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Abstract— Accurate and high-frequency sea-level monitoring
is of great importance in ocean environments and global climatic
studies, but traditional techniques have their respective limita-
tions. In the last decades, the application of Global Navigation
Satellite System Multipath Reflectometry (GNSS-MR) in sea-level
monitoring has developed rapidly. Recently, more available GNSS
signals are expected to bring new opportunities to improve
its performance and achieve high spatial–temporal resolution.
In this article, a new algorithm is developed to optimize the
method of multi-GNSS multipath reflectometry and improve the
precision and sampling rate for GNSS-MR sea-level monitoring.
In order to make full use of the short-term multipath oscillation
information, a sliding window is used to collect the signal-to-
noise ratio (SNR) sequences. A weighted iterative least-square
method is introduced to combine the selected SNR observations
of GPS, GLONASS, Galileo, and BDS systems and retrieve
sea level at 10-min intervals at BRST station for one year.
A novel index called local kurtosis (LK) is proposed, which
can be used to evaluate the quality of the Lomb–Scargle peri-
odogram (LSP) and design the weight matrix in the least-square
combinatorial process. Compared to using individual signals, the
optimized combination algorithm decreased the root mean square
error (RMSE) by 78%, from 0.610 to 0.134 m, and increased the
correlation coefficient R2 from 0.851 to 0.992. In addition, the
tidal constituents monitored by multi-GNSS-MR and tide gauge
are highly consistent, demonstrating that the multi-GNSS-MR
can accurately retrieve daily and subdaily tidal constituents of
periods longer than 10 min.

Index Terms— Global Navigation Satellite System Multipath
Reflectometry (GNSS-MR), sea level, signal-to-noise ratio (SNR),
tidal constituent, weighted iterative least-square method.

I. INTRODUCTION

GLOBAL warming has been receiving increasing attention
since the late last century, mainly due to the apparent

rise in global sea level caused by the increase in temperature,
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which is promised to make a great impact on the coastal
area where a large amount of the population gathers [1],
[2]. In this case, accurate sea level and tidal information has
become more important in ocean environments and climate
change research [3]. Traditional techniques for sea-level mea-
suring, such as tide gauge and satellite altimetry, have their
respective advantages and disadvantages. Tide gauges have
high precision and high sampling frequency, but only provide
in situ and relative sea-level observation. In this case, tide
gauges are susceptible to vertical land movements, and need
the co-located geodetic GNSS sites to provide absolute sea
level. Satellite altimetry provides absolute sea-level variation,
but it has a low sampling rate, and the contamination of
radar signals by land makes it difficult to obtain sea level
in coastal areas [4], [5]. Therefore, traditional techniques
cannot meet the demand of all-time, all-weather, and high
spatial–temporal sampling. Therefore, a new technique known
as Global Navigation Satellite System Multipath Reflectometry
(GNSS-MR) was introduced [6].

In the last decades, extensive works about ground-based
GNSS-MR have demonstrated that the sea level can be
retrieved using a single coastal GNSS receiver [7]–[10].
GNSS-MR works by extracting the multipath oscillations from
GNSS observations and analyzing the reflector information
on the interference pattern of the direct and reflected signal.
Martin-Neira [11] presented the concept of combining the
direct and reflected GPS signals to remotely sense the sea
surface change. Thereafter, Anderson [12], [13] proposed the
concept of GPS tide gauge and the commonly used the signal-
to-noise ratio (SNR) method. Bilich and Larson [14] further
presented a power spectral mapping tool to retrieve the GPS
multipath environment using SNR observation. Recently, lots
of studies focus on optimal methods of multi-GNSS multipath
reflectometry. Tabibi et al. [15] analyzed the statistical charac-
teristics for each signal of GPS and GLONASS and tested the
performance of intersignal combination retrieving. Jin et al.
[8] analyzed the performance of BDS-R using triple-frequency
SNR, pseudo-range, and carrier phase. Santamaría-Gómez and
Watson [16] processed the SNR series using an extended
Kalman smoother and allowed GNSS-MR to detect small
but significant changes in SNR oscillation. Zheng et al. [17]
compared the accuracy of different SNR types and analyzed
the monitoring effect of BDS2-IGSO, BDS2-MEO, and BDS3-
MEO [17]. Several previous pieces of research also focused
on correcting the tropospheric delay, which is one of the
significant error sources in GNSS-MR. Treuhaft et al. [18]
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used a mapping function to estimate the altimetric height
of zenith tropospheric delay for correction. Williams and
Nievinski [19] compared the results of tropospheric correction
at 20 different GNSS coastal stations (including BRST station)
using different methods.

However, there still exist several defects in the current
technique. For example, the temporal resolution of traditional
methods is mostly worse than 1 h. Moreover, most recent stud-
ies did not fully utilize the periodogram as a quality indicator,
which may cause precision decline. Therefore, a new algorithm
is proposed in this article to realize high precision and robust
retrieval performance at a 10-min interval. The basic theory
of the SNR method is introduced in Section II-A. Then, the
algorithm details designed to improve time resolution and
inversion precision are described in Section II-B. Section II-C
presented the situation about station BRST, the signal selec-
tion, and the settings for azimuth and elevation limitation.
Results of the experiment are visualized and comparatively
analyzed in Section III, where a tidal harmonic analysis is
performed to refine the validation of GNSS-MR retrieving
performance (Section III-C).

II. METHODS AND DATA

A. Method of GNSS SNR-Based Altimetry

SNR is one of the main observables of GNSS, which has
been used generally in assessing signal quality as the ratio of
signal power to noise power. The multipath effect can cause
oscillations in SNR observations, which makes it possible
to retrieve physical information about the reflective surface,
that is, snow depth and sea level [20]. Nievinski and Larson
[21] presented the multipath forward model, the simplified
expression of SNR is described as⎧⎨⎨

⎨⎩
SNR = tSNR + δSNR

tSNR = �
Pd + Pr + P I

r

�
P−1

n

δSNR = 2
√

Pd
√

Pr P−1
n cos ϕi

(1)

where tSNR is the sum of trends, and δSNR is the sum of
detrended interference fringes. Pd is the direct power, Pr is the
reflected power, pn is the noise power, and P I

r is the incoherent
power, while ϕi = ϕr − ϕd is the interferometric phase of the
direct phase φd and the reflected phase φr . The interference
fringe causes multipath oscillation in SNR observations, and
therefore, multipath patterns can be obtained after detrending
SNR series using low-order polynomial fitting (second order
in this article).

Assuming that the sea surface is a planar reflector, the
relative phase angle � can be derived in terms of the difference
in propagation distance between direct and reflected signal �
as

� = 2π

λ
� = 4πh

λ
sin ε (2)

where h is the reflector height (RH) defined as the nonstatic
height of the receiver’s antenna phase center above the ground
surface (see Fig. 1), λ is the wavelength of GNSS signal, and
ε is the elevation angle of satellites. Then, the frequency of

Fig. 1. Geometry of reflected GNSS signals.

the multipath oscillation can be obtained as

f = d�

dt
= 4πh

λ
cos ε

dε

dt
. (3)

Larson et al. [22] found that a height change rate correction
was significant for stations where the sea surface changed
drastically. Taking the change rate ḣ = (dh/dt) into account,
(3) can be rewritten as

f = 4π ḣ

λ
sin ε + 4πh

λ
cos ε

dε

dt
. (4)

Using sine of the elevation angle as the independent vari-
able, the frequency of multipath oscillation with respect to
x = sin ε is written as

fx = d�

dx
= 4π

λ

�
ḣ

tan ε

ε̇
+ h

	
. (5)

The multipath frequency modulates δSNR can be written
as [23]

δSNR = A cos

�
4πh

λ
sin ε + ϕ

	
= A cos(2π fx x + ϕ) (6)

where h is the RH obtained in static assumption, A is the
oscillation amplitude, and ϕ is the phase offset. To obtain
the dominant frequency requires uneven discrete spectrum
analysis on account of the unequally spaced elevation angle
series. Lomb and Scargle presented a spectral analysis method,
Lomb–Scargle periodogram (LSP). LSP can calculate the
spectral power of specified frequency for irregularly spaced
time series [24], [25]. Using LSP, δSNR data are transferred
to the frequency domain, and the main frequency fx can be
obtained. Then, the static RH is retrieved as

h = fx · λ

2
= ḣ

tan ε

ε̇
+ h. (7)

Then, the geocentric sea level is retrieved as hS = h A − h
with h A representing the antenna phase center height above
the ellipsoid (see Fig. 1).

B. Data Processing

As shown in the flowchart (see Fig. 2, step 1), the
downloaded 1-Hz GNSS observation data will be processed
using single point positioning, which calculates elevation and
azimuth angles for each satellite at each observation epoch.
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Fig. 2. Processing flowchart.

The elevation, azimuth, and SNR time series are then obtained
and go to steps 2–5.

1) Windowing of the SNR Time Series: In previous research,
Roussel et al. [9] have analyzed the performance of the
moving time window, but the window is used to separate RH
estimations retrieved for each satellite track. However, there
are two drawbacks to this method. First, a single satellite
track might cover several hours, and the frequency of the
oscillation changes during the period. Larson et al. [7] divided
a long track into a rising arc and a setting arc, and the result
shows that the RH retrieved by these two arcs differs over
1 m from each other. Although the change rate of height can
be estimated, the commonly used linear model is not able to
prevent large errors when a satellite track is too long. Second,
for the same reason that one track only generates one or two
(when divided into a rising arc and a setting arc) estimations,
high-frequency retrieval is hard to realize in poor observation
conditions.

To obtain information with a higher temporal resolution,
a sliding window that directly separates SNR time series
into fragments of uniform width and interval is adopted (see
flowchart step 2). The width is set to 40 min and the interval
is 10 min in this article. The segmented SNR time series
longer than 300 s within the window are then converted to
static RH estimations and quality-controlled. Note that for
each simultaneously observed signal (of different satellites and
channels), different h values are estimated separately.

2) Quality Control: The segmented SNR time series are
detrended using a second-order polynomial fitting, and the

TABLE I

QUALITY CONTROL CRITERIA

δSNR time series are converted to the frequency domain
using the LSP method. Then, the dominant frequency and the
corresponding RH estimation can be determined. To optimize
the quality of raw RH estimations, several thresholds are set
to reject detrimental values and outliers.

First, having used LSP to transfer SNR series from the
time domain to the frequency domain, the frequency of the
most significant spectral peak will be selected as the dominant
frequency. To prevent extreme outliers, the corresponding
static RH is based on (7) and restricted between 10 and 25 m.
Besides, to prevent the effect of multipeak situations where
spectral power is dispersive, the minimum threshold of the
peak amplitude is set to 7 V.

The peak-to-noise ratio (PNR) is universally used as the
major index for evaluating the quality of LSP defined as [22],
[26], [27]

PNR = A p

A
(8)

where A p is the amplitude of peak frequency, and A is the
mean amplitude of all frequency points within the established
range. In this article, peaks with PNR larger than 3 are
considered significant, and the corresponding RH estimations
are then calculated based on (7). To further eliminate the
detriment of outliers while facilitating the comparative analysis
of different signals, the primary estimations are classified by
observation codes and processed, respectively. The interquar-
tile range (IQR) is calculated for each class as (9), and values
within the range defined by (10) will be considered outliers

IQR = Q3 − Q1 (9)

xoutlier = {x |x ≤ Q1 − 1.5 ∗ IQR or x ≥ Q3 + 1.5 ∗ IQR}
(10)

where Q1 is the first quartile and Q3 is the third quartile. This
criterion is commonly used in statistical analysis, the statistical
graph based on this method is called a boxplot. Table I presents
all the quality control criteria.

3) Weighted Iterative Least-Square Method: The standard
least-squares method (LSM) has been proved to have out-
standing performance in combining estimations of several
GNSS satellites in a selected epoch to determine RH. Previous
research made by Roussel et al. [9] conjointly determined
nonstatic RH and change rate ḣ using standard LSM where
the weight matrix is not specially designed. Wang et al. [28]
presented a robust regression strategy which is a kind of
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Fig. 3. Data points for calculating LK in an LSP diagram.

dynamic LSM, and it continuously updates the weight matrix
based on the posterior residuals of the latest iteration.

The observation equation of the LSM is according to (7).
When n static RH estimations are selected, it can be expressed
as

⎛
⎝ . . .

h̄ pq(t)
. . .

⎞
⎠ =

⎛
⎜⎜⎝

. . . . . .

1
tan εp

ε̇p

. . . . . .

⎞
⎟⎟⎠

�
h(t)
ḣ(t)

	
(11)

where p is the satellite, q is the observation code, and t is the
epoch of observation. It is equivalent to the matrix equation
as follows:

Ln×1 = Bn×2 X̂ 2×1 (12)

where X̂ is solved with the traditional LSM equation

�X = �
BT P B

�−1
BT P L (13)

where P is the weight matrix. In this article, a quality indicator
called local kurtosis (LK) is introduced to set the weight value.
The LK of an LSP diagram is the kurtosis of a specific number
(set as an empirical value of 300 in this article) of data points
before and after the peak frequency data point, which can
represent the sharpness of the peak (see Fig. 3). The sharper
the peak, the greater the kurtosis and the higher the retrieval
quality. Hence, the weight matrices are designed based on the
corresponding LK values of RH estimations. To find the most
suitable weight values, an exponential function is adopted as
the way to tune the degree of distinction between estimations
with different LK values. The weight value is set to

Pi = μki

ν
(14)

where Pi and ki are the weight and LK value of the i th
estimation in L, respectively; μ is the base, and ν is the scale
factor, where both are constants. Testing with part of the data
yields optimal settings for both hyperparameters.

To minimize the error, multiple iterations are performed.
For each iteration, the process is expressed as

�X (i+1) = �
BT P B

�−1
BT P L(i) (15)

where i represents the current iteration count. Then, B �X will
be assigned to L. The iteration continues until the change of�X meets the condition

� �X (i+1) − �X (i)� < δ. (16)

The estimations of nonstatic RH and change rate ḣ for each
window epoch are then obtained.

To weaken the effect of accidental error and facilitate the
following tropospheric correction, a moving average process
is conducted at 10-min intervals on the nonstatic RH time
series. The width of the averaging window is four epochs,
that is, 40 min, the same as the SNR window width.

4) Tropospheric Correction: In previous research,
Santamaría-Gómez mentioned that tropospheric refraction
would bend the signals and lead to a higher elevation angle,
thus a larger geometric delay will be calculated, and results
in a larger estimation of RH [29]. Therefore, a simplified
scale correcting method is used to reduce the impact of
tropospheric delay in this article. Williams and Nievinski
[19] pointed out that tropospheric delay can be processed
as a scale error as (17) and the simplified equation of RH
considering tropospheric correction is as (18)

htropo = α
��h A − �hS

�
= α�h ≈ αh (17)

�h = �h A − �hS = h + htropo (18)

where �h, �h A, and �hS, respectively, represent the actual value
of RH, antenna height, and sea level. h is the calculated
estimation of nonstatic RH, and α is the scale factor of the
tropospheric correction related to the RH. Rearranging (17)
and (18), we get the corrected RH

�h = h

(1 + α)
(19)

where α is the scale factor of the nonstatic RH. Besides,
Larson et al. [22] demonstrated that if the reflector surface
is moving, the RH estimations will bias. Therefore, as the
sea surface keeps changing in height, another scale error
depending on the sea level change rate can be used to correct
tropospheric delay conjointly with the abovementioned one.
The final correcting equation is

�h = h

(1 + α)
+ βḣ (20)

where β is the scale factor of the sea level change rate. The
factors α and β can be determined using a least-square esti-
mation (independent of the LSM model in the last subsection)
based on a priori data. When n epochs of a priori data are
used, the observation equation is expressed as⎛

⎝ . . .�h(t)
. . .

⎞
⎠ =

⎛
⎝ . . . . . .

h(t) ḣ(t)
. . . . . .

⎞
⎠� 1

(1+α)

β

	
(21)

and the matrix form is the same as (12). The factors α and β
are then determined with (13), which can be used to correct
the tropospheric delay of the pending data.
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Fig. 4. (a) Antenna of station BRST in France (https://igs.org/imaps/station.php?id=BRST00FRA). (b) First Fresnel zones of elevation angles 7◦ , 10◦, and
25◦ at station BRST projected on Google Earth.

TABLE II

BRIEF CHARACTERS OF SELECTED SIGNALS

C. Data

The Multi-GNSS Experiment (MGEX) project was set
up by International GNSS Service (IGS) to track, collate,
and analyze all available GNSS signals [30]. The MGEX
station BRST, which locates at the mouth of Penfeld River
in Brest, France, is selected to estimate the sea level. The
station was equipped with a TRIMBLE ALLOY receiver and
TRM57971.00 antenna [see Fig. 4(a)], providing multisystem
high-rate observation data with a 1-s sampling interval. The
station is only 292 m away from the Brest tide gauge; the
posterior validated sea level data recorded at 10-min sampling
intervals by the tide gauge can be accessed at the data
archive run by tidal observation reference networks of France
(Réseaux de référence des observations marégraphiques, REF-
MAR, http://data.shom.fr/donnees/refmar).

In this article, the SNR data of a whole 2021 (DOY 1–365)
is used to study the annual performance of GNSS-MR and
its ability to retrieve astronomical tidal constituents. Previ-
ous research [28] experimentally analyzed the retrieval per-
formance for each signal in four systems and verified the
precision of raw single signal GNSS-MR. Within the GPS
L2 band, S2X has a significant advantage compared to S2W.
Galileo S1X, S5X, and S7X have relatively better perfor-
mance. GLONASS S1C and S2C have similar precision to S1P
and S2P. After taking calculated efficiency and performance
into account, the selected signals in this article are shown in
Table II.

Fig. 5. (a) Selected satellite tracks of DOY 99 for four systems [(Top left)
GPS. (Top right) GLONASS. (Bottom left) Galileo. (Bottom right) BDS].
(b) Selected satellite tracks of a window (00:00:00–00:40:00) in DOY 99.

To determine the masks of elevation and azimuth angle in
the study, the First Fresnel Zones of elevation angle 7◦, 10◦,
and 25◦ with RH set to 16 m for station BRST are plotted
using an open-sourced MATLAB/Octave tool in GPS-toolbox
developed by Roesler and Larson [31]. As shown in Fig. 4(b),
the area with azimuths ranging from 130◦ to 180◦ is an
open water area, and an elevation range of 7◦–25◦ is selected.
Azimuths ranging from 180◦ to 330◦ are within the narrower
Penfeld River, and the elevation mask is restricted to 10◦–25◦.
The selected satellite tracks in DOY 99 for four systems
are plotted [see Fig. 5(a)], showing that different systems
all provided a sufficient number of tracks with good conti-
nuity. Furthermore, to present the situation after windowing,
a sample of the segmented satellite tracks in one window is
plotted in Fig. 5(b).
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Fig. 6. Number of valid retrievals per day for each signal. The unit of the
time axis is the day of the year (DOY). (a) GPS. (b) GLONASS. (c) Galileo.
(d) BDS.

III. RESULTS AND ANALYSIS

A. Performance of Individual Signal

Before the combinative process, a comparative analysis is
conducted to evaluate the performance of different signals
according to the following indicators: valid retrievals per
day, root mean square error (RMSE), and correlation (R2).
Fig. 6 shows the number of valid retrievals per day for each
SNR type of the four systems during the whole 365 days in
2021. Note that the number of valid retrievals on someday
is very low, for example, DOY 35, 122, 123, 150, and 157,
due to several observation interruptions at the BRST station.
In addition, the BDS-3 B2b signal is not received by the
receiver, resulting in only 15.9 valid retrievals per day for
S7I. The average numbers of valid retrievals per day for each
signal are shown in Table III, which indicates that GPS S1C
and BDS S6I provided the most valid retrievals around 140 per
day, and all normally received SNR types provided more than
80 valid retrievals per day, which were mainly due to the direct
segmentation of the SNR time series.

Table III also presents the RMSE of raw estimations for each
SNR type. GLONASS S1C has the best precision at 0.513 m,
while Galileo S7X has the worst at 0.693 m. To present the

Fig. 7. Distribution of residuals for each SNR type.

residual distribution for each SNR type more clearly, a boxplot
is drawn in Fig. 7, where the blue box represents the range
between the first and third quartiles and the red horizontal lines
represent the medians. The outlier criteria settings are the same
as in (7), and the red crosses represent outliers based on this
criterion. The results of the quartile analysis are almost the
same as those of the RMSE analysis, except that the residuals
of BDS S7I seem to be more convergent in the quartile analysis
than those of S6I.

When evaluating the performance of different SNR types,
RMSE and the number of retrievals should be considered
together. Among GPS signals, S2X and S5X have the highest
precision, and S1C provided the most retrievals. In terms of
GLONASS, S1C has the highest precision and provided the
most retrievals as well. S1X is the most precise in Galileo,
while S7X provided the most retrievals. As for BDS, S2I
and S6I have almost the same precision but S6I provided the
most retrievals. Overall, in comparison between systems, the
performance ranking is GLONASS > GPS > BDS > Galileo,
which is consistent with previous researches [15], [17], [28].

Fig. 8 shows the correlation analysis charts of tide gauge
and GNSS-MR retrievals for GPS, GLONASS, Galileo, and
BDS. The solid red line is the linear fit line and the red dotted
line is the 95% confidence interval line. The corresponding
parameters including the goodness of fit R2 and coefficients
a and b in linear form y = ax + b are shown in Table III,
where a is replaced by slope deviation (a − 1) to demonstrate
the subsequent improvement. The result of the linear fitting
is quite consistent with the result of RMSE analysis, which
shows that GLONASS S1C has R2 and a closer to 1 and
its b is much less than others. Also, the fitting goodness
identically ranks GLONASS > GPS > BDS > Galileo. It is
worth noting that all R2 and a less than 1 and all b larger
than 0, which means that the deviation direction of the fitting
curve is uniform and systematic. This is most likely because
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TABLE III

NUMBER OF VALID RETRIEVALS PER DAY, RMSE, R2, LINEAR COEFFICIENTS (A-1, B) FOR EACH SNR TYPE

Fig. 8. Correlation analysis charts of tide gauge and GNSS-MR retrievals
for (a) GPS, (b) GLONASS, (c) Galileo, and (d) BDS.

Fig. 9. Comparison of mean LK and RMSE for each SNR type shows a
clear negative correlation.

of the tropospheric delay that caused all RH estimations
systematically larger than actual values [18]. Therefore, the
tropospheric correction in the following steps is extremely
important for high precision sea level retrieving.

TABLE IV

COMPARISON OF WEIGHTED ITERATIVE LSM AND

ROBUST REGRESSION LSM

B. Performance of Combined Multi-GNSS

To show the characteristics of the individual signals, the
least-square method is used to combine them. As mentioned in
Section IV-C, the weight values are determined by a function
of LK, and the values of μ and ν in (14) are 1 and 10,
respectively, in this article. Fig. 9 shows the comparison of
mean LK and RMSE for each SNR type, which shows a clear
negative correlation, and thus it is effective to use kurtosis as
a weight reference. As shown in Table IV, the RMSE of the
weighted iterative LSM result is about 13% lower than that of
robust regression LSM mentioned in [28], and the R2 of the
former is larger. Although the max bias of weighted iterative
LSM is slightly larger (probably the influence of values with
large residuals can be weakened more significantly by the
robust regression method), weighted iterative LSM still shows
better overall performance.

The final estimations are obtained after the tropospheric
correction (the α and β factors in (21) were set to 0.014 and
0.321), Fig. 10(a) shows the final multi-GNSS-MR combined
estimations of sea-level h at BRST for each window. The sea
levels mostly vary from approximately 1 to 7 m. The large
fluctuation amplitude of sea level confirmed the importance
of sea-level change rate corrections. The sea-level change
rate estimations ḣ are given in Fig. 10(b). The change rates
are within the range (−2 m/h, 2 m/h), which shows high
consistency with h.

Fig. 11 shows the distribution of residuals between multi-
GNSS-MR estimations and tide gauge measurements in the
whole of 2021. Each grid cell is 1 day along the time axis and
0.05 m along the residual axis. The color indicates the number
of estimations in the grid cell. This histogram shows that most
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TABLE V

PARAMETERS OF THE SAME TIDAL CONSTITUENTS MONITORED BY TIDE GAUGE AND MULTI-GNSS-MR

TABLE VI

PARAMETERS OF DIFFERENT TIDAL CONSTITUENTS MONITORED BY TIDE GAUGE AND MULTI-GNSS-MR

Fig. 10. (a) Final sea-level h estimations. (b) Sea-level change rates estimated
by weighted iterative LSM.

of the large and RH-dependent errors have been effectively
weakened, and residuals are mostly within the range (−0.4 m,
0.4 m). The multisignal combined GNSS-MR performed well
throughout the year, and the RMSE of the difference between
its estimations and tide gauge measurements is 0.134 m, which
is much smaller than that of each signal and reduced by 78%
on average.

We also plotted correlation analysis diagrams (see Fig. 12)
to evaluate the improvement at each step. All retrieved raw
data are very scattered and the RMSE reaches 0.610 m. After
the weighted iterative LSM combination, the RMSE dropped
sharply to 0.318 m and it can be seen from Fig. 12 that
the confidence intervals are significantly narrowed. Moving

Fig. 11. Distribution of residuals between multi-GNSS-MR estimations and
tide gauge measurements of the whole year.

average smoothing further reduced the range of error and
continues to decrease the RSME to 0.170 m. Completing
the tropospheric delay correction to obtain the final result,
the RMSE reached 0.134 m. The correlation coefficient R2

between multisignal GNSS-MR estimations and tide gauge
was also substantially improved from 0.8510 to 0.9917. The
slope deviation (a − 1) is also improved from −0.127 to
−0.029.

C. Tidal Harmonic Analysis

To analyze the ability of multisignal GNSS-MR to detect
different tidal components, a tidal harmonic analysis is per-
formed to compare the sea-level time series obtained by multi-
GNSS-MR and by tide gauge. In this step, the MATLAB tool
t_tide is used to conduct nodal corrections and perform a tidal
constituent analysis. The period T , amplitude A, and phase
ϕ are calculated for each tidal constituent. The precision of
amplitude σA and precision of phase σφ are estimated for
the subsequent comparative analysis. Only tide constituents
that meet condition (A/σA)2 > 2 are assessed as significant
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Fig. 12. Correlation analysis diagram of tide gauge and GNSS-MR esti-
mations for all signals, weighted iterative LSM combination, moving average
smoothed, and the final result after tropospheric correction. (a) Raw all signals.
(b) Weighted iterative LSM. (c) Moving average smoothed. (d) Final result.

constituents, which will be considered in the analysis. The
aforementioned parameters of the same tidal constituents in
sea-level series obtained by tide gauge and GMSS-MR are
presented in Table V. The condition |�A| > σ�A is used to
evaluate the coincidence of tide gauge and multi-GNSS-MR,
and the results indicate that all the shared tides perfectly meet
the condition. The different significant tide constituents of tide
gauge and multi-GNSS-MR are also listed in Table VI to
further analyze the consistency between them. It shows that the
difference in the period between MS4–MK4 and M3–MK3 is
much less than 10 min, and pairs MS4–MK4 and M3–MK3
fit the condition |�A| > σ�A as well. In this case, we can
conclude that multi-GNSS-MR has retrieved all daily and
subdaily tidal constituents with periods greater than or equal
to 10 min.

IV. CONCLUSION

In this study, we developed a new algorithm to realize multi-
GNSS and multisignal combined GNSS-MR sea-level moni-
toring at a 10-min interval, based on a moving window on SNR
time series, weighted iterative LSM, and tropospheric correc-
tion. We reduced the RMSE between combined GNSS-MR
and tide gauge by 78% on average and improved the corre-
lation to 0.9928, indicating that the estimations are of high
quality. Compared with previous research using one or two
GNSS systems at BRST station, the precision of combined
GNSS-MR sea-level estimation is significantly improved by
more than 60% [19], [32], [33]. The main contributions and
performances are summarized as follows.

1) Directly windowing on SNR time series significantly
increased the number of valid retrievals per day,

which generated much more redundant estimations and
achieved higher precision by the least-square method
even using fewer signals.

2) Weight designing based on LK improved the efficiency
of LSM when compared to traditional methods.

3) By making full use of the moving average smoothing
and tropospheric correction, the dispersion of error was
greatly reduced.

The performances of different GNSS were compared and
GLONASS provided the most precise sea-level estimations.
Meanwhile, signals of BDS-3 were not fully received, which
caused significant observation loss. Therefore, the GNSS
receiver should track GLONASS and BDS satellites and make
it more convenient for reflectometry applications.

Moreover, this article demonstrated the high performance of
multi-GNSS-MR for an entire year and verified its potential
applications in tide observations using a tidal harmonic analy-
sis. The result showed that daily and subdaily tide constituents
with a period larger than or equal to 10 min can be retrieved
precisely using multi-GNSS-MR. Therefore, GNSS-MR can
monitor and analyze tidal constituents, which can make up
for the deficiency of tide gauges.
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