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Abstract: The identification of wetland vegetation is essential for environmental protection and
management as well as for monitoring wetlands’ health and assessing ecosystem services. However,
some limitations on vegetation classification may be related to remote sensing technology, confusion
between plant species, and challenges related to inadequate data accuracy. In this paper, vegetation
classification in the Yancheng Coastal Wetlands is studied and evaluated from Sentinel-2 images based
on a random forest algorithm. Based on consistent time series from remote sensing observations,
the characteristic patterns of the Yancheng Coastal Wetlands were better captured. Firstly, the
spectral features, vegetation indices, and phenological characteristics were extracted from remote
sensing images, and classification products were obtained by constructing a dense time series using a
dataset based on Sentinel-2 images in Google Earth Engine (GEE). Then, remote sensing classification
products based on the random forest machine learning algorithm were obtained, with an overall
accuracy of 95.64% and kappa coefficient of 0.94. Four indicators (POP, SOS, NDVIre, and B12)
were the main contributors to the importance of the weight analysis for all features. Comparative
experiments were conducted with different classification features. The results show that the method
proposed in this paper has better classification.

Keywords: classification; machine learning; vegetation phenology; dense time series

1. Introduction

The coastal wetlands in Jiangsu are crucial for migratory birds, providing key loca-
tions for resting, breeding, and wintering. Changes in wetland vegetation significantly
affect the stability of migratory bird populations, and it is essential to closely monitor
these changes and accurately assess the ecological functions and values of coastal wet-
lands [1–4]. Remote sensing technology is a vital tool for monitoring coastal wetlands, with
high-resolution imagery offering a comprehensive understanding of vegetation’s spatial
distribution [5,6]. Vegetation phenology studies the characteristics of vegetation at different
growth stages throughout the year, and analyzing time-series data can reveal vegetation
growth rates. High-resolution imagery is more suitable for detailed wetland vegetation
studies [7]. The variation in plant life within salt marshes in coastal wetlands, with their
relatively small size, suggests that higher-resolution images are more suitable for detailed
investigation of wetland vegetation [8]. Meanwhile, researchers continue to conduct ex-
periments aimed at determining the most effective features and strategies for classifying
remote sensing data. Results have shown that using the red-edge band transmitted by
the Sentinel-2 satellite provides a more accurate representation of the wetland vegetation
properties [9,10].
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However, the use of high-spatial-resolution or hyperspectral imagery for wetland
vegetation monitoring is often limited by the substantial expenses associated with spatial
and temporal range [11]. Consequently, an increasing interest in the investigation of
coastal wetland categorization algorithms based on time-series data has emerged in recent
years. One of the main advantages of conducting analyses on time series is that scholars
can acquire all remote sensing image data of a region for a period of one or more years.
Additionally, obtaining the significant seasonal changes characteristics in coastal wetland
vegetation can help improve the classification accuracy. Wu et al. [12] examined the growth
patterns of Spartina alterniflora and performed statistical analysis on the time-series data
for four spectral indicators. Zhang et al. [13] developed the first 30-m detailed wetland map,
known as GWL_FCS30, by using existing global wetland datasets and multisource time-
series remote sensing imagery. However, the limited availability of salt marsh samples has
led to an incomplete representation of some vegetation characteristics in the salt marsh area.
Due to the seasonal variations in coastal wetland vegetation, relying solely on remotely
sensed images taken on a single date is no longer enough for monitoring the dynamic
characteristics of wetland vegetation. Instead, employing dense time-series vegetation
phenology features can more effectively capture the temporal aspect of coastal wetland
vegetation. “Dense time series” involve collecting all available images over a year or
specific period, as opposed to a single-time image. Sun et al. [14] proposed the pixel
difference time series (PDTS) technique to extract phenological features and developed a
tidal filter to enhance the classification accuracy. Liu et al. [15] conducted a classification of
the Yancheng Coastal Wetlands by extracting phenological features from dense time-series
data. Nevertheless, their approaches solely rely on vegetation phenology for extracting
coastal wetland vegetation. Given that the Sentinel-2 satellite carries a multi-spectral band
providing additional remote sensing features, these features may enhance the classification
process and achieve more precise classification outcomes.

Today, there are many studies conducted on coastal wetland classification by fusing
multiple features, but there are few studies that really combine phenological features. We
propose a random forest method that integrates spectral features, vegetation indices, and
phenological features. The purpose of this experiment is to explore whether this method can
obtain wetland classification products with higher accuracy. In addition, we performed a
comparative analysis to evaluate how the use of multiple remote sensing features affects the
precision of wetland vegetation classification. The rest of this paper is structured as follows:
in Section 2, the study area, the dataset, the methodology, the random forest classification,
and the accuracy assessment are presented; in Section 3, the results are obtained from the
case study; Section 4 presents some discussion; finally, conclusions are given in Section 5.

2. Materials and Methods
2.1. Study Area

The study area is situated in the core zone of the Yancheng Wetland Rare Birds
National Nature Reserve (33◦25′0′′–33◦39′04′′N, 120◦26′40′′–120◦40′40′′E), Dafeng District,
Yancheng, Jiangsu Province, China (Figure 1). With a wide range of wetland varieties,
the coastal wetland covers a total area of about 191.00 km2. Coastal wetland vegetation
are a special type of wetland vegetation that has adapted to the salty–alkaline soils and
salty–tidal habitats characterizing this transition zone between land and sea. Moreover,
the area contains a wide range of vegetation types because it has remained untouched
by human activities. Both native and introduced vegetation types coexist in this area.
Native species include Phragmites australis (P. australis) and Suaeda salsa (S. salsa), while
introduced species include Spartina alterniflora (S. alterniflora). The wetlands’ ecological
stability is at risk due to the fast expansion of S. alterniflora.
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Figure 1. Location of the study area.

2.2. Dataset
2.2.1. Sentinel-2 MSI Data

Google Earth Engine (GEE) is a cloud platform developed by Google that combines
many data sources, such as Landsat, Sentinel, and other satellite data, along with meteoro-
logical, geographic, and demographic data. By utilizing the GEE cloud platform, we can ex-
pedite the acquisition of numerous observational datasets and effectively address the issue
of image geometry correction. The APIs comprise numerous sophisticated algorithms and
functionalities, facilitating users in efficiently processing data on a cloud platform. The re-
mote sensing data utilized in this study were obtained from the “S2_SR_HARMONIZED”
dataset available on Google Earth Engine (GEE) for the year 2022. This dataset corresponds
to Sentinel-2 Level-2A (L2A) products and is sourced from the European Space Agency’s
Sentinel Scientific Data Hub (https://scihub.copernicus.eu, accessed on 20 March 2024).
The Sentinel-2 L2A products use spectral bands with a spatial resolution of 10 m, which
include red, green, blue, and near-infrared bands. The data have been subjected to radio-
metric and geometric corrections, as well as atmospheric corrections, and the images are
provided in the WGS84 UTM projection, including an estimated area of 110 × 110 km2.

2.2.2. Sample Data

Based on field observations and statistics, the dominant vegetation types in Yancheng
include Spartina alterniflora (S. alterniflora), Suaeda salsa (S. salsa), and Phragmites australis
(P. australis). Sample data were manually delimited using Google Earth and high-resolution
remote sensing images, based on field observations. Using a combination of field survey
sampling and image interpretation, we classified the study area in Yancheng into five
categories: P. australis (PA), S. salsa (SS), S. alterniflora (SA), water, and unused land. Figure 2
illustrates the spatial arrangement of wetland habitat samples in the study area. The image
shows a Sentinel-2 image taken on 10 October 2022. Sample data were generated using
a uniform fishnet in ArcGIS, which was then integrated with site inspection data for
annotation purposes.

https://scihub.copernicus.eu
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Figure 2. Geographical distribution of the wetland sample.

2.3. Methodology

Figure 3 shows the technical procedure of wetland classification. The precise pro-
cedures encompassed the following: 1⃝ Obtaining all Sentinel-2 MSI data for the year
2022 and performing preprocessing tasks such as the removal of clouds and shadows.
2⃝ Comparing and selecting suitable spectral indices as parameters for the dense time-

series dataset, combining all images within the study area into a collection with a temporal
dimension to create a pixel-level time-series dataset. 3⃝ Employing a function that aligns
with the growth pattern of vegetation phenology to fit the time-series curves, resulting in
smoother and more accurate curves. 4⃝ Feature fusion involves the integration of spectral
features, vegetation indices, and phenological features in order to derive wetland veg-
etation characteristics for classification. 5⃝ By integrating field measurement data and
manually annotated sample locations, the random forest algorithm was utilized to classify
coastal wetland vegetation types in the research area. An accuracy assessment was then
conducted to create a classification map.
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2.3.1. Data Preprocessing

The GEE platform utilizes the “maskCloudAndShadowsSR” method to eliminate
clouds, thus guaranteeing that useable pixels are in each image. The algorithm utilizes
SCL files generated by the Sentinel-2 L2A product to achieve the removal of interfering
elements from the image and the retention of usable information by masking the SCL
files for categories that may be identified as cloud, snow, cloud shadows, and so on. All
available Sentinel-2 satellite remote sensing images were downloaded throughout the year.
File names were stored using the date of image acquisition, facilitating the creation of
dense time-series phenological feature curves later on. We acquired remote sensing image
data from the Sentinel-2 L2A product for the entire year 2022. Specifically, 46 images were
chosen, ensuring that the cloud cover was less than 80%. After cloud removal processing,
36 images were used for the reconstruction of the dense time-series dataset, as described in
Table A1 in Appendix A. Simultaneously, considering the growth patterns of vegetation in
coastal wetlands, the initial phase of vegetation growth was sluggish, while the latter phase
more prominently exhibited the distinctive growth features of coastal wetland vegetation.
The GEE time-polishing function was utilized to aggregate all high-quality pixels from June
to December into a single image by considering the growth characteristics of the wetland
vegetation, which was achieved by finding the median value of each pixel over all bands.
The resulting image is a high-quality synthetic representation for the year 2022. Utilizing
medium-digit images effectively decreases the quantity of datasets in comparison to the
original images, hence producing synthetic images of superior quality that facilitate quicker
and more efficient analysis to extract subsequent spectral features and commonly used
vegetation indices [16].

2.3.2. Construction of Dense Time-Series Dataset

The construction of dense time-series datasets refers to the integration of all available
temporal images within the study area into a collection with a temporal dimension, selecting
appropriate spectral indices as parameters. In this study, NDVI is proposed as a parameter
for reconstructing the dataset used for wetland vegetation classification, as its intrinsic
sensitivity to coastal wetland vegetation allows for precise monitoring of plant growth
patterns [17]. The formula for NDVI is as follows:

NDVI =
NIR − RED
NIR + RED

(1)
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where NIR represents the near-infrared band on the S2_SR_HARMONIZED data, while
RED represents the red band on the S2_SR_HARMONIZED data.

The process of dataset reconstruction involves two sequential steps: Firstly, the con-
struction of a pixel-level dense time-series NDVI dataset, where the 36 NDVI images are
processed in chronological sequence by raster manipulation to combine them into a high-
dimensional raster array. Specifically, by implementing a cloud removal technique on the
original S2_SR_HARMONIZED data, regions that in the original images were hidden by
clouds, fog, or shadows are replaced with null values. This guarantees the accuracy and
reliability of the subsequent inverse modeling of pixel-wise time-series NDVI vegetation
phenology characteristics. The precision of the fitting model remains intact, eliminating
any error produced by cloud and fog obstruction during the inversion process.

The second dataset corresponds temporally to the NDVI data and is an annual Julian
day (DOY) time series. The Julian day is employed to record the number of days since
the beginning of the year, providing a method to monitor the exact day inside a full cycle
of vegetation growth. As the acquired S2_SR_ HARMONIZED dataset records image
acquisition dates in the year–month–day format, the initial step involves converting these
dates to Julian days, also known as DOY. Next, a time-series dataset representing the day of
the year (DOY) needs to be created. This dataset should have the same size as the pixel-level
dense time-series NDVI dataset. The attributes of each pixel in the images are subsequently
allocated the relevant day of year (DOY) value for that specific temporal event. The above
two steps are both implemented in Python.

2.3.3. Extraction of Vegetation’s Phenological Features

The curve-fitting method involves picking a function form that accurately reflects the
growth patterns of the vegetation’s phenology in order to fit the time-series curve. Since the
currently constructed NDVI and DOY datasets are discretely combined, Wu et al. [18] have
demonstrated that obtaining continuous curves through model fitting can better capture
vegetation’s phenological information. Therefore, this study aims to curve-fit the well-
constructed NDVI dataset to mitigate the impact of inherent data deficiencies. Commonly
used fitting models include double logistic fitting, polynomial fitting, and S-G filtering
fitting. In this study, we selected the double logistic fitting function model as the preferred
choice after several tests. This model combines the NDVI and DOY datasets to create a
dense time-series vegetation phenology feature-fitting model based on the NDVI.

The “curve_fit” algorithm employs nonlinear least squares fitting to curve functions to
find the ideal fitting model and achieve the most accurate curve. The optimization problem
of the minimum multiplication can be expressed as follows:

minimize
N

∑
i=1

(yi − f (xi, p))2 (2)

where N represents the number of data points, p represents the adjusted parameter, f (xi, p)
is the function of p, xi is the input variable, and yi is the actual observation value. The func-
tion must take the independent variable as the first parameter, followed by any additional
required parameters.

This study adopts the logistic function model proposed by Gonsamo et al. [19] and
applies it to the well-constructed NDVI and DOY datasets. This method assumes that the
NDVI curve is symmetric during the rising and falling phases of the growing season, and
it also presupposes that the NDVI curve is smooth, without abrupt changes or extreme
values. Extreme climatic events may cause anomalies in NDVI values, and the double
logistic fitting method has limited capacity to handle these outliers. The fitting model is
as follows:

f (x) = α1 +
α2

1 + eδ1(x−β1)
− α3

1 + eδ2(x−β2)
(3)

where x represents the day of year (DOY), (α2 − α1) is the amplitude between early summer
on the plateau and the background, (α3 − α2) is the amplitude between late summer on



Remote Sens. 2024, 16, 1124 7 of 24

the plateau and the background, δ1 and δ2 are the normalized slope coefficients for spring
and autumn, respectively, and β1 and β2 represent the DOY midpoints for the transition
between the green-up and senescence periods. Based on the first, second, and third
derivatives of Equation (3), phenological indices can be systematically calculated from the
parameter system using the least squares method [18]. As a result, a model is created for
each pixel in the research region that fits a curve to the vegetation’s phenological features
using the NDVI.

Generally, the “coefficient method” [20], the “derivative method” [21], and the “thresh-
old method” [22] are employed for extracting phenological metrics. This study used the
derivative method (DES) to derive four prevalent vegetation phenology characteristics.
In the derivative technique, the start of season (SOS) and the end of season (EOS) are
determined by finding the DOY that corresponds to the highest and lowest values of the
derivative curve-fitting model of the vegetation’s phenological features (i.e., the rate of
change of the function). The peak of phenology (POP) is the specific day of the year when
the maximum value is reached. Thus, these four phenological indices are determined via
the derivative approach.

SOS = f ′(x)max (4)

EOS = f ′(x)min (5)

LOS = SOS − EOS = f ′(x)max − f ′(x)min (6)

POP = f (x)max (7)

2.3.4. Feature Fusion of Spectral Features, Vegetation Indices, and Phenological Features

Multi-spectral bands such as red bands, green bands, blue bands, red-edge bands,
near-infrared bands, and mid-infrared bands of Sentinel-2 images were extracted from GEE.
Five commonly used vegetation indices for wetland classification were also selected as
classification features for random forests. The selection of the five vegetation indices was
based on the results of previous studies and chosen according to experience. The precise
equations for computing the commonly used vegetation indices are provided in Table 1,
where NDVI, GNDVI, EVI and NDVIre are all used to classify wetland vegetation [9,23,24].
GNDVI is more sensitive to chlorophyll than NDVI, which is favorable for capturing the
information of wetland vegetation during the emergence period. EVI can better overcome
the problem of NDVI saturating under the cover of large-scale vegetation and is able to
more sensitively capture the growth and changes of vegetation. Coastal wetland vegetation
is more sensitive to the red-edge information [9]; thus, NDVIre was selected. Meanwhile,
NDWI was used to distinguish water bodies from other features. These indices were subse-
quently merged with the four vegetation phenology variables described in Section 2.3.3 to
provide the complete set of input features for this experiment.

Table 1. Common vegetation indices.

Vegetation Indices Calculation Formulae

NDVI NIR − RED
NIR + RED

GNDVI (NIR − GREEN)

(NIR + GREEN)

NDVIre NIR − RE
NIR + RE

NDWI GREEN − NIR
GREEN + NIR

EVI 2.5 × ((NIR − RED)/(NIR + 6 × RED − 7.5 × BLUE + 1))
Where NIR = near-infrared band, RED = red band, RE = red-edge band, GREEN = green band, and BLUE = blue band.
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2.4. Random Forest Classification (RF)

We used the built-in simpleRandomForest() algorithm on GEE. This algorithm, concep-
tualized by Leo Breiman and Adele Cutler, introduced the term “random decision forests”
in 1995 at Bell Laboratories [25].

The RF algorithm constructs each tree through the following steps:

(a) Use N for the number of training examples (samples) and M for the number of
features.

(b) Choose the number of input features (m) for determining decisions at each tree node,
where m is considerably less than M.

(c) Employ bootstrapping by randomly sampling N times with replacement, creating a
training set, and evaluating errors on the remaining unsampled examples.

(d) Randomly select m features for each node and compute optimal splitting based on
these features.

(e) Allow each tree to grow fully without pruning.

These steps outline the construction process of each tree in the random forest algorithm.
The total number of sample sites was 760, of which 280 were PA, 63 were SS, 157 were SA,
202 were water, and 28 were unused land. They were randomly divided in a 7:3 ratio for
training and testing, respectively. The number of N was 70% of the total sample, and the
remaining 30% was used to test the accuracy of the classification. M was set to 19, which is
the sum of the spectral, vegetation index, and phenological characteristics.

After a multitude of experiments, when the number of decision trees is larger than
50, the classification model gradually tends to fit. Therefore, the number of decision
trees was set to 50, and the other parameters were set to default. Since part of the data
was not extracted during the sampling process, this part of the data was visualized as
out-of-bag (OOB). Out-of-bag error (OOB error) generated from OOB data can not only
evaluate the classification accuracy; it is also possible to calculate the importance of dif-
ferent feature variables (variable importance) of different feature variables for feature
selection [26]. The model for assessing the importance of the characteristic variables is
expressed as follows:

VI(MA) =
1
N

N

∑
t=1

(
BMA

nt − BMA
Ot

)
(8)

where VI denotes the importance of the feature variable, M is the total number of features
in the sample, N is the number of decision trees generated, BMA

Ot
is the OOB error of the t-th

decision tree when no noise interference is added to any feature MA, and BMA
nt is the OOB

error of the t-th decision tree when noise interference is added to any feature MA. If the
accuracy of out-of-bag data decreases significantly after adding noise randomly to a certain
eigenvalue MA, it means that the eigenvalue MA has a great influence on the classification
result, which also indicates high importance.

2.5. Accuracy Assessment

The assessment of wetland classification accuracy in the Yancheng National Rare Birds
Nature Reserve was conducted using a combination of a confusion matrix, field inspections,
and samples acquired from high-resolution images, including those obtained from Google
Earth. To validate the accuracy, the overall accuracy (OA), kappa coefficient [27], producer
accuracy (PA) and user accuracy (UA), which are commonly used today, were mainly
selected as evaluation indices to evaluate each program. The following methods were
chosen in this experiment:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Kappa =
PO − Pe

1 − Pe
(10)
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PA =
TP

TP + FN
(11)

UA =
TP

TP + FP
(12)

where TP represents true positives, FP represents false positives, TN represents true nega-
tives, FN represents false negatives, Po represents the observed precision, and Pe represents
the expected precision of the random classification.

These evaluation metrics provide a thorough evaluation of the accuracy of wetland
classification in the study area.

2.6. Statistical Significance of Classifiers’ Performance

In many remote sensing classification tasks, the comparisons of thematic map accuracy
are often conducted using the same set of samples. For non-independent samples, the
statistical significance of the difference between two proportions can be assessed through
the McNemar test [28]. The McNemar test is based on the standardized normal test statistic.
The Z-test and χ2-test are based on 2 × 2 confusion matrices. These tests were performed
to test independency between two classification algorithms. The number of correctly and
wrongly classified reference data pixels for two algorithms can be cross-tabulated as shown
in Table 2.

Z =
f12 − f21√
f12 + f 21

(13)

where f12 denotes the number of samples that were correctly classified by the first classi-
fication algorithm but misclassified by the second classification algorithm. Similarly, f21
denotes the number of samples that were misclassified by the first classification algorithm
and correctly classified by the second classification algorithm [29]. A difference in the
classification accuracy between the confusion matrices is statistically significant (p ≤ 0.05)
if the Z-value is more than 1.96 [30].

Table 2. Cross-tabulation of the numbers of correctly and wrongly classified pixels for two algorithms.

Allocation Classification 2

Classification 1 Correct Incorrect Sum

Correct f11 f12
Incorrect f21 f22
Sum

The χ2-test is a non-parametric statistical test to determine whether the two or more
classifications of the samples are independent or not. This test, if properly applied, may
give us the answer by rejecting the null hypothesis or failing to reject it. If we find the X2

value to be less than the value corresponding to our level of confidence, we can conclude
that our null hypothesis is probably true. On the other hand, if our X2 value lies over the
level of confidence, we know that our χ2-test rejects the null hypothesis. Thus, we can
conclude that the two classifications are dependent on one another. For the critical value
defined as X2

0.05(1) = 3.841, the null hypothesis is not rejected if X2 < X2
0.05(1). The McNemar

test [29] is based on the standardized normal test, given as follows:

X2 =
( f12 − f21)

2

f12 + f 21
(14)

3. Results and Analysis
3.1. Analysis of Available Pixel Count

Figure 4 shows the number of available images obtained by statistically analyzing
each pixel in the study area after applying the Google Earth Engine (GEE) cloud removal al-
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gorithm. In Figure 4a, the blue areas represent the regions with a lower number of available
images due to variables such as clouds and rain. The minimum count of images in these
areas is 15. Otherwise, the red areas indicate the regions with a higher number of available
images and better quality, reaching a total of 36 images. Figure 4b illustrates the data avail-
ability for each month based on the selected remote sensing images. By creating a dense
time-series dataset, the inclusion of images for every month of the year is ensured. This
method solves the problem of limited availability of images during the summer season due
to weather conditions. It ensures the accuracy of the fitting curves for vegetation phenology
features by using vegetation indices. The construction of a densely populated time-series
dataset for the whole year provides a more complete and unbiased depiction of the real land
cover categories in a specific area, hence bolstering the reliability of classification outcomes.
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3.2. Analysis of Vegetation Phenology Models’ Fitted Curves Based on NDVI

Figure 5 shows the fitted curves of the NDVI vegetation phenology model for typical
coastal vegetation. The DOY is represented on the horizontal axis, while the corresponding
fitted values of NDVI for the vegetation on that specific day of the year are represented
on the vertical axis. The picture displays three separate curves, representing each of
the fitted models for three common vegetation types found in the coastal wetlands of
Jiangsu: PA, SS, and SA. The three colored empty dots in the figure depict the average
NDVI values computed from all sample points for each wetland vegetation type on the
specific DOY that corresponds to the remote sensing images obtained by the Sentinel-2
satellite. Given the temporal discontinuity, this paper uses a dual logistic fitting approach
to calculate the associated NDVI curves. This methodology captures the fluctuations in
the growth of a particular type of vegetation during a year, encompassing one complete
growth cycle. This procedure eliminates the impact of specific data and random factors,
and it reveals objective patterns of vegetation throughout its entire life cycle. In order to
make it easier for readers to understand the vegetation’s phenological information, three
kinds of vegetation phenology parameters (SOS, EOS, and POP) are represented in Figure 5,
and the phenological parameters here should actually be the DOY values corresponding to
their horizontal coordinates.

PA demonstrated the earliest growth period, beginning rapid development in early
April, achieving its maximum size in July and August, and quickly declining from mid-
September, with almost full deterioration by the end of November. Conversely, SS and
SA both started growing quickly in June, reached their highest growth rate in September,
and began to deteriorate in October. By the end of November, SS was mostly withered,
although SA had not yet fully deteriorated.
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Figure 5. Analysis of fitted curves for NDVI phenological models of vegetation.

Figure 6 shows the boxplots of four widely used vegetation phenology indices (SOS,
EOS, LOS, and POP) obtained by the derivative approach, based on the fitting curves of the
NDVI vegetation phenology model as described in Section 2.3.3. The x-axis indicates three
different vegetation types, while the y-axis corresponds to the DOY for the corresponding
phenological traits. Clearly, PA’s SOS occurs significantly earlier than the SOS of the other
two vegetation types, making it easily recognizable. The efficacy of EOS and LOS is not as
evident, due to the difficulty in distinguishing data distribution across the three vegetation
types. The data obtained from the POP analysis clearly demonstrate that PA exhibits
the lowest POP, followed by SS, while SA has the highest POP. Examining the widths of
the boxplots for the three vegetation types, it is evident that the box representing SS has
the least variation in its upper and lower boundaries. This suggests that SS has the least
variability and a more tightly clustered distribution of data.
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3.3. Classification Results and Accuracy Evaluation

Figure 7 shows the classification map created by combining multisource features,
such as spectral features, vegetation indices, and phenological features. This fusion was
achieved using the random forest classification technique. The classification had an overall
accuracy of 95.64%, along with a kappa coefficient of 0.94. Figure 7 illustrates the spatial
arrangement of coastal wetland vegetation, showcasing its growing spread from inland
regions to the beach. The vegetation succession from inside to the external regions occurs
in the order of PA, SS, and SA.
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Figure 7. Classification of typical vegetation in coastal wetlands.

The distribution of SS is divided due to the erosion caused by SA. Field investigations
revealed that the central area experiences minimal human impact, resulting in dense growth
of SS on specific roadways in the region. This phenomenon can be attributed to the fact
that some elongated roads are frequently categorized as SS on the classification map. Due
to the varying salt tolerance levels of different types of land cover and the fluctuations in
soil salinity, PA, which has a lower salt tolerance, tends to grow further inland. Conversely,
SA and SS, which have more salt tolerance, occur together in specific regions and are found
near the ocean. Near the coastline, there were occasional cases where SA was misclassified
as PA. The presence of SA in both submerged and non-submerged forms for a long time
may be due to the tidal influence. This leads to inaccuracies in extracting phenological
information. White waves captured by satellite imagery can also affect the identification of
SA near the coastline.

The accuracy assessment of the classification results, as shown in Figure 8, was per-
formed by calculating a confusion matrix. Here, the remaining 30% of samples that were
not used for training were used to assess the accuracy. The figure shows the producer
accuracy of different land cover classes. All other categories had classification accuracies
beyond 90%, while the SS category had an accuracy of 75.26%. This indicates that, in
general, all land cover types can be classified relatively well, with relatively few cases of
misclassification. A portion of the SS was erroneously partitioned into PA, resulting in a
blending of image features that are challenging to discern. Additionally, a portion of the
SA was mistakenly divided into PA and the water column, potentially influenced by the
tidal movements along the coastline.
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3.4. Feature Contribution Analysis

Figure 9 shows the plot of the feature contribution analysis derived from the random
forest training. Above the bar chart, the displayed values represent the contribution
weights of each respective feature. The y-axis of the graph reflects the levels of contribution,
while the x-axis represents 19 input features, arranged in descending order based on
their contribution. A higher contribution indicates a more significant influence on the
classification by that particular attribute. The five most important characteristics, sorted
from highest to lowest, were POP, SOS, NDVIre, Band12, and Band11. The significant
weight assigned to the POP illustrates its vital significance in the classification task. This
is further supported by the box-and-line plot of POP in Figure 6, which demonstrates its
ability to effectively differentiate coastal wetland vegetation. SOS is listed as the second
most desirable band, and NDVIre is placed third. The B12 and B11 bands are the mid-
infrared bands on the Sentinel-2 satellite. This indicates that the mid-infrared band may
have an advantage in capturing information about the features related to coastal wetlands
in Yancheng Rare Bird Wetland National Nature Reserve, Jiangsu Province. The importance
of Band6, the red-edge band, is not ranked high, while Band5, also a red-edge band, and
NDVIre, which contains a red-edge band, are ranked high in the importance weighting
values (third and sixth, respectively). Therefore, specific red-edge bands may be more
effective in capturing coastal wetland feature information. The Band8 and EOS contribution
values ranked last. This may be due to the fact that the wetland vegetation all showed a
similar green color during its peak growth period, and Band8 had difficulties capturing the
difference between them. On the other hand, EOS may not be applicable as a phenological
feature for the classification of coastal wetland vegetation.

We then selected the top seven features based on feature importance contribution
(phenological features: POP, SOS; spectral features: B12, B11, B5; vegetation index features:
NDVIre, NDWI) and performed random forest classification under identical conditions.
The final classification accuracy reached 95.37%, with a kappa coefficient of 0.93. This
resulted in high classification accuracy and also provided a method for simplifying input
features for classification.
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3.5. Comparison of Multiple Feature Fusion Methods

To validate the usability of this method, we conducted a classification comparison
using different feature combinations as input features. We devised a total of seven schemes
with various combinations of features by combining spectral features, vegetation indices,
and phenological features in different ways. These methods include Scheme 1: using
only spectral features (SP), Scheme 2: using only vegetation indices (VI), Scheme 3: using
only phenological features (PH), Scheme 4: using spectral features and vegetation indices
together (SP+VI), Scheme 5: using spectral features and phenological features together
(SP+PH), Scheme 6: using vegetation indices and phenological features together (VI+PH),
and Scheme 7: using spectral features, vegetation indices, and phenological features to-
gether (SP+VI+PH). The classification outcomes are presented in Table 3 and Figure 10.
The classification results indicate that the overall accuracy of employing only phenological
features for classification is 82.67%, which corresponds to the lowest kappa coefficient.
The multisource feature fusion technique employed, which represents Scheme 7 in this
work, attained the highest classification accuracy, exhibiting an overall accuracy of 95.64%
and a kappa coefficient of 0.94. Table 3 shows the PA1 (producer accuracy) and UA (user
accuracy) for all categories for the seven different scenarios. Among all five land cover
categories, the PA1 and UA values for Scheme 7 were generally at a fairly high level of
classification accuracy in each category, and this Scheme obtained the highest PA1 and UA
for PA among all of the scenarios. Scheme 5 had the second highest classification accuracy
and was very similar to Scheme 7 (OA of 95.46, kappa coefficient of 0.94). Scheme 3 per-
formed poorly in the classification of SS and UN (unutilized land). Although classification
based only on phenological data had the lowest accuracy, a comparison of the two methods
of Scheme 4 (SP+VI) and Scheme 7 (SP+VI+PH) showed that the classification accuracy
generally improved after integrating phenological features. Furthermore, by examining the
classification result maps of several approaches in Figure 10, it is evident that Scheme 7
(SP+VI+PH) demonstrates the highest classification accuracy, closely resembling the real
land cover distribution. While the classification accuracy using only spectral features (SP)
was high, Figure 10a demonstrates that specific regions of SA were misclassified as PA,
contradicting the real situation. Hence, relying only on classification accuracy to assess the
real quality of classification is inadequate.
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Table 3. Comparative analysis of various feature fusion methods.

Classification
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7

PA1% UA% PA1% UA% PA1% UA% PA1% UA% PA1% UA% PA1% UA% PA1% UA%
PA 98.25 89.95 90.78 86.26 89.78 83.53 99.00 90.43 98.50 93.39 95.01 92.02 99.25 93.65
SS 75.26 96.05 72.17 87.50 46.39 57.69 73.20 98.61 79.38 96.25 64.95 87.50 75.26 98.65
SA 86.98 95.39 79.00 84.31 85.29 83.20 87.39 95.41 92.44 98.65 91.18 90.42 94.12 97.39
WA 99.00 96.73 99.00 93.38 88.29 88.29 99.33 96.43 99.67 95.21 98.66 93.95 99.33 95.81
UN 93.18 97.62 79.55 94.60 45.46 74.07 93.18 97.62 90.91 100 84.09 94.87 90.91 100

OA% 93.70 88.32 82.67 93.98 95.46 94.08 95.64
Kappa 0.91 0.84 0.76 0.92 0.94 0.92 0.94

Where WA represents water areas and UN represents unused land.
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Figure 10. Comparison of different feature classification maps: (a) RF classification based on spectral
features; (b) RF classification based on vegetation indices; (c) RF classification based on phenological
characteristics; (d) RF classification based on spectral features and vegetation indices; (e) RF classifi-
cation based on spectral and phenological features; (f) RF classification based on vegetation indices
and phenological characteristics; (g) RF classification based on spectral indices, vegetation indices,
and phenological characteristics; (h) remote sensing imagery captured on 24 November 2022.

Figure 10h presents a true-color composite remote sensing image observed by Sentinel-2
on 24 November 2022. In this image, the magenta-colored areas correspond to the SS, with
the PA in a predominantly withered state during this period. The green areas near the
coast represent vegetation classified as SS. This image serves for comparing the accuracy of
classification results obtained by various schemes. By conducting on-site investigations and
analyzing high-resolution satellite images, we compared the categorization map results of
these seven combinations. Figure 10a,b,d reveal a high occurrence of misclassifications of
PA as SA near the shoreline of the study area. Figure 10c shows that, in the central area,
there were many instances when areas of PA were misidentified as SS. This led to the lowest
overall classification accuracy compared to all other combinations. The identification of the
experimental area containing SS in the northeastern half of the study area was inadequate,
as shown in Figure 10f. Figure 10e,g exhibit comparable classifications, achieving the best
accuracy in categorization.

Since all methods use sample data from the same study area, assessing accuracy
through confusion matrices and kappa coefficients is inadequate. It was critical to determine
whether there were substantial statistical differences between the methods. Table 4 lists the
Z-test values and χ2-test values used for pairwise comparisons of classification algorithms.
Statistically, all combinations, except Scheme 7 (RF with SP+VI+PH) vs. Scheme 5 (RF with
SP+PH), had Z-values greater than 1.96 and χ2-values above the basic threshold of 3.841.
This indicates that there is a significant difference between these possible combinations.
The method proposed in this study (Scheme 7) showed higher classification accuracy at
a 95% confidence level. However, the Z-test and χ2-test statistics indicated no significant
difference between Scheme 7 vs. Scheme 5 in classification. The vegetation index selected
in this paper may not play a key role in the classification of coastal wetlands, and the
difference can be reflected by adding more and more effective vegetation indices (VIs).
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Table 4. Statistical significance of differences in classification accuracy between two different algorithms.

Classification 1 Classification 2 Z-Test X2-Test p-Value

RF with SP+VI+PH RF with SP 3.13 21.0 =0.0029
RF with SP+VI+PH RF with VI 7.94 79.0 <0.0001
RF with SP+VI+PH RF with PH 11.44 142.0 <0.0001
RF with SP+VI+PH RF with SP+VI 2.71 18.0 =0.0104
RF with SP+VI+PH RF with SP+PH 0.38 2.0 =0.8501
RF with SP+VI+PH RF with VI+PH 5.46 39.0 <0.0001

Where SP represents spectral features, VI represents vegetation indices, and PH represents phenological features.

3.6. Misclassification Analysis Based on Land-Use Change Mapping

While the overall accuracy obtained from the classification results of the seven schemes
suggests that the proposed method in this study can further improve accuracy, it is chal-
lenging to visibly observe the differences in the classification results from the classification
result maps. In order to visually highlight the differences in classification results among
other schemes, this study assumes the classification results obtained by the proposed
Scheme 7 (RF with SP+VI+PH) as the ground truth. Land-use change maps and error
classification maps were generated by comparing these results with those obtained by other
schemes, as shown in Figure 11. From Figure 11a,b,d, it can be observed that in Scheme 7,
the area classified as SA is misclassified as PA in Schemes 1, 2, and 4. Combining this
observation with Figure 10h, we can conclude that PA does not grow in areas close to the
coast. Therefore, the classification performance of these feature combination methods is not
as good as that of Scheme 7 (RF with SP+VI+PH). Figure 11c reveals a significant difference
between the classification results of Scheme 7 and Scheme 2, indicating that using only
phenological features for classification may not necessarily meet the requirements of land
cover classification tasks near the coastal wetlands. In Figure 11e, it can be observed that
Scheme 5 and Scheme 7 yield the most similar classification results, with classification
accuracies of 95.46% and 95.64%, respectively. This further illustrates that there is no
significant difference between these two experimental protocols. Figure 11f suggests that
Scheme 6 may misclassify some SS as PA, indicating that this combination method may not
be very effective in distinguishing between PA and SS in mixed habitats.

3.7. Analysis of Misclassification Results

To solve the problem of misclassification of SA in the classification map near the
coastline, we chose a subset of SA samples located near the coastline and samples located
far from the coastline (as depicted in Figure 12a). The satellite image depicted in Figure 12a
is a standard false-color composite image that was derived from the scene acquired on
18 May. The presence of SA is indicated by the dark red spots near the coastline in this
map, illustrating its growth in those specific regions. Simultaneously, this investigation
acquired the average NDVI values over time at the specific locations of the chosen samples.
A dense time-series NDVI fitting model was utilized to produce NDVI fitting curves for SA
at locations both close to and distant from the coastline.

In Figure 11b, the analysis shows the comparison of the curves for PA and SA from
Figure 5 with the NDVI fitting curves for sample points in Figure 12a. Figure 12b illustrates
that the regression curve of SA is shifted towards the left along the shoreline, in contrast
to SA situated farther from the coast. Moreover, the highest possible value of NDVI
is decreased, leading to a more accurate alignment with the NDVI fitting curve of PA.
The cyclic inundation of vegetation in the intertidal zone, driven by tidal fluctuations, leads
to changes in phenological traits. Because of the limited and scarce plant life in this area, the
young shoots are highly susceptible to tidal influences and can be misidentified as similar
species at different growth stages [14]. The misidentification of SA along the shoreline as
PA is caused by the decreased extent of its phenological traits.
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Figure 11. Misclassification analysis based on land-use change mapping ((a) land-use change from
Scheme 7 to Scheme 1; (b) land-use change from Scheme 7 to Scheme 2; (c) land-use change from
Scheme 7 to Scheme 3; (d) land-use change from Scheme 7 to Scheme 4; (e) land-use change from
Scheme 7 to Scheme 5; (f) land-use change from Scheme 7 to Scheme 6), where 0 represents PA,
1 represents SS, 2 represents SA, 3 represents water area, and 4 represents unused land; “01” represents
the land use from PA to SS; the others are in a similar fashion.
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Similarly, we noticed discrepancies in the developmental trends of PA in various
areas within the coastal wetland. Figure 12c illustrates the comparison of the NDVI fitting
curves between early-growing PA and late-growing PA, as shown in Figure 12d. PA that
grows later in the season demonstrates greater specificity, typically commencing growth
one to two months after the PA that grows earlier in the season. Furthermore, its rate of
growth is significantly higher, with less variation in the period of decline as compared to
the early-growing PA. The observed variation can be attributed to environmental factors
such as vegetation attributes, climatic conditions, soil salinity, and vegetation complexity
in the growing region.

4. Discussion
4.1. Comparison with Previous Works

A single temporal remote sensing image for wetland classification has achieved good
results [31], while the diverse growth and change characteristics of wetland vegetation
cannot be fully captured by a single temporal phase. Therefore, this study considers a
method introducing phenological features to more comprehensively capture information
about wetland vegetation. Chao [14] and Liu [15] used phenological features such as SOS
(start of season), EOS (end of season), MOS (middle of season, equivalent to POP in this
study), MV (maximum value), and SV (start value) for wetland classification. Although
the phenological parameters extracted in this study may differ slightly, we emphasize
the integration of phenological information with various common spectral indices and
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vegetation indices to achieve better classification results. From the comparison between
Scheme 3 and Scheme 7 in Section 3.5, it can be concluded that relying solely on phenological
features for coastal wetland classification tasks may not achieve higher accuracy, due to
factors such as regional characteristics, image quality, and human activities. The random
forest classification method, combining multiple features, captures more details in wetlands,
resulting in better classification results and demonstrating the feasibility of the proposed
method in this study. The specific selection of phenological features for better classification
results often shows specificity in different study areas and requires analysis based on actual
conditions. This study did not delve deeper into this aspect, and the experiment only
explored whether adding phenological features to time-series remote sensing data could
improve the overall classification accuracy. Zhang [9] combined multiple features, including
spectral features, vegetation features, and texture features, for integrated classification.
The results indicated that texture features contributed little to the overall classification
and could be excluded from wetland classification. Therefore, Zhang’s method can be
considered similar to Scheme 4 in Section 3.5. Comparisons between Scheme 4 and other
schemes, as well as the contribution weights of the phenological features shown in Figure 9,
reveal that the random forest classification method proposed in this study, “SP+VI+PH”,
achieves better classification accuracy. Depending on the scale of wetland classification and
the requirements for land-use types, utilizing conventional remote sensing data acquired
from June to September may not be suitable for vegetation classification in the coastal
wetlands of Jiangsu. For the two common vegetation types in these wetlands, SS and SA,
the optimal observation month is November.

4.2. Shortcomings and Future Plans

In the initial image selection, this study used 22 scenes of Sentinel-2 images with
low cloud cover throughout the year 2022 for extracting phenological features. Later, by
applying a cloud masking algorithm to remove interference such as clouds and shadows,
the number of images was increased to 36 scenes. The overall classification accuracy
significantly improved, indicating that the inclusion of additional remote sensing images
allows for a more comprehensive capture of wetland vegetation’s growth characteristics.
However, the removal of clouds and shadows inevitably results in the loss of information
within the excluded areas. For example, November is the optimal period for observing
SS, while, because of the reasons discussed above, the lack of complete information on SS
in some regions might result in discrepancies and mistakes when extracting phenological
characteristics for the same type of land cover. During the field investigation, we observed
that interventions by national policies could potentially influence the classification results
of local wetlands. For instance, in the process of national interventions to control the growth
of SA on coastal mudflats, there were instances where an area previously covered by SA
suddenly transformed into bare land. This occurred due to local policies involving the use
of excavators to remove SA from the region. Such interventions can lead to inaccuracies in
the extraction of phenological features, making it challenging to determine the accurate
classification of land cover types.

This paper introduces a method that extracts phenological features by observing the
entire annual growth cycle of wetland vegetation, without considering the influence of
environmental factors on the classification results. Figure 10c,d elucidates that the impact
of environmental factors may lead to growth variations among vegetation of the same
species. In the next step, we plan to further refine the method, such as addressing different
geographical locations and soil salinity for the same vegetation type by augmenting the
classification categories. Additionally, we will consider factors like variations in annual pre-
cipitation and temperature changes across different years. These refinements are intended
to optimize the model further. The extraction process of vegetation’s phenological features
during the experiment was time-consuming because it involved extracting features pixel
by pixel. This could impose limitations on the classification of large-scale wetlands.
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Although common vegetation indices contribute to wetland classification, there are no
significant differences between the classification methods of Scheme 7 and Scheme 5. Both
schemes achieve a high level of classification accuracy, although Scheme 7 is the best as
far as classification accuracy is concerned, according to several experiments. Subsequently,
we will hopefully be able to further demonstrate the differences between Scheme 7 and
Scheme 5 by introducing some new vegetation indices.

It is worthwhile to study whether the proposed method could be migrated to other
coastal wetland areas. Hao et al. [32] demonstrated that when the time series of observed
images is long enough, the classification results of even migrated samples are similar
to the classification accuracy obtained from the training of locally measured samples.
In this paper, the method captures the annual time-series image information to extract
vegetation’s phenological features, which can comprehensively capture the differences in
the growth of vegetation in different wetlands. However, the climate change caused by
latitude differences alters the vegetation’s growth cycle. This will affect the accuracy of
classification during migration. This method is mainly applicable to other sample sites
that have similar vegetation to the types found in the coastal wetlands in this paper, and
for other new vegetation types it is necessary to re-observe the growth change rules and
obtain certain a priori knowledge before classification. This is because new vegetation
types may need to change the length of the time series of extracted features. At the same
time, new vegetation types may cause similar NDVI time series with other vegetation at a
certain stage, so in the process of generalizing to other coastal wetlands, we can consider
trying to extract multiple vegetation indices for time series and increasing the selection
of phenological features. These efforts will require more in-depth methodological design
and research. Subsequent research will also explore the use of this approach to derive
multi-year categorization outcomes for coastal wetlands, assess alterations and patterns in
habitats, and investigate the underlying factors contributing to these modifications.

5. Conclusions

This study provides an effective technical approach for the protection and management
of coastal wetland ecosystems by constructing a dense time series of remote sensing data.
This method not only reveals the complex characteristics of coastal wetland habitats but also
offers precise classification and mapping results for the restoration of ecological wetlands
and bird conservation. Through comprehensive analysis of the spectral features, vegetation
index features, and phenological features of coastal wetland plants, this research enhances
our understanding of these critical ecological areas, providing valuable information for
biodiversity conservation and ecosystem service assessment. The application of the random
forest method demonstrates the immense potential of machine learning in natural resource
management and environmental protection, laying a solid foundation for future research
and conservation efforts in coastal wetlands. The primary discoveries are summarized
as follows:

1. A classified map of the core zone of the Yancheng Wetland Rare Birds National Nature
Reserve was obtained for the year 2022, with an overall classification accuracy of
95.64% and a kappa coefficient of 0.94.

2. The combination of spectral features, vegetation indices, and phenological characteris-
tics produced the highest level of accuracy in classification. POP, SOS, NDVIre, and
mid-infrared bands (Band12 and Band11) were useful for the classification of coastal
wetlands.

3. The influence of tidal fluctuations on SA along the shoreline was not considered in this
experiment. The misclassification of SA near the coastline in the categorization map
was caused by its long-term submersion, partial submersion, and non-submersion.
By comparing SA plants located near the coastline with those located farther away,
we showed that the phenological magnitude of SA near the coastline was relatively
smaller. This finding helps to explain why these plants are more likely to be misiden-
tified as PA.
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4. Different regions within the core zone of the Yancheng Wetland Rare Birds National
Nature Reserve exhibit different development patterns of PA. There is a potential
1–2-month disparity in growth between early- and late-growing PA. The variation in
vegetation cover can be explained by different factors, such as vegetation characteris-
tics, soil salinity, climate changes, and the intricate nature of the vegetation.
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Appendix A

Table A1. Sentinel-2 MSI data.

Name Date Cloud Cover (%)
S2_SR_HARMONIZED_20220103T024121 3 January 2022 16.93
S2_SR_HARMONIZED_20220108T024059 8 January 2022 29.19
S2_SR_HARMONIZED_20220113T024051 13 January 2022 16.13
S2_SR_HARMONIZED_20220118T024029 18 January 2022 20.87
S2_SR_HARMONIZED_20220128T023949 28 January 2022 47.73
S2_SR_HARMONIZED_20220227T023639 2 February 2022 4.41
S2_SR_HARMONIZED_20220304T023611 4 March 2022 16.66
S2_SR_HARMONIZED_20220309T023549 9 March 2022 18.62
S2_SR_HARMONIZED_20220324T023551 24 March 2022 0
S2_SR_HARMONIZED_20220329T023549 29 March 2022 3.76
S2_SR_HARMONIZED_20220403T023551 3 April 2022 3.03
S2_SR_HARMONIZED_20220408T023549 8 April 2022 1.59
S2_SR_HARMONIZED_20220503T023551 3 May 2022 0.09
S2_SR_HARMONIZED_20220518T023549 18 May 2022 13.98
S2_SR_HARMONIZED_20220523T023601 23 May 2022 0
S2_SR_HARMONIZED_20220602T023601 2 June 2022 19.08
S2_SR_HARMONIZED_20220607T023549 7 June 2022 0.41
S2_SR_HARMONIZED_20220617T023529 17 June 2022 35.13
S2_SR_HARMONIZED_20220702T023541 2 July 2022 41.39
S2_SR_HARMONIZED_20220712T023541 12 July 2022 66.25
S2_SR_HARMONIZED_20220722T023541 22 July 2022 22.27
S2_SR_HARMONIZED_20220727T023529 27 July 2022 30.29
S2_SR_HARMONIZED_20220801T023541 1 August 2022 32.59
S2_SR_HARMONIZED_20220821T023541 21 August 2022 0.07
S2_SR_HARMONIZED_20220826T023529 26 August 2022 61.19
S2_SR_HARMONIZED_20220910T023541 10 September 2022 73.93
S2_SR_HARMONIZED_20220930T023541 30 September 2022 55.15
S2_SR_HARMONIZED_20221010T023621 10 October 2022 1.52
S2_SR_HARMONIZED_20221015T023649 15 October 2022 41.48
S2_SR_HARMONIZED_20221020T023731 20 October 2022 34.13
S2_SR_HARMONIZED_20221025T023759 25 October 2022 4.44
S2_SR_HARMONIZED_20221104T023849 4 November 2022 19.96
S2_SR_HARMONIZED_20221124T024029 24 November 2022 21.01
S2_SR_HARMONIZED_20221214T024119 14 December 2022 11.05
S2_SR_HARMONIZED_20221219T024121 19 December 2022 1.84
S2_SR_HARMONIZED_20221224T024119 24 December 2022 39.70

https://scihub.copernicus.eu/dhus/#/home
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