseudorange observables; ( )s

r t  

denotes the satellite and receiver geometrical range; ( )rdt t  and ( )sdt t  denote the re-

ceiver and satellite clock offsets; ( )s
rT t  denotes the affected tropospheric delay; ,1( )

s
rI t  de-

notes the slant ionospheric delay with respect to the BDS first frequency; 2 2
1 j jf f  is 

the frequency-dependent multiplier factor, where jf  denotes the jth frequency; ,r jd  

and ,
s
jd  denote the pseudorange instrumental delays for the receiver and satellite, re-

spectively; ,r jb  and ,
s
jb  denote the corresponding carrier phase instrumental delays; 

, ( )
s
r jN t  denotes the ambiguity parameter; , ( )

s
p j t  and , ( )s

j t  denote the pseudorange 

and carrier phase measurement noise, including multipath, respectively. 

2.2. DFPPP1: Dual-Frequency Ionosphere-Float PPP Model 

We define the dual-frequency ionosphere-float PPP as DFPPP1 model here. With m 

observed satellites tracking the signals on ith and jth frequencies, the DFPPP1 model is 

written as [21]: 

  1,
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1,

4 4 2 2 2 2 1 2
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where 

1 2
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Tm
DF ij r i r i r jp t p t p t   P ; 1 2

1, , , ,( ), ( ), , ( )
Tm

DF ij r i r i r jt t t      ; 

 

 1 2ZWD ( ), ( ), ,
T

DF r rt dt t  a  , ZWD ( )r t  denotes the tropospheric zenith wet delay 

(ZWD), ( )rdt t  denotes the receiver clock offset, 1
,1 ,1( ), , ( )

Tm
r rI t I t    , 

1 2
2 , , ,( ), ( ), , ( )

Tm
r i r i r jN t N t N t   a ; 

me  denotes m-dimension row vector, in which all values are 1; 

mI  denotes m-dimension identity matrix; 

1
, ,( ), , ( )

Tm
r r j r jmf t mf t   M  denotes the design matrix of the tropospheric wet mapping 

function; 

 2 1, 1
T

 n ; 2 ,
T

i j     ;  2 0,1
T

z ; 

2 2
2 diag( , )i jq qq , in which iq  denotes the ratio of the observation noise on ith frequency. 

2 2diag( , ) r pQ  denotes the corresponding observation precision matrix in the vertical 

direction, and mQ  denotes the elevation diversity cofactor matrix; 

 denotes the Kronecker product. 

The corresponding estimated parameters read: 

, ,

1 1
,1 ,1 , , , , , ,
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, , , , , , , , , , , ,
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( ) ( ) , ,
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 (3)

2.3. DFPPP2: Dual-Frequency Ionosphere-Free PPP Model 

With m observed satellites tracking the signals on ith and jth frequencies, the DFPPP2 

model is written as [30]: 
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where 

2, ,DF ij IF ijP P , 2, ,DF ij IF ij  , in which  

1( ) ( ) , ( ) ( ) , ( )
T T

IF,ij GF,ij j i i j ij ij i j, ,                              ; 

 2 1ZWD ( ), ( ),
T
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T

ij ij     ; 

The corresponding estimated parameters read: 
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The wide-lane ambiguity , , ( )s
r W ijN k  can be represented by the wide-lane carrier 

phase observables and narrow-lane pseudorange observables, which reads: 

, , , , , , , , , , , , , , , ,( ) ( ) ( ) ( )s s s s s s
r W ij r W ij r N ij r W ij r W ij W ij r W ij W ijN t t p t N k b b d d        (6)
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Thereafter, the ionospheric ambiguity , , ( )s
r GF ijN t  can be represented by the wide-lane am-

biguity and ionospheric ambiguity in PPP, which reads: 

2 2

, , , , , , , , , , , , , , , ,( ) [ ( ) ( )] ( )
i js s s s s s

r GF ij r W ij r IF ij r GF ij r GF ij GF ij r GF ij GF ij

i j

f f
N t N t N t N t b b d d

f f


      


 (8)

Then, we can obtain the ionospheric observables as: 

1 1 1
,1 , , , , , ,1 , , , , , ,( ) [ ( ) ( )] ( )s s s s s
r GF ij r GF ij r GF ij r GF ij GF ij GF ij r GF ijI k N t t I k d d              (9)

Considering that the raw pseudorange observations have a higher noise, we apply 

the Hatch filter to smooth the observations by the carrier phase observations [31,32]. The 

sharp variation in the pseudorange observation that affect the leveling is checked and re-

moved [33]. 

2.4. DFPPP3: Dual-Frequency UofC PPP Model 

With m observed satellites tracking the signals on ith and jth frequencies, the DFPPP3 

model is written as [34]: 
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The corresponding estimated parameters read: 
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 (11)

Then, the ionospheric ambiguity can be combined by two estimated ambiguities in 

DFPPP3 model, which can be expressed as: 

, , , , , , , , , , , ,( ) ( )s s s s
r GF ij r GF ij r GF ij GF ij r GF ij GF ijN t N t b b d d      (12)

Similar to DFPPP2 solution, we can obtain the ionospheric observables as well. 

2.5. Ionospheric Modeling and OSB Estimation 

As we can see, the ionospheric delays estimated from the DFPPP1, DFPPP2 and 

DFPPP3 models have the identical forms. The ionospheric observables can be viewed as 

the linear relationship of the STEC and SPR DCB [35]. To build the link of the STEC and 

VTEC, the ionospheric MF is usually established according to the satellite elevation. The 

single-layer MF can be expressed as [36]: 

1/ 22

sin ( )
( ) 2

( ) 1
( )

s E
r

r E ion

R E
STEC t

MF E
VTEC t R H





   

         
  
  

   

 (13)

where   denotes coefficient of the single-layer MF model, of which the SLM is 1 and 

MSLM is 0.9782. ER  and ionH  denote the mean Radius Earth and IPP height. The IPP 

height is set as the 450 km. 

The multi-layer MF assumes that the ionosphere is composed of numerous thin 

shells. The obliquity factors, manifesting the link of the corresponding VTEC and the in-

cremental STEC 1n
nSTEC  , can be written as [25]: 

11/22

1
exp( ) sin ( )

2
( ) 1 erf

2

i

i

i

i

i

h

i mIPP

i E i i
mIPPi

i

i E mIPP

h

h h
R h E HSTEC

MF E
VTEC R h








                                               

 (14)

where 
imIPPh  denotes the peak ionization height and 

imIPPH  denotes the atmospheric 

scale height. 

The GTSF is applied to estimate the ionospheric VTEC values and reads [37]: 

   
2 2 4

0
0 0 0

VTEC ( , ) ( ) cos( ) sin( )

2 ( 14)

24

n m
r nm k k

n m k

T E T C k T S k T

t
T

  


  


         


  



 
 (15)

where   and 0  are the IPP latitude and receiver geographical latitude, respectively. 

In the station-based local ionospheric modeling, the ionospheric observable weight 

is applied by considering the local time satellite elevation effect and expressed as: 
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where p denotes the weight of the ionospheric observable. 

To avoid the singularity of the equation, the constraints are introduced and read: 
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Then, the ionospheric VTEC can be isolated and the satellite OSB can be estimated. 

2.6. Analysis of PPP Approaches 

Table 1 compares the three dual-frequency PPP approaches in the observations and 

parameter fields. The degrees of freedom for the three PPP models are the same. The 

DFPPP1 model directly estimates the ionospheric delay as the unknown parameters. The 

ionospheric observables extracted by the DFPPP2 approach are influenced by the code 

and leveling errors. The ionospheric observables estimated in DFPPP3 method are af-

fected by the carrier phase noises. Theoretically, the ionospheric observables from the 

DFPPP1 and DFPPP3 model are more accurate than that from the DFPPP2 approach. 

Table 1. Comparison of three dual-frequency PPP approaches. 

 DFPPP1 DFPPP2 DFPPP3 

Number of the observation 4m 2m + m 3m + m 

Unknown parameters number sysNum + 3m + 1 sysNum + m + 1 + m sysNum + 2m + 1 + m 

Freedom degrees m-sysNum-1 m-sysNum-1 m-sysNum-1 

Ionospheric observable biases 
Ionospheric observables 

and SPR DCB 

Ionospheric observables, SPR 

DCB, leveling errors and 

pseudorange noises 

Ionospheric observables, 

SPR DCB, and carrier phase 

noises 

3. Results and Analysis 

3.1. Data Processing Strategy 

We selected 77 stations from the MGEX network in October 2020 to analyze the ex-

perimental performance. All of the stations can track the BDS-2 and BDS-3 B1I/B3I signals. 

The DFPPP1, DFPPP2 and DFPPP3 models are all conducted. Figure 1 depicts the distri-

bution of the MGEX stations. The precise clock and orbit products provided by the GFZ 

analysis center are applied for the PPP data processing. Moreover, we utilized the forward 

and backward Kalman filter to avoid the effect of the unconverging ambiguities. The ele-

vation cutoff of satellites in PPP is 7.5° and the elevation cutoff for the ionospheric VTEC 

modeling is 20° [38]. The random walk noise for the ionospheric delay is 10−4 m2/s in 

DFPPP1 solution. The ionospheric single- and multi-layer MFs are both applied to evalu-

ate the experimental performance. Other error items in the data processing strategies can 

refer to Su et al. [39]. 
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Figure 1. Distribution of the selected MGEX stations. 
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Figure 2 depicts the slant ionospheric delay estimated from one randomly selected 

station ULAB with three dual-frequency PPP models. The extracted slant ionospheric de-

lay contains the pure slant ionospheric delay and SPR DCB. As we can see, the variation 

tendency of the ionospheric observables from three models are generally consistent with 

each other. For further analysis and understanding, we put the slant ionospheric delay 

from different PPP models together. Figure 3 shows the estimated slant ionospheric delay 

with the elevation for the BDS C26 satellite with the three PPP models. The results indicate 

that the extracted ionospheric observables from the three models have generally over-

lapped with each other, which proves the consistency of the ionospheric observables from 

three models. Using the slant ionospheric observables from the DFPPP1 model as the da-

tum, we calculate the ionospheric observables difference STD for the remaining two PPP 

models. 

Figure 4 shows the STD distribution for the DFPPP2 and DFPPP3 models with regard 

to the slant ionospheric observables. The STD of the ionospheric observables difference is 

able to reflect the smoothing leveling of the ionospheric observables. We can see that the 

higher consistency exists in the ionospheric observables of the DFPPP1 and DFPPP3 mod-

els. The mean values of the STD for the ionospheric observables difference with the 

DFPPP2 and DFPPP3 models are 0.65 and 0.09 m, respectively, with respect to the DFPPP1 

model. The leveling error and pseudorange noises lead to the higher noise in the DFPPP2 

model. The DFPPP1 and DFPPP3 models are capable of estimating slant ionospheric delay 

with the centimeter-level accuracy. 
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Figure 2. Slant ionospheric delay at station ULAB with the DFPPP1, DFPPP2 and DFPPP3 models 

on DOY 288, 2020. 

 

Figure 3. Slant ionospheric delay with the elevation variation with the DFPPP1, DFPPP2 and 

DFPPP3 models. 

 

Figure 4. STD distribution of ionospheric observables differences for the DFPPP2 and DFPPP3 mod-

els. The corresponding medium and mean values are also shown. 

The effect of the pure ionospheric observables and satellite DCB can be eliminated 

when differencing the ionospheric observables of the stations on short- or zero-baselines. 

Based on this, the ionospheric observable leveling noise magnitude can be evaluated. Fig-

ure 5 shows the slant ionospheric delay difference for the two stations WTZZ and WTZS 

with three dual-frequency PPP models. The STDs of the single-difference ionospheric ob-

servables are 0.06, 0.13 and 0.11 m, respectively, for the DFPPP1, DFPPP2 and DFPPP3 

models. The ionospheric observables of the three PPP models are in the level of sub-meter 

and the DFPPP1 model estimates the ionospheric observables with the highest accuracy. 
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Figure 5. Slant ionospheric delay single difference for the short-baseline stations with the DFPPP1, 

DFPPP2 and DFPPP3 models. 
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est noise. 

 

Figure 6. Average values of the ionospheric delay single difference STDs with the DFPPP1, DFPPP2 

and DFPPP3 models. 
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Figure 9. Estimated ionospheric VTEC single-difference for the two short-baseline stations with the 

DFPPP1, DFPPP2 and DFPPP3 models. 

With the GIM product as the reference, Figure 10 shows the distribution of the RMS, 

mean bias and STD of the ionospheric VTEC difference for the three PPP models. The 

VTEC accuracy with different approaches is approximately 2 TECU. The ionospheric 

VTEC value estimated with the single-layer solution is larger than the multi-layer as a 

whole. Faint difference can be found within the corresponding RMS and STD values. 

Moreover, Figure 11 depicts the distribution of the RMS, mean bias and STD of the 

ionospheric VTEC difference of the DFPPP2 and DFPPP3 models by using the DFPPP1 

model as the reference. The results indicate that the accuracy of the ionospheric VTEC 

value estimated with the multi-layer MF is better. The ionospheric observables derived 

with the DFPPP3 models exhibit the higher consistency than the DFPPP2 model. The me-

dian RMS errors of the ionospheric VTEC are 1.0, 0.9, 0.7 and 0.7 TECU for the DFPPP2 

and DFPPP3 models with two MFs. 

Figure 12 shows the RMS distribution of the ionospheric VTEC difference for the 

short-baseline stations with two MFs by the DFPPP1, DFPPP2 and DFPP3 models. We can 

also find the similar conclusion. For instance, the average RMS of the ionospheric VTEC 

difference decrease from the (0.45, 0.47, 0.29, 0.52, 0.43) TECU to (0.39, 0.40, 0.25, 0.45, 0.36) 

TECU after using the ionospheric multi-layer MF. The accuracy of the ionospheric VTEC 

from the DFPPP2 model is relatively poorer. The results of five short-baseline stations 

prove that the ionospheric VTEC can achieve the accuracy of the centimeter level. 
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Figure 12. RMS distribution of the ionospheric VTEC difference for the short-baseline stations for 
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ple, BDS C45 satellite shifts several nanoseconds at DOY 288, 2020. For the three PPP mod-

els, the satellite pseudorange OSB estimated by the ionospheric single- and multi-layer 

MFs is basically consistent, that is to say, different MFs have little influence on the satellite 

pseudorange OSB [39]. The variation of satellite pseudorange OSB time series estimated 

by the three PPP models is basically the same. The present PPP models all can effectively 
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values of BDS satellites C2I and C6I pseudorange OSB value is 2 2
2 1/f f . For BDS C45 and 

C46 satellites, the pseudorange OSB stability is poorer than other satellites due to the in-

fluence of observation quality and instability. 

Figure 16 shows the monthly RMS error of the estimated BDS C2I and C6I pseudor-

ange OSB with two MFs by the DFPPP1, DFPPP2 and DFPPP3 models in October 2020 

compared with the CAS satellite pseudorange OSB product. The average RMS error of the 

GEO, IGSO, MEO and all BDS satellites are also shown. The accuracy of BDS GEO satellite 

pseudorange OSB is 2–3 times less than that of IGSO among the BDS satellites. Due to the 

poor accuracy of C45 and C46 satellites, the average RMS of MEO satellites is higher than 

that of IGSO satellites on the whole. It is unsurprising that the some of the BDS-3 satellites 

are still in the testing and improvement as the latest satellite navigation system fully de-

ployed. For the three PPP models, the RMS error of the satellite pseudorange OSB is (0.34, 

0.35, 0.52, 0.54) ns for the DFPPP1 model. The RMS error of the satellite pseudorange OSB 

is (0.40, 0.41, 0.60, 0.61) ns for the DFPPP2 model. The RMS error of the satellite pseudor-

ange OSB is (0.37, 0.39, 0.57, 0.59) ns for the DFPPP3 model. The BDS satellite pseudorange 

OSB estimated by different PPP models has high flexibility and reliable accuracy. 

 

 

 

Figure 14. Average value of the estimated BDS pseudorange OSB by the DFPPP1, DFPPP2 and 

DFPPP3 models on October 2020. 
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Figure 15. Monthly STD value of the estimated BDS pseudorange OSB by the DFPPP1, DFPPP2 and 

DFPPP3 models in October 2020. The average STD values are also shown in the figure. 
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Figure 16. Monthly RMS error value of the estimated BDS pseudorange OSB by the DFPPP1, 

DFPPP2 and DFPPP3 models in October 2020 compared to the CAS product. The average RMS er-

rors of the GEO, IGSO, MEO and all BDS satellites are also shown. 

4. Conclusions 

In this study, three dual-frequency PPP models, namely DFPPP1, DFPPP2 and 

DFPPP3 models are presented for ionospheric studies. The mathematical models of the 

dual-frequency PPP models are introduced in detail. Datasets collected from the MGEX 

network are used to evaluate the performance of the estimated slant ionospheric observ-

ables, VTEC and satellite pseudorange OSB. The following conclusions are derived. 

Firstly, the ionospheric observables from the three PPP models are in the level of sub-

meter and the DFPPP1 model estimates the highest accuracy ionospheric observables. The 

leveling error of the DFPPP2 model is obviously larger than DFPPP3 model and the 

DFPPP1 model exhibits the slowest noise. 

Secondly, the RMS error of the VTEC is approximately 2 TECU with respect to the 

GIM product. The accuracy of the ionospheric VTEC value estimated with the ionospheric 

multi-layer MF is higher. The ionospheric observables derived with the DFPPP3 models 

exhibits a higher consistency than the DFPPP1 model. The ionospheric VTEC can achieve 

the accuracy of the centimeter level. 

Thirdly, the variation in satellite pseudorange OSB time series estimated by the three 

PPP models is basically the same. The present PPP models can all effectively estimate the 

satellite pseudorange OSB values. The partial BDS satellite pseudorange OSB stability is 

poor due to the influence of observation quality and instability. The RMS error of the sat-

ellite pseudorange OSB is in the level of sub-nanosecond. The accuracy of BDS GEO sat-

ellite pseudorange OSB is 2–3 times less than that of IGSO among the BDS satellites. Due 

to the poor accuracy of C45 and C46 satellites, the average RMS of MEO satellites is higher 

than that of the IGSO satellites on the whole. The BDS satellite pseudorange OSB esti-

mated by different the PPP models has high flexibility and reliable accuracy. 

In summary, the three PPP models can all be applied for the ionospheric studies. It is 

recommended that the DFPPP1 and DFPPP3 models are used for the corresponding per-

formance is relatively reliable. 
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