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Abstract: Medium-resolution remote sensing satellites have provided a large amount of long time
series and full coverage data for Earth surface monitoring. However, the different objects may have
similar spectral values and the same objects may have different spectral values, which makes it
difficult to improve the classification accuracy. Semantic segmentation of remote sensing images is
greatly facilitated via deep learning methods. For medium-resolution remote sensing images, the
convolutional neural network-based model does not achieve good results due to its limited field
of perception. The fast-emerging vision transformer method with self-attentively capturing global
features well provides a new solution for medium-resolution remote sensing image segmentation.
In this paper, a new multi-class segmentation method is proposed for medium-resolution remote
sensing images based on the improved Swin UNet model as a pure transformer model and a new
pre-processing, and the image enhancement method and spectral selection module are designed
to achieve better accuracy. Finally, 10-categories segmentation is conducted with 10-m resolution
Sentinel-2 MSI (Multi-Spectral Imager) images, which is compared with other traditional convolu-
tional neural network-based models (DeepLabV3+ and U-Net with different backbone networks,
including VGG, ResNet50, MobileNet, and Xception) with the same sample data, and results show
higher Mean Intersection Over Union (MIOU) (72.06%) and better accuracy (89.77%) performance.
The vision transformer method has great potential for medium-resolution remote sensing image
segmentation tasks.

Keywords: Swin UNet; Swin Transformer; remote sensing; semantic segmentation; Sentinel-2

1. Introduction

Satellite remote sensing is the most efficient technical tool for large-scale monitoring
of land use and land cover [1–5]. Medium-resolution remote sensing satellites, such as the
Sentinel and Landsat [6], have provided a large amount of long time series and full cover-
age data for Earth surface monitoring. Based on these data, some algorithms have been
developed and used to transform the spectral features of images, set thresholds, and extract
similar classes [7] to obtain a large number of remote sensing thematic-class products, such
as global surface water [8], global impervious surface area [9] and global forest change [10].
However, the different objects may have similar spectral values and the same objects may
have different spectral values, which makes it difficult to improve the classification accuracy,
and the determination of the optimal threshold is also controversial [11]. With the rapid
development of artificial intelligence techniques, some machine learning methods such as
Support Vector Machine (SVM) [12] and Random Forests (RF) [13] methods have been de-
veloped for large-scale land classification mapping and obtained remarkable results [14,15].
However, the input features of these shallow algorithms were only the spectral information
of image pixels, without or with limited use of spatial information. This can lead to the
pretzel phenomenon (a small amount of homogeneous land cover was misclassified due to
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large spectral variation) and misclassification of classification results, especially at category
edges and junctions [16]. Moreover, as the spatial resolution is continuously tuned up to
decrease the spectral channels [17], the traditional classification methods based on spectral
information is less accurate, with a reduction in the number of input features.

Deep learning methods are widely applied in remote sensing, where new semantic seg-
mentation methods in the field of computer vision are constantly applied to remote sensing
image classification tasks [18]. Since the LeNet model successfully used a Convolutional
Neural Network (CNN) for image classification tasks [19], CNNs have been the mainstream
solution for various tasks in remote sensing images segmentation with their great feature
extraction capability [20]. Furthermore, deeper network structures with different forms
of inter-layer connections and multiple convolutional approaches were proposed [21,22],
leading to the development of CNN-based networks and the birth of many excellent back-
bone networks such as AlexNet [23], VGG [24], ResNet [25], and Xception [26]. On the
other hand, Fully Convolutional Networks (FCNs) have solved the end-to-end semantic
segmentation problem for the first time by adopting convolution layers completely instead
of fully connected layers and upsampling structure [27]. Shortly after, UNet proposed
an encoder-decoder structure, and the feature map information at different levels can
be obtained by skip-linking, which enhanced the representativeness of the feature map
information [28]. Chen et al. (2017) proposed the Atrous Spatial Pyramid Pooling (ASPP)
module to capture multiscale contextual information by combining atrous convolution,
which was further improved in DeepLabV3+. Thereafter, semantic segmentation evolved
along with new network structures and new combined backbone networks [29,30]. These
methods have also been well applied and developed in the field of remote sensing image
classification, segmentation, and target detection [31,32]. However, most of this research
has been conducted on high-resolution remote sensing images because of their high spatial
information and the appropriate feature scale of the target. On the contrary, the scale of
features contained in the medium-resolution remote sensing images varies greatly [33]. The
poor performance of medium-resolution remote sensing image segmentation was due to its
insufficient spatial feature information on the one hand [34], and many large scale features
cannot be extracted in medium resolution due to the perceptual field limitation of CNNs.

On the other hand, transformer, a prevalent network architecture, has been a great
success in natural language processing [35]. This was designed to be the vision transformer
for computer vision, which was superior to the original CNN-based network structure
in image classification tasks [36]. Transformer gets better performance because it pays
attention to model long-range dependencies in the data rather than the small range of
neighborhood features of CNNs. Similarly, Segmentation Transformer (SETR) has been
successfully applied in the transformer architecture to segmentation tasks and achieved
advanced performance [37]. However, the computational complexity of its self-attention
is quadratic to image size, which makes the computation inefficient and computationally
intensive in obtaining spatial information. Thus, Liu et al. (2021) proposed the Swin
Transformer to overcome these issues. The Swin Transformer constructs hierarchical
feature maps to model at various scales and reduces the computational consumption
of self-attention as well as proposes a shifted window approach to provide connections
among the front and back layers of windows. In addition, another achievement of the Swin
Transformer can be used as a backbone network to replace many CNN-based models, and
has achieved the highest score performance to date in image classification and segmentation.
Based on the Swin Transformer block, Swin UNet, the first pure transformer-based U-
shaped architecture with encoder, bottleneck, decoder, and skips connections, has been a
success in medical image segmentation [38]. Just like UNet, the structure of Swin UNet
is well suited for the segmentation of medium-resolution remote sensing images with
poor spatial information, and the global feature extraction capability of the self-attention
structure can also extract large-scale features in medium-resolution remote sensing images.
Panboonyuen et al. (2021) experimented with Swin UNet on Landsat-8 data but achieved
decent results in only three categories. Meanwhile, medium-resolution remote sensing
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images segmentation is still a challenge due to the uncertain selection scheme of spectral
features for input images and the huge amount of training samples required for transformer-
based models.

In this paper, a more suitable model of improved Swin UNet is proposed for multi-
class segmentation of the medium-resolution Sentinel-2 images. Preprocessing, image
enhancement, and spectral selection modules are added to enhance its performance. Our
main motivations and aims are as follows:

(1) The SwinUnet model is improved and applied in a 10-categories segmentation from
Sentinel-2 images, which is compared with traditional classification methods and
CNN-based segmentation methods.

(2) The FROM-GLC10 dataset is optimized and used as sample data. The approach and
the transformer performance are analyzed.

(3) The segmentation results of different spectral combinations from Sentinel-2 MSI
(Multi-Spectral Imager) images are systematically compared and the optimal spectral
combination scheme is obtained.

2. Data and Methods
2.1. Study Areas and Data

The satellite data used in the experiment are Sentinel-2 MSI optical images de-clouded
and synthesized on Google Earth Engine (GEE). Label data is based on the FROM-GLC2017
dataset by the team at Tsinghua University [39], which can be obtained from http://
data.ess.tsinghua.edu.cn/ (accessed on 3 July 2022). They defined the concept of stable
classification and produced a global LULC product with 10 m resolution in 2017 with the
Landsat-8 sample data in 2015. The categories included the cropland, forest, grassland,
shrubland, wetland, water, tundra, impervious, bare land, and snow. The classification
method used was the RF algorithm with the input features including the spectral values of
Sentinel-2 data, indices of vegetation, water, building, and snow in classifying Landsa-8
data, slope and aspect data extracted from the SRTM elevation data, and the geographical
coordinates. Eventually, the overall accuracy on the 2015 validation sample was 72.76%.
We selected a zone from 29◦36′ to 32◦18′ latitude and 103◦5′ to 121◦45′ in the midland
of China, with a ground resolution of 10 m. The pseudo-color composite satellite image
is shown in Figure 1A, and the produced label data is shown in Figure 1B. The sample
data in this paper are beneficial for the training and validation of multi-class segmentation
of medium-resolution remote sensing images, because the latitude of the study area is
suitable and the distance between land and sea is long, which makes the features obvious
and covers all categories. In addition, we manually extracted a large number of validation
points to prove the reliable accuracy of the area label data. Moreover, such a large amount
of data enable the transformer model to be trained effectively. Because the label data are
the corresponding cartographic products of 2017, we selected the satellite images of the
same time and produced a total of 29,218 512 × 512-pixel tiles after uniform cropping and
filtering. To train and evaluate the network model, the data is divided into the training set,
validation set, and test set in the ratio of 80%, 10%, and 10%, respectively.

The channels of the input images are the focus of the experimental comparison in this
paper. All the spectral channels of Sentinel-2 with 10 m resolution used in the experiment are
listed in Table 1, including Blue (B), Green (G), Red (R), and Near Infrared (N). Finally, we
compare three spectral combination methods, namely R + G + B, N + G + B, and N + R + G + B.

Table 1. Sentinel-2 data used for study.

Band Number Band Name Central Wavelength (µm) Resolution (m)

B2 Blue (B) 0.49 10
B3 Green (G) 0.56 10
B4 Red (R) 0.66 10
B8 Near Infrared (N) 0.84 10

http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
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Figure 1. Study area and data with the false-color composite satellite image (A) and the classified
image (B).

2.2. Technical Route and Swin UNet

The main process steps and methods used in this paper are shown in Figure 2A.
First, the 2017 cloud-free Sentinel-2 MSI images were screened on the GEE platform with
cropping into a uniform size, and defective pixels were removed. The spectral selection
module is responsible for dividing the input multi-band images into different combina-
tions of bands as input to the network. To get better robustness of the model, we added
image enhancement processing, including small-angle rotation and HSV (Hue, Saturation,
and Value) transform. Finally, after a series of processing, the images were fed into the
trained Swin UNet model for forwarding propagation, and the results of multi-category
segmentation were obtained.

The well-established CNN-based segmentation models are used as comparisons,
including two segmentation models and four backbone networks. UNet is proposed on the
basis of FCN, using a combination of multilayer downsampling and upsampling with skip
connection to reduce semantic information loss, which enables UNet to perform well on
lightweight data. The DeepLabV3+ model is also based on the encoder-decoder architecture,
which uses Atrous Separable Convolution to optimize the information between space and
channels to reduce computational complexity and the pyramid module to obtain multi-
scale convolutional features. In addition, CNN backbone networks with different depths
and structures can be used on these segmentation models to achieve different segmentation
performance, including VGG, ResNet50, MobileNet, and Xception used in the paper. VGG
uses multiple convolutional layers with smaller convolutional kernels (3 × 3) instead of
one convolutional layer with a larger convolutional kernel; the layers are separated from
each other using max-pooling with a 2 × 2 pooling kernel, and the activation units of all
hidden layers use the ReLU function. ResNet introduces the residual structure, so that
the network layer can realize identity mapping and solve the problem of the gradient
disappearing. ResNet50 goes through 4 blocks, with 3, 4, 6, and 3 bottlenecks in each
block, respectively. MobileNet is a lightweight network proposed by Google in 2016, using
depth-separable modules instead of convolutional operations to achieve faster computing
speed, and the whole network is actually a stack of depth-separable modules. Similar
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to MobileNet, the Xception network also uses depthwise separable convolution, which
is an extreme Inception network, by separating the correlation between channels from
spatial correlation.
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The architecture of the Swin UNet model is shown in Figure 2B. The whole network
structure is similar to the original UNet, consisting of an encoder, bottleneck, decoder, and
skip connection. The encoder part uses the backbone network of the Swin Transformer
(a four-layer hierarchy), with each layer consisting of patch merging and a Swin Trans-
former block. Its design concept comes from the idea of a CNN-based network, patch
merging, which is equivalent to a pooling operation and responsible for downsampling,
and a Swin Transformer block, which is responsible for extracting features as a CNN. Since
the minimum structured unit of Swin Transformer is a 4 × 4 image element, the input
image becomes 1/4 of the original length and width and 16 times the original channel after
the patch partition process. The structure of the first layer in the encoder is the same as that
of VIT using a linear embedding connection, which does not change the length and width
but makes the channels twice, and during the subsequent three layers of downsampling the
length and width are reduced by half each time and the channels become twice as large. The
decoder structure is symmetrically opposite to an encoder using patch expanding layers
for upsampling. The first three upsampling layers are used to reshape the low-resolution
feature mapping into twice the high-resolution feature mapping and correspondingly re-
duce the feature dimension to half of the original dimension. To keep the output image
the same size as the input image, the last patch expanding layer is upsampled 4 times in
length and width and the channel is not changed. Unlike the encoder’s Swin Transformer
block, the decoder’s Swin Transformer block accepts two inputs, which are the features of
upsampling and skip connection. The extracted contextual features are able to be fused
with the multi-scale features of the encoder through a skip connection to complement the
loss of spatial information due to downsampling.

Different from the conventional Multi-Head Self-Attention (MSA) module used in
VIT, the Swin Transformer block can be thought as a series of two modules. As shown
in Figure 2C, a Swin Transformer block consists of a regular Window-Based MSA (W-
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MSA) module and a Shifted Window-Based MSA(SW-MSA) module, followed by a 2-layer
Multilayer Perceptron (MLP) with Gaussian Error Linear Units (GELU) nonlinearity. A
LayerNorm (LN) layer is applied before each MSA module and each MLP, and a residual
connection is applied after each module [40]. The detailed calculation rules are as follows.

ẑl = W−MSA
(

LN
(

zl−1
))

+ zl−1 (1)

zl = MLP
(

LN(ẑl)
)
+ ẑl (2)

ẑl+1 = SW−MSA
(

LN(zl)
)
+ zl (3)

zl+1 = W−MSA
(

LN(ẑl+1)
)
+ ẑl+1 (4)

where ẑl is the output features of the (S)W-MSA module and zl is the output features of the
MLP module, where l represents the number of blocks.

2.3. Network Enhancement Methods

The image enhancement step in network training can effectively improve the perfor-
mance of the model in all aspects and also make more efficient use of the training data [41].
In this paper, two main enhancements are made to the picture of the input model. On the
one hand, the length and width of the original image are randomly scaled up or down by a
factor of 0.7 to 1.3 and randomly pasted onto a 512 × 512 grayscale image (grayscale image
here implies a pixel value of 128). Rotation and flip were not used for medium-resolution
remote sensing images, and features are generally not affected by these. On the other hand,
the input image needs to undergo an HSV transform, which transforms the image into
the HSV domain and back again. In the HSV domain, the hue channel does a random
change of ±0.1 amplitude, while the saturation and value channels do a random change of
±0.5 amplitude. The reason is that medium-resolution remote sensing images often cover
a wide area, which leads to the need for multiple images to cover the study area, and there
are color differences between images of different frames due to different imaging times.
The enhancement of the HSV conversion process improves the robustness of the model.

The loss function describes the size of the difference between the predicted and true
values of the model, which is the key to determining the quality of network learning [42].
However, the categories in the medium-resolution remote sensing image segmentation
task are diverse and varied, resulting in a strong imbalance between positive and negative
samples. The dice loss function proposed in the article VNet [43] is a good solution to this
problem. The calculation of the dice coefficient is equivalent to the F1-score, which means
that it can be optimized well for the F1-score. However, the dice loss tends to be unstable
in training, especially in the case of small targets, and extreme cases can lead to gradient
saturation phenomena. Therefore, the combined dice loss with CE (Cross-Entropy) loss
is improved to solve this problem well, and the loss function of this paper is calculated
as follows.

Losstotal = lossCE + (1− lossdice) (5)

2.4. Evaluation Metrics

In order to evaluate the performance of our model effectively, Mean Intersection Over
Union (MIOU), F1-score, and accuracy parameters were used for validation. The equations
for each parameter and intermediate variables are calculated as follows.

MIOU =
1

N + 1

N

∑
i=0

IOU (6)

IOU =
TP

TP + FN + FP
(7)
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F1-score =
2× Precsion× Recall

Precsion + Recall
(8)

Precsion =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

In all formulas, TP represents true positive, where the model correctly predicts the
positive class. FP represents false positive, where the model incorrectly predicts the positive
class. TN represents true negative, where the model predicts the negative class correctly.
FN represents a false negative, where the model incorrectly predicts the negative class. N in
Equation (7) represents the number of categories, which is set to 10 in this paper. Precsion
and Recall in Equation (8) are calculated as shown in Equations (9) and (10).

2.5. Experimental Environment

Computer hardware: the CPU is an AMD 3800X, and the GPU is an NVIDIA Geforce
RTX 2070 super 8G. Computer Software: Python version is 3.7.2, the PyTorch version is
1.4.0, and the CUDA version is 11.4. Parameter Configuration: the batch size is set to 4, the
learning rate is 0.00001, and the maximum number of iterations is set to 100 rounds.

3. Results and Validations
3.1. Results and Comparison with CNN-Based Networks

After uniform training, different classical CNN-based networks were selected to eval-
uate the results of the test set together with our model. As the 10-categories segmentation
evaluation metrics of each model on Sentinel-2 images shows in Table 2, the Swin UNet-
based method in this paper outperforms all CNN-based methods in each evaluation metric.
In the medium-resolution remote sensing image segmentation task, the model based on
UNet and DeeplabV3+ framework performs similarly, but the different backbone net-
works have a greater impact on the accuracy of the results. In the DeeplabV3+ model,
MobileNet has a 4.14% improvement in accuracy and a slight improvement in MIOU and
F1-score when compared to Xception. The same phenomenon occurs in the UNet model,
where the VGG performs better than ResNet50, with a 2.32% improvement in accuracy
and slightly larger improvements in the MIOU and F1-score, reaching 2.87% and 2.91%.
The results based on the Swin Transformer backbone network exceed the performance
of VGG and outperform all models of DeeplabV3+. The results also outperform VGG by
4.72% based on the Swin Transformer backbone network and by more than 3% over the
second-highest accuracy based on all other models and also have the highest overall MIOU
and F1-score metrics.

Table 2. Performance comparison of different methods in Sentinel-2 images 10-categories segmentation *.

Item Backbone MIOU (%) Accuracy (%) F1-Score (%)

UNet
VGG 70.6 85.05 69.84

ResNet50 67.73 82.73 66.93

DeeplabV3+ MobileNet 70.47 86.58 72.91
Xception 69.2 82.44 71.63

Swin-UNet Swin Transformer 72.06 89.77 76.46
* MIOU = Mean Intersection Over Union.

The results in Table 2 show that the lighter backbone networks perform better in
medium-resolution remote sensing images, just as VGG outperforms RESNet50 and Mo-
bileNet outperforms Xception. Although a huge number of training image datasets were
chosen, the lightweight backbone networks are found to fit faster with stable accuracy
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improvement, while the deeper structured ResNet50 and Xception backbone networks fit
slowly with fluctuating accuracy, which is one of the reasons for their poor results. In addi-
tion, for medium-resolution remote sensing images, the spatial information is insufficient
when compared to high-resolution remote sensing images, which means that a larger and
deeper network structure is not an effective way to improve segmentation accuracy [44],
while transformer provides an alternative path using the global self-attention mechanism,
and experimental results also show that our method compensates well for the shortcomings
of medium-resolution remote sensing images and achieves the highest performance.

It can also be seen in the comparison of the results in Figure 3 (where the black arrow
points) that our results have better segmentation performance when compared to other
methods. Comparing with the satellite images, it can be seen that the refinement of road
segmentation and the recognition of small water ponds are well done in our results, while
roads were not well extracted in the ResNet50 results; small ponds and small plowed
areas were also misclassified as impervious surfaces in Xception. In addition, our model
has a good ability to discriminate features close to the edges, such as in the segmentation
of the river where the missing edge river phenomenon occurs in the CNN-based model.
It is important to mention that since our Label data is classified via the random forest
method based on image pixels, and there are some noise points and misclassification in
it our model achieves better robustness and discriminatory ability after training with a
large number of samples. This can also be seen from the final segmentation result of the
mountain valley, and our model successfully identifies small settlements, which are not
identified by label data.
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In order to study the effect of each category on the overall accuracy, we calculated
statistics for three metrics of 10 categories, the results of which are shown in Table 3. The
IOUs of crop, forest, and water all performed well, while impervious land was slightly
lower, which could be due to the wide distribution and irregular shape of impervious
surfaces. However, grassland, shrubland, wetland, tundra, bare land, and snow/ice all
have lower IOUs because the distribution of these categories is very small throughout
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the study area, which also means that the training sample is insufficient, but a small
number of segmentation inaccuracies have little effect on the overall accuracy. The IOU
metrics in Table 3 are lower than the recall and precision metrics, partly because up to
10 categories of segmentation tasks can lead to the occurrence of interclass errors, partly
because the distribution of features in some categories is very irregular and the label data
itself is inaccurate.

Table 3. 10-categories accuracy statistics *.

Class IOU (%) Recall (%) Precision (%)

Crop 82.01 93.84 86.68
Forest 82.06 93.07 87.4

Grassland 34.22 38.41 62.19
Shrubland 64.23 70.3 77.11
Wetland 36.36 43.15 60.12

Water 86.22 91.46 93.78
Tundra 33.89 41.66 70.48

Impervious land 59.62 72.24 77.34
Bare land 38.5 42.1 73.17
Snow/Ice 29.9 33.64 68.33

* IOU = Intersection Over Union.

3.2. Results of Large-Scale Mapping

Large-scale land use mapping is an important application of semantic segmentation
models in the field of remote sensing. In this paper, we intend to demonstrate the great
potential of our method in large-scale mapping and the results of our model and other
CNN-based models. Figure 4 shows a relatively comprehensive range of surface objects in
the city of Jiujiang. The distribution of categories in our results is roughly the same as in
label data. It is worth noting that our model did not show the phenomenon of mountain
shadows misclassified into water bodies when compared to the CNN-based model, which
is marked with the red box in the figure. Using the transformer’s self-attentive mechanism,
our model embraces the global features, which outperforms the limited perceptual field of
the CNN-based model. In addition, the fine rivers and roads are well segmented, which
shows that our model has good spatial detail extraction ability. Our results are clean and
focused for each category of blocks with clear boundaries of water bodies and good details
of impervious surfaces. However, for the recognition of the category of urban green space,
our model is inferior to Mobilenet, which requires subsequent targeted training.

3.3. Different Image Band Combinations

Sentinel-2 has four spectral bands with 10 m resolution, while the common network
inputs are RGB images. From the multispectral processing of remote sensing images, it
is necessary to study different spectral combinations. Based on previous studies [45], the
three most commonly used spectral combination methods are selected as the input to the
network in this paper. After uniform training, the performance of different methods on the
test set is shown in Table 4.

Table 4. 10-categories segmentation results of band combinations in Sentinel-2 images *.

Band Combinations MIOU (%) Accuracy (%) F1-Score (%)

RGB 71.30 86.31 72.09
NGB 72.06 89.77 76.46

NRGB 69.92 82.86 70.68
* MIOU = Mean Intersection Over Union, B = Blue, G = Green, R = Red, and N = Near Infrared.
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During the training process, both RGB and NGB enter convergence faster and the
accuracy continues to improve. In contrast, NRGB starts the training with a large fluctuation
in loss and soon fails to continue the improvement. It can be seen that having a lot of spectral
features does not necessarily improve the performance of the model, and the replacement
of the red band with NIR can effectively improve a part of the model’s performance
in medium-resolution remote sensing segmentation. In addition, multi-channel input
images are not accessible to many classical three-channel image enhancements (e.g., HSV
conversion), which is partly responsible for this.
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4. Discussion
4.1. Impact Factors of Accuracy

Our training samples are from the FROM-GLC10 dataset, which has 72.76% accuracy
based on the validation samples in Gong et al. (2019). The accuracy in this study area is
slightly higher as illustrated by our own validation sample. However, there are still some
problems, such as severe noise due to the image pixel-based classification method and some
misclassified parts (mountain shadows, water edges, etc.) due to the outdated classifier. In
addition, FROM-GLC10 was obtained based on sample training at 30 m resolution, which
leads to some strange lumpy category distributions in its results. These issues can cause
problems for network training, where these errors are simply ignored and treated as true
values for participation in training. Therefore, we used 4898 visually interpreted sample
points to verify the segmentation accuracy of the Swin UNet model, and some categories
(shrubland and tundra) were not included because there were no available data. As shown
in Table 5, an overall accuracy of 84.81% with a kappa coefficient of 0.82 was achieved via
the validation of the sample points visually interpreted, which proves the accuracy of our
results. In addition, it also shows that stable classification results can be obtained with
limited accuracy of training samples, which is consistent with the experimental results of
Gong, et al. [39]. The results are quite satisfactory, and the errors in label data are corrected
for our results with successful segmentation of the area of small settlements that appears in
label data (Figure 3). This is probably due to the possibility that we expanded the training
data and added image enhancement to counteract this effect.

Table 5. Accuracy validation of the Swin UNet model based on visually interpreted samples *.

Class Crop Forest Grassland Water Impervious Land Bareland Snow/Ice Wetland UA (%)

Crop 656 18 0 0 0 0 0 0 97.33
Forest 34 486 0 0 0 0 0 0 93.46

Grassland 0 132 199 2 0 0 1 0 59.58
Water 32 1 0 322 11 0 0 19 83.64

Impervious land 25 24 0 0 900 0 0 20 92.88
Bare land 14 20 47 0 67 715 1 37 79.36
Snow/ice 0 1 2 9 0 0 606 8 96.81
Wetland 83 16 16 22 0 22 60 270 55.21
PA (%) 77.73 69.63 75.38 90.70 92.02 97.01 90.72 76.27

OA (%): 84.81 Kappa coefficient: 0.82

* UA = User’s Accuracy, PA = User’s Accuracy, OA = Overall Accuracy.

On the other hand, the classification system used in this paper follows the 10 categories
(cropland, forest, grassland, shrubland, wetland, water, tundra, impervious, bare land and
snow) in label data. However, in the analysis of the results (Figure 5), we found that some of
the categories (grassland, wetland, tundra, and snow) are very small and unbalanced, and
adding dice loss cannot completely solve the impact of the low accuracy of these categories
on the overall accuracy. Therefore, we tried to group these sparsely distributed categories
into the backgrounds and finally obtained the highest precision of 91.02% with 6 categories
(cropland, forest, shrubland, water, impervious, and bareland). The accuracy is not much
improved because of the limitation of label data. However, by observing their loss curves,
it can be seen that the model of 6 categories has a lower validation loss when compared to
that of 10 categories, which indicates a more stable model. The network learns faster by
completing the iterations in 80 rounds.
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4.2. Migrability of the Segmentation Model

Most validation data for remote sensing image segmentation are in the same study area
as the training data, which cannot prove the segmentation model’s robustness. Although
many segmentation models have high accuracy on their own validation data, they do not
work well when applying it to other regions, which is caused by an insufficient training
sample size or insufficient fitting ability of the model. With such a large and robust training
sample coupled with excellent models, we believed that this would advance land use
mapping efforts on a global scale. To test this idea, the land use mapping work for two
regions, Washington and Beijing, was carried out, which is shown in Figure 6. Overall,
the categories of crop, forest, water, and impervious surfaces were well extracted in both
results by comparing with satellite images. However, the impervious surface extraction for
the Washington area was not as effective as for the Beijing area, where some areas of the
crop were confused with impervious surfaces. This may be due to the fact that our training
samples were all within China, and the urban structure of the US is very different from that
of China.

4.3. Limitations and Outlooks

In this paper, we investigated the utility of a semantic segmentation model based
on the Swin-UNet model for medium-resolution remote sensing images. After the large
volume of training data were produced, the transformer model was well fitted. For the
complex 10-categories segmentation task, our model achieved higher performance when
compared to the CNN-based approach. Another point is that the spectral selection module
was well applied and had some improvement in the transformer model performance.
Although the Transform method provides a new way to classify medium-resolution remote
sensing images, there is still a need to improve its extraction capability for local features.
In the future, we will further investigate other transformer-based network models for
comparison and try larger segmentation tasks, such as global land use mapping.
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5. Conclusions

Medium-resolution remote sensing satellite images are important for environmental
monitoring and climate change research. The accuracy of large-scale land use mapping de-
pends greatly on the performance of the segmentation model. In this paper, the Swin-UNet
model was improved and successfully applied to the multi-category segmentation task for
medium-resolution remote sensing images and excellent performances were achieved. The
experimental results show that (1) the Swin-UNet model performs well in the 10-categories
image segmentation task in the medium-resolution Sentinel-2 MSI optical images with
an MIOU of 72.06%, an accuracy of 89.77%, and an F1-score of 76.46%. (2) Comparing
with other CNN-based models, including DeepLabV3+ and U-Net, and different back-
bone networks, including VGG, ResNet50, MobileNet, and Xception, the reliable results
of our model are obtained in the medium-resolution remote sensing image segmentation
task. (3) Different spectral combinations as the input of the network have certain effects
on the performance of the network, and the replacement of the red-light band with the
near-infrared band has an enhancement effect on the transformer-based model. In addition,
the Swin-UNet model also shows good performance in model transfer.
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