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Responses of GNSS ZTD Variations to ENSO
Events and Prediction Model Based on FFT-LSTME

Tengli Yu , Ershen Wang , Shuanggen Jin , Senior Member, IEEE, Yong Wang ,
Jing Huang , Xiao Liu , and Wei Zhan

Abstract— The El Niño-Southern Oscillation (ENSO) event
often causes natural disasters in mainland China. Existing
quantitative analysis of ENSO event’s effects on climate change
in mainland China is insufficient. The monthly scale prediction
effectiveness of ENSO events is still low. Global Navigation Satel-
lite System (GNSS) can estimate zenith tropospheric delay (ZTD)
with high accuracy, which can study ZTD responses to ENSO
and improve the prediction accuracy of ENSO events. This study
quantitatively analyzed the response patterns of GNSS ZTD
time–frequency variation to ENSO events in mainland China.
The monthly multivariate ENSO index (MEI) thresholds for
GNSS ZTD anomaly response to ENSO events are (−1.12, 1.92)
for the tropical monsoon zone (TPMZ), (−1.12, 1.61) for the
subtropical monsoon zone (SMZ), (−1.19, 1.62) for the temperate
monsoon zone (TMZ), (−1.26, 1.64) for the temperate continental
zone (TCZ), and (−1.22, 1.72) for the mountain plateau zone
(MPZ). The ENSO event causes the amplitude of the nine-
month variation period to decrease and the amplitude of the
0.8–3-month period to increase for the GNSS ZTD in mainland
China. Furthermore, a forecasting model is proposed by integrat-
ing fast Fourier transform and long short-term memory extended
(FFT-LSTME). The model uses monthly MEI as the primary
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input and the GNSS ZTD reconstruction sequence that responds
to ENSO as the auxiliary input. It can predict ENSO events in
the next 24 months with an index of agreement (IA) of 91.56%
and a root mean square error (RMSE) of 0.25. The RMSE is
optimized by 70.48%, 43.95%, and 11.6% when compared with
radial basis function (RBF), LSTM, and FFT-LSTM.

Index Terms— El Niño-Southern Oscillation (ENSO), Global
Navigation Satellite System (GNSS) meteorology, long short-term
memory extended (LSTME), zenith tropospheric delay (ZTD).

I. INTRODUCTION

IN RECENT years, the frequency of extreme weather and
climate events in mainland China has been increasing, caus-

ing severe harm to human production and life. For example,
the heavy rain event that occurred in July 2021 affected a wide
range of jurisdictions in Henan Province, China, resulting in
significant economic losses and social impacts. The National
Climate Center of China Meteorological Administration indi-
cates that this event is related to La Niña (the cold phase
event of the El Niño-Southern Oscillation (ENSO) event).
The Global Navigation Satellite System (GNSS) meteorolog-
ical elements are also a good indicator of this catastrophic
rainstorm event [1]. Global extreme weather monitoring and
early warning capability are improving, and disaster prevention
and mitigation effectiveness have been significantly enhanced.
Against the background of increasing global warming, the
climate system is, however, actively changing, and the for-
mation mechanism of ENSO events is complex and difficult
to predict precisely. ENSO events indirectly cause catastrophic
effects on China’s climate by affecting precipitable water vapor
(PWV) transport in the East Asian monsoon region [2]. The
monitoring and early warning accuracy of ENSO events need
to be further improved to ensure the health and property safety
of the people. Applying GNSS meteorology to monitoring
and early warning of ENSO events is a new prospective
method, and it can provide technical references for relevant
meteorological departments.

GNSS technology has the advantages of continuous opera-
tion, high accuracy, and low cost [3], [4], [5]. Remote sensing
of the troposphere using GNSS to obtain relevant meteorologi-
cal data, called “GNSS meteorology,” is an essential technique
for monitoring climate change [6], [7], [8]. The standard
product of GNSS meteorology is the zenith tropospheric delay
(ZTD). The GNSS signal is influenced by the refraction
effect of the atmospheric medium when passing through the
troposphere, thus causing a delay in signal transmission.
The resulting path delay is called ZTD [9]. GNSS ZTD
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has fewer sources of error because it avoids the subsequent
inversion process [10]. Researchers found that GNSS ZTD has
a strong correlation with extreme climate events and evaluated
the application value of GNSS ZTD in identifying climate
events such as heavy rainfall, drought, and heavy haze weather
[10], [11], [12], [13], [14]. GNSS ZTD is widely used in
numerical weather forecasts and extreme climate monitoring
[15], [16], [17], [18].

ENSO events have global impacts on ecosystems, manifest-
ing as La Niña events in the cold phase and El Niño events
in the warm phase [19]. Researchers refer to El Niño events
with the sea surface temperature (SST) anomaly warming
region in the central equatorial Pacific as Central-Pacific types
of El Niño (CP-El Niño) and El Niño events with the SST
anomaly warming region in the eastern tropical Pacific as
Eastern-Pacific types of El Niño (EP-El Niño) [20]. This
criterion also distinguishes La Niña events. Related scholars
have analyzed the impact of ENSO events on the climate
change in mainland China using precipitation, temperature,
and other meteorological elements. The results show that
the response characteristics of climate change in different
regions of mainland China to different types of ENSO events
differ [21], [22]. Foster et al. [23] first explored the impact
of ENSO events on climate change using GNSS stations in
tropical monsoon climate zones. Barindelli et al. [24] and
Zhao et al. [25] also successively demonstrated the correlation
between different types of ENSO events and meteorological
elements using GNSS observations. Yao et al. [26] demon-
strated the existence of a significant semiannual period of
GNSS ZTD and the response of the abnormal variation of
this cycle to El Niño events. Wang et al. [27] studied the
influence of El Niño events on climate changes in mainland
China using the Chinese regional GNSS ZTD. The above
studies show that GNSS ZTD can indicate the evolution of
ENSO events, which provides theoretical support for apply-
ing GNSS meteorology to ENSO event prediction. There
are differences in the selection of individual cases in the
above studies, so the results of the studies are, however,
not the same, and there is a lack of quantitative analysis to
explore the exact threshold of the impact of ENSO events on
climate change in the Chinese region. Therefore, this study
will systematically quantify the response patterns of different
regions’ climate change in mainland China to different ENSO
events.

Currently, the forecasting methods for ENSO events mainly
include numerical and statistical forecasting models. Numeri-
cal prediction models have complex structures, are computa-
tionally intensive, and require cumbersome computer resource
configurations [28]. Ren et al. said that due to the complex
nonlinear evolution characteristics of ENSO, the current cli-
mate numerical prediction model still has significant errors
in reproducing the diversity and complexity of ENSO. It is
urgent to improve and upgrade the model and fully use new
techniques, such as neural networks, to correct the model
output [29]. Statistical forecasting models use historical time
series data to predict future data. Statistical models are less
computationally intensive, have low system operation costs,
and have higher accuracy of forecast results. Statistical models

commonly include machine learning (ML) and artificial neu-
ral network (ANN) models. The ML model has a clear
mathematical logic and a simple structure; however, these
models can easily be overfitted if the parameters are not
set properly. With the development of artificial intelligence,
ANN models, especially deep learning models, have features
such as nonlinear mapping, adaptive mapping, and robustness
[30], which provide better performance in nonlinear prediction
tasks. Radial basis function (RBF), recurrent neural network
(RNN), convolutional neural network (CNN), and long short-
term memory (LSTM) neural network are the more commonly
used neural network models. Ham et al. [31] constructed an
ENSO event prediction model based on CNN, which can
predict the occurrence of ENSO events up to 18 months in
advance, and the accuracy can reach about 80%. This study
fully demonstrates the feasibility of applying ANN methods
in climate monitoring. This study, however, only used the
Niño3.4 SST anomaly (SSTA) as a single variable for predic-
tion, and the prediction accuracy needs to be improved. The
RNN model applies to the processing of time series; however,
for processing longer time series, RNN models are limited by
problems such as gradient explosion or disappearance [32].
The LSTM model can effectively solve these problems and
is suitable for predicting longer nonlinear time series. Related
scholars have verified that LSTM models have significantly
better prediction accuracy than traditional ML models such
as support vector regression (SVR), multiple linear regression
(MLR), decision tree regression (DTR), and random forest
regression (RFR) [33], [34], [35]. LSTM models are widely
used in the field of ENSO event prediction. Huang et al.
[36] used SST as a predictor and verified that the traditional
LSTM has better predictability than linear regression models.
Chen [37] used the traditional LSTM model to predict the
Southern Oscillation Index (SOI) with a root-mean-square
error (RMSE) of 0.53 for a three-month prediction time
horizon and 0.93 for a 12-month prediction time horizon.
Zhou et al. [38] predicted the Niño3.4 index using a traditional
LSTM with a 12-month prediction time horizon and an RMSE
of 0.36. Guo et al. proposed a Niño3.4 index prediction model
integrating empirical mode decomposition and LSTM and
compared it with traditional LSTM, Autoregressive Integrated
Moving Average (ARIMA), and SVR regression models.
According to the results, the conventional LSTM performed
better than ARIMA and SVR. The best prediction performance
of the integrated empirical pattern decomposition and LSTM
model was achieved with an RMSE of 0.3 at a 12-month
prediction time [39]. Gupta et al. [40] proposed a convolutional
LSTM network, which predicted the monthly value of the
Niño3.4 index for the next 12 months with an average RMSE
of 0.72 ◦C for 2009–2019.

The conventional LSTM models and various improved
LSTM models in the above study carried out the prediction
based only on the nonlinear characteristics of the ENSO event
discriminant index itself, without adding other constraints. The
Niño3.4 index or SOI is used as the primary predictor, and the
prediction time limit is generally 6–12 months. The choice
of predictors needs to be further explored. The prediction
accuracy and timeliness of the model need to be further
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improved. Li et al. [41] effectively improved the prediction
accuracy by adding auxiliary variables to the traditional LSTM
model. Mao et al. [34] proposed an LSTM model with a time-
sliding window to improve the prediction accuracy by using
the optimal time lag of the prediction element itself as the
window length. We have previously fused the fast Fourier
transform with the traditional LSTM model (FFT-LSTM),
which effectively improved the prediction accuracy of meteo-
rological elements [42]. In this study, we will further optimize
the FFT-LSTM neural network model and apply it to the
prediction of ENSO events.

This study aims to construct an ENSO event prediction
model incorporating high-precision GNSS ZTD to achieve
longer timeliness and higher accuracy prediction. We selected
an optimal ENSO event discriminant index [multivariate
ENSO index (MEI)] as the predictor of ENSO events. Based
on the spatial distribution characteristics of GNSS ZTD, the
Chinese mainland was partitioned according to five major
climate types. We analyzed and quantified the response of
anomaly sequences and frequency domain oscillation features
of GNSS ZTD in different regions to ENSO events. The
time–frequency feature terms of the GNSS ZTD response to
the presence of ENSO events were reconstructed and used
as auxiliary inputs to the ENSO event prediction model.
We proposed a prediction model based on LSTM extended
network and FFT (FFT-LSTME). The function of FFT is to
decrease the effect of temporal heterogeneity between GNSS
ZTD and ENSO indices on the prediction effectiveness of
the model. The optimal common variation period of GNSS
ZTD and MEI is used as the model’s input duration, and a
time-sliding block is set within the LSTME neural network
to achieve long-time prediction. Applying GNSS ZTD in the
ENSO event monitoring and warning field can provide a
reference for relevant meteorological monitoring and disaster
prevention and control governance departments.

The remainder of the article is structured as follows.
Section II introduces the datasets and study area division.
Section III analyzes the response threshold of GNSS ZTD
anomaly sequence to ENSO events from the time domain
perspective. Section IV analyzes the response of GNSS ZTD
frequency domain oscillation characteristics to ENSO events
from the frequency domain perspective. Section V introduces
the construction process and evaluation results of the ENSO
event prediction model based on FFT-LSTME. Section VI
is the discussion section of this article. Finally, the study is
concluded in Section VII.

II. DATA PROCESSING AND STUDY AREA DIVISION

A. CMTEMN ZTD

The ZTD in this study is provided by the First Moni-
toring and Application Center, China Earthquake Adminis-
tration. The dataset was solved based on continuous GNSS
observations from the China Mainland Tectonic Environment
Monitoring Network (CMTEMN). CMTEMN is widely used
in geodesy and climate monitoring [43], [44]. Its accuracy has
been verified by researchers [45]. CMTEMN has 262 con-
tinuous stations, including 31 Chinese Crustal Movement

Fig. 1. GNSS sites distribution from CMONOC and CMTEMN.

Observation Network of China (CMONOC) stations (see
Fig. 1). The data of the CMONOC reference stations have
been recorded since 1999. The new 231 continuous stations of
the CMTEMN have been producing data since mid-2010, and
nearly 12 years of GNSS observations have been accumulated.
The temporal resolution of ZTD (mm) and meteorological
data are 1 h. Because of the different construction times of
CMONOC and CMTEMN, the length of observation data
accumulated at each site is different. We get the longest time
series of GNSS ZTD: 2008/1–2021/6, and the shortest time
series: 2011/1–2021/6. YONG, LALB, and LALX sites do
not participate in the analysis due to the lack of data.

B. GNSS ZTD Anomaly Sequences

According to the existing research, it can be seen that
the change of the GNSS ZTD time series is mainly driven
by significant change cycles and trend items such as the
annual cycle, semi-annual cycle, and seasonal cycle [27]. The
GNSS ZTD anomaly sequence can be obtained by remov-
ing the trend signal and the significant period signal [25].
Wavelet transform (WT) provides time domain localization
corresponding to the frequency domain information of time
series. It is widely used in signal processing, image processing,
and many nonlinear scientific fields [46], [47], [48]. This
article selects a compactly supported standard orthogonal Db6
wavelet basis function for the time–frequency analysis of the
GNSS ZTD time series [49]. The layered principle of WT
is used 2, 4, 8, . . . , 2J as the scale to decompose the signal
f (t) (frequency is 0 − F) into J + 1 signal frequency
bands. The frequency band 0 − F /2J is the low-frequency
term (AJ) and F/2n − F/2n−1(n = 1, 2, 3, . . . , J ) is the high-
frequency term (D1, D2, . . . , DJ). The corresponding period
of each frequency band is shown in Table I. The criterion
for stratification is that the AJ curve of the low-frequency
signal exhibits a single increasing or decreasing trend. In this
study, the WT decomposes the GNSS ZTD monthly-mean
time series into seven layers. Then, the GNSS ZTD anomaly
time series is obtained by separating the layers corresponding
to the significant change period and trend term from them
and reconstructing the remaining layers (see Fig. 2). The D1
layer corresponds to 2–4 monthly variation periods, D2 layer
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TABLE I
CORRESPONDING PERIOD OF WAVELET COEFFICIENTS AT EACH SCALE

Fig. 2. GNSS ZTD time–frequency analysis and reconstruction. The black
line is the original GNSS ZTD monthly mean sequence, the red line is the
primary driver term of GNSS ZTD, and the dark blue line is the reconstructed
GNSS ZTD anomaly sequence. (a) BJFS. (b) KMIN. (c) WUHN. (d) WUSH.

corresponds to the semi-annual period, D3 layer is the annual
period, and A7 layer is the trend term. By comparing the
amplitudes of wavelet coefficients at each scale, it can be found
that the variation of GNSS ZTD is mainly driven by A7, D3,
D2, and D1. Therefore, the GNSS ZTD anomaly sequence is
obtained by removing D1, D2, D3, and A7 and reconstructing
the high-frequency terms in layers D4–D7.

C. ENSO Event Discrimination

ENSO events consist of two components, El Niño (mainly
for the ocean) and Southern Oscillation (mainly for the
atmosphere). These two components are manifestations of the
same phenomenon in different media, and the two phenomena
form a cyclic system. With the continuous improvement of
monitoring methods and monitoring areas, the discriminant
index of ENSO events is also constantly developing. The SOI
was most commonly used in the early days [50], which dis-
criminated against ENSO events mainly from the atmospheric
perspective. Later, Trenberth verified that using the SST Index
in the Niño 3.4 region of the eastern Pacific was more

Fig. 3. Time series of ENSO event discriminant index. When SOI ≤ −0.5 for
five consecutive months or more, it is considered an El Niño event. When
SOI ≥ 0.5 for five consecutive months or more, it is considered a La Niña
event. When ONI/MEI ≥ 0.5 for five consecutive months or more, it is
considered an El Niño event. When ONI/MEI ≤ −0.5 for five consecutive
months or more, it is considered a La Niña event.

accurate [51]. The National Oceanic and Atmospheric Admin-
istration (NOAA) defines the 3-month sliding average of the
SSTA in Niño 3.4 as the Oceanic Niño index (ONI). Since the
variation of Niño3.4 SSTA and SOI is sometimes not the same,
Wolter and Timlin proposed an MEI. The index incorporates
multiple atmospheric and oceanic meteorological elements
to characterize ENSO events comprehensively [52]. A new
version of the MEI (MEI.v2) has been created, which was
obtained by principal component analysis of five variables:
sea level pressure (SLP); SST; surface zonal winds (U), surface
meridional winds (V), and outgoing longwave radiation (OLR)
[53]. This study analyzed the three most commonly used
ENSO event discriminating indices, SOI, ONI, and MEI, and
selected the ones with the strongest correlation with GNSS
ZTD in mainland China. The time of each index is from
2008 to the present, and the temporal resolution is one month
(see Fig. 3).

D. Study Area Division

This study analyzed the typical spatial distribution charac-
teristics of GNSS ZTD at 260 CMTEMN sites in mainland
China for 11.5 years (2010/1–2021/6) using the empirical
orthogonal function (EOF) method. EOF can decompose the
original data set into patterns ordered by their temporal vari-
ances, i.e., the original field of relevant variables is decom-
posed into several unrelated spatial functions and temporal
coefficients [54]. The EOF method has a significant advantage
in that the typical field is determined by the characteristics of
the variable field sequence rather than being artificially spec-
ified in advance, which can better reflect the basic structure
of the field. Moreover, the method has a fast convergence rate
and easily concentrates a large amount of data information.
The first few modes that pass the significance test in the
EOF analysis results contain the main variation information of
the original field [55]. The EOF decomposition is performed
by first constructing the original data covariance matrix [56].
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Fig. 4. GNSS ZTD spatial characteristics and regional division results. The red sites belong to the TPMZ, the orange sites belong to the SMZ, the green
sites belong to the TMZ, and the blue sites belong to the TCZ, yellow sites belong to MPZ, and the 15 representative sites with special notes (triangles) are
the sites shown in the analysis results of this article.

The matrix form of the spatiotemporal grid data is

X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn

⎤
⎥⎥⎥⎦ (1)

where X (i , t) is the observation corresponding to position i
(i ∈ (1, m)) and time t (t ∈ (1, n)), m is the spatial station,
and n is the time series.

The explanatory rate of the k modality to the total variance
can be expressed as

ρk = λk∑m
i=1 λi

× 100%. (2)

The analysis results are tested for significance [57]

�λ = λ

√
2

N ∗ (3)

where λ represents the characteristic root. A higher λ value
indicates that its corresponding modality is more important
and contributes more to the total variance. N ∗ represents the
data degrees of freedom. Put λ in rank order and analyze its
error range. If the error ranges of the two λ before and after
overlap, it does not pass the significance test. The modalities
that pass the significance test are the typical characteristics of
the original data.

The results show that both the first and second spatial modes
passed the significance test [57]. The first mode variance
contribution is 87.4%, the second mode variance contribution
is 4.04%, and the cumulative contribution of the two modes’
variance is 91.44%. The spatial coefficients of the first mode
are all positive, reflecting the consistent increase and decrease
of GNSS ZTD variation in mainland China, and show a trend
of increasing from northwest to southeast [see Fig. 4(a)]. The
second modal spatial eigencoefficients are both positive and
negative, reflecting the differences in GNSS ZTD variations
in different regions [see Fig. 4(b)]. Related studies have
shown significant differences in atmospheric humidity and
precipitation distributions in different climate regions, and
ENSO events have different effects on different climate regions
[19], [21], [22]. Therefore, we compared the GNSS ZTD
distribution characteristics with the five major climate-type
divisions and found that the results were consistent. The first
mode shows that the GNSS ZTD in the temperate monsoon

zone (TMZ), tropical monsoon zone (TPMZ), and subtropical
monsoon zone (SMZ) is higher than in the temperate continen-
tal zone (TCZ) and mountain plateau zone (MPZ). The second
mode shows the distribution characteristics of GNSS ZTD
increases in TMZ and decreases in other regions. The physical
mechanism is that the TPMZ and SMZ have high temperatures
and rainfall all year round; the TMZ is hot and rainy in
summer and cold and dry in winter; the TCZ is far from the
ocean and lacks humid air mass transport with low annual
rainfall; the MPZ is rainy on the windward side of humid air
currents and less precipitation on the leeward side and inside
the plateau. There are also related studies showing that the
distribution characteristics of GNSS ZTD are associated with
the distribution characteristics of meteorological factors such
as atmospheric humidity and precipitation [12], [58]. Based on
the analysis of this article and the results of related studies,
the regional division of the Chinese mainland according to
five major climate types is conducted to explore the response
patterns of different regional climate changes to ENSO events.
The distribution of the partitioned CMTEMN sites is shown
in Fig. 4(c).

III. RESPONSE OF GNSS ZTD ANOMALY SEQUENCES
TO ENSO EVENTS

A. Selection of Optimum ENSO Index Based on GAMs

The GNSS ZTD anomaly series and MEI time series
are complex. They have nonlinear variability, so the linear
or nonlinear correlation between GNSS ZTD anomaly and
MEI in different regions of mainland China was determined
based on generalized additive models (GAMs). GAMs can fit
complex nonlinear relationships between the explanatory and
response variables into the model [59]. Their core formula is

g(u) = f1(x1) + f2(x2) + · · · + fi (xi ) + X jθ + α (4)

where u represents the expected value of the response variable,
g(u) represents the linkage function, x1, x2, . . . , xi represents
the explanatory variable, and fi (xi ) is a smoothing function
of the linear or nonlinear relationship between the explanatory
and response variables.

The model does not require the analyst to prespecify the
form of the nonlinear relationship. Its use of a smoothing
spline function to establish the link between the explanatory
and response variables enables the automatic selection of a
suitable segmented polynomial. The GAMs are constructed
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TABLE II
GAMS MODEL ANALYSIS OF GNSS ZTD ANOMALY IN EACH REGION AND ENSO INDEX

with monthly MEI as the explanatory variable and GNSS
ZTD anomaly of the longest time series of each station as
the response variables. The degree of correlation between the
explanatory and response variables was analyzed. The results
of the five regional analyses are shown in Table II. The
equivalent degree of freedom (edf) is the number of variables
that are not restricted in their values when calculating a
statistic. When edf = 1, it represents a linear correlation; when
edf > 1, it indicates a nonlinear correlation. F represents the
set of test statistics, and a larger F value indicates the greater
relative importance of the influencing factor. P represents
the significance test index, and a smaller P value indicates
a more significant correlation. ∗∗∗indicates that the variable
is significant at the 0.001 level. The adjusted coefficient of
determination (R2) is the ratio of the regression sum of squares
to the sum of squares of the total deviation. The higher the
R2 and the deviance explained rate, the better the model
fitting effect and the stronger the correlation. The effect of
each ENSO index on the GNSS ZTD anomaly sequence
is demonstrated for the TPMZ (see Fig. 5). The analysis
results showed that the three ENSO event indices passed the
0.001 level significance test (they had a significant effect on the
variation of GNSS ZTD anomaly in each region at the P < 0.
001 level). It indicates that the ENSO events were statistically
significant as explanatory variables for the variation of GNSS
ZTD anomaly. MEI was nonlinearly correlated with GNSS
ZTD in each region (edf > 1). The GAM of MEI-GNSS ZTD
anomaly in each region has the highest variance explained
and R2, indicating that MEI correlates well with GNSS ZTD
anomaly in each region. MEI will be involved in the following
analysis as the best ENSO event discriminant index.

B. MEI Threshold for GNSS ZTD Anomaly Response to
ENSO Events

Quantifying the correlation between MEI and GNSS ZTD
anomaly series is beneficial for the more effective analysis
of the influence pattern of ENSO events on climate change

Fig. 5. Effect of the ENSO index on GNSS ZTD anomaly in the TPMZ.
The horizontal axis is the explanatory variable, and the vertical coordinate
in parentheses is edf. The black line is the fit curve between the explanatory
variable and the GNSS ZTD anomaly series. The blue shading is the 95%
confidence interval.

in different regions of mainland China. Since the GNSS ZTD
anomaly is nonlinearly correlated with MEI, this study chooses
to use moving the window correlation analysis (MWCA)
to find the correlation coefficient between them. First, the
moving window size is determined, and by moving selected
windows in the data set analysis, independent local correlation
coefficients can be calculated for each window. Thus, a smooth
time series of correlation coefficients can be generated [25].
We use the best common period between GNSS ZTD anomaly
and MEI as the moving window to reduce their temporal
heterogeneity. The significant variation periods of MEI and
GNSS ZTD anomaly were extracted by the FFT method. FFT
can reflect the amplitude and phase of a time series in the
frequency domain [60]. The core equation is

x(k) = 1
N

N∑
j=1

X ( j)W ( j−1)(k−1)
N (5)

WN = e− j 2π
N (6)

where x(k), k = 1, 2, . . . , N denotes the signal characteristics
in the frequency domain, X ( j), j = 1, 2, . . . , N denotes the
signal characteristics in the time domain.

The analysis results show no significant difference in the
significant variation period of GNSS ZTD anomaly sequences
among the stations. In this article, four uniformly distributed
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Fig. 6. Common significant variation period between monthly MEI and
GNSS ZTD anomaly sequences. (a) BJFS. (b) KMIN. (c) WUHN. (d) WUSH.

TABLE III
CORRELATION COEFFICIENTS OF GNSS ZTD ANOMALY AND

ENSO INDEX IN DIFFERENT MOVING WINDOWS

sites were selected to show the analysis results of the common
period (see Fig. 6). There are significant 90-month (corre-
sponding to frequency 0.011 cpm), 40-month (0.025 cpm),
24-month (0.042 cpm), and 18-month (0.056 cpm) significant
variation cycles of MEI. The GNSS ZTD anomaly sequence
also has the same variation period, the most significant of
which is the 24-month variation period. The MWCA between
GNSS ZTD anomaly and MEI for each station is carried
out with four common periods as sliding windows. The
comparison results of the mean of the absolute correlation
coefficients between GNSS ZTD anomaly and MEI for each
region under different moving windows are shown in Table III.
The correlation coefficients in Table III all pass the 0.01 level
significance test. The results show that the correlations of the
regions under the 18-month moving window are better than
those under other windows. Therefore, 18 months is the best
common period. This analysis is consistent with the views put
forward by [25]. The results of sliding correlation analysis
between GNSS ZTD anomaly series and MEI in each region
are shown in Fig. 7 (randomly selected uniformly distributed
stations). Different types of ENSO events have different effects
on the GNSS ZTD anomaly in various regions of mainland
China. The EP-El Niño event positively affects the GNSS
ZTD anomaly in the TPM and SMZ. In the TMZ, TCZ, and
MPZ, the GNSS ZTD anomaly has reciprocal responses to the
development and decline years of the EP-El Niño event. The
EP-El Niño event development year has a negative effect on
GNSS ZTD anomaly in the TMZ, TCZ, and MPZ. In contrast,
the EP-El Niño recession year positively affects them. The
presumed reason is that in the development year of the EP-El

Fig. 7. MWCA of GNSS ZTD anomaly with MEI in each region.
(a) HISY_TPMZ. (b) QION_TPMZ. (c) YNMH_TPMZ. (d) KMIN_SMZ.
(e) LUZH_SMZ. (f) WUHN_SMZ. (g) CHUN_TMZ. (h) BJFS_TMZ.
(i) XIAA_TMZ. (j) YANC_TCZ. (k) DXIN_TCZ. (l) HLAR_TCZ.
(m) WUSH_MPZ. (n) DLHA_MPZ. (o) LHAZ_MPZ.

Niño event, the East Asian summer monsoon weakened, and
the central monsoon rain belt in summer shifted southward.
It leads to sufficient PWV in the southern region and is prone
to high temperatures and drought in the northern region. In the
decay year of the EP-El Niño event, the Western Pacific sub-
tropical high (WPSH) is more potent and located southward.
The westward shift of the WPSH transports PWV from the
Pacific Ocean to the southern and central-eastern regions of
China. The “East Asia-Pacific teleconnection” facilitates the
PWV continuous transport from the Arctic Ocean to Northwest
China and North China. Therefore, the GNSS ZTD in China
is constantly rising during this period [61], [62], [63]. The
CP-El Niño event has a negative effect on the GNSS ZTD
anomaly of the TMZ, TCZ, TPMZ, and MPZ. It has a positive
impact on the SMZ. The reason for this result is the northward
position of the WPSH during the CP-El Niño event, and a
large amount of Pacific evaporative PWV is transported to the
SMZ [64], [65], [66]. Both EP-La Niña and CP-La Niña events
positively affect the GNSS ZTD anomaly in mainland China.
The presumed reason is that during the La Niña event, the SST
in the equatorial eastern Pacific decreased, and the current sea
temperature in the western Pacific increased, resulting in a
northward shift of the WPSH. It leads to abundant PWV in



4101417 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

the TMZ, TCZ, and MPZ. Because of the intensely cold air
masses from Siberia Mongolia rapidly moving to the southern
regions, PWV is continuously transported to Southern China.
The meeting of cold and warm air currents increases rain
and snow in central China [1], [67]. The PWV and rain/snow
content are closely related to GNSS ZTD.

In this study, a linear fit of the correlation between MEI and
GNSS ZTD anomaly series was used to quantify the influence
of ENSO on GNSS ZTD anomaly in different regions of
mainland China and to explore the MEI threshold for GNSS
ZTD anomaly response to ENSO events. The correlation
coefficients between MEI and GNSS ZTD anomaly series were
divided using the percentile method for quantitative analysis.
The percentile method is a simple method commonly used to
represent the distribution status of variables. The calculation
process mainly involves sorting the sample data from smallest
to largest, calculating the corresponding cumulative percentile,
and then calling the value corresponding to a certain percentile
the percentile of that percentile [25]. The total sample size is
divided into three parts, with the upper and lower percentiles
being 75% and 25%, respectively. The middle 50% is used
as the normal part. From the analysis results, it is clear
that different regions have different response thresholds to
ENSO events (see Fig. 8). The MEI thresholds for GNSS
ZTD anomaly in the TPMZ response to El Niño and La
Niña events are −1.12 and 1.92, respectively. Therefore, when
the MEI exceeds (−1.12, 1.92), the anomalous variation of
GNSS ZTD in the TPMZ of China is influenced by ENSO
events. Similarly, the MEI thresholds for GNSS ZTD anomaly
response to ENSO events are (−1.12, 1.61) for the SMZ,
(−1.19, 1.62) for the TMZ, (−1.26, 1.64) for the TCZ, and
(−1.22, 1.72) for the MPZ.

IV. RESPONSE OF GNSS ZTD OSCILLATION
CHARACTERISTICS TO ENSO EVENTS

This study investigates the response of GNSS ZTD
frequency-domain oscillation characteristics to ENSO events.
The amplitudes of the significant periods in GNSS ZTD for
each time frame were compared by intercepting the time
frames of different ENSO events from the complete time
series and the corresponding normal climate periods. The
frequency of variation [cycles per month (cpm)] of each
element is analyzed using the FFT with the Hanning window,
and the change period (frequency) and amplitude are accu-
rately extracted using the [pks, locs] function. We selected
three normal climate periods and one ENSO event period for
comparison and analysis to ensure the accuracy and reliability
of the results. Based on the completeness of GNSS ZTD
data and the duration of ENSO events, six ENSO events that
occurred after 2010 were selected for the study (Table IV).

Taking El Niño events as an example, three El Niño events
are included in the study period, among which one EP-El Niño
event occurred from 2014/10 to 2016/4. We selected three
normal climate periods and one EP-El Niño event period for
comparison and analysis. The duration of this El Niño event is
too long, lasting 19 months, and only one normal climate time
series in the studied time series range corresponds to it exactly

Fig. 8. MEI threshold for GNSS ZTD anomaly in each region response
to ENSO events. The pink line is the linear fit between MEI and correlation
coefficients of GNSS ZTD anomaly with MEI. (a) TPMZ. (b) SMZ. (c) TMZ.
(d) TCZ. (e) MPZ.

TABLE IV
SCREENING OF ENSO EVENTS AND NORMAL CLIMATE

COMPARISON PERIOD

(2012/10–2014/4). We intercepted 12 months (2015/5–2016/4)
forward and backward from the peak time of this event to
carry out the analysis to ensure that more experimental groups
were compared with it. The significant variation cycles of
GNSS ZTD during the four time periods were analyzed using
FFT to explore their differences and patterns during the EP-El
Niño event compared with normal climate periods. Because
of the interception duration of 12 months, the FFT results
only showed GNSS ZTD significant periods of nine months
(corresponding to a frequency of 0.11) and less, and significant
periods within 0.8–3 months [corresponding to a frequency
interval of (0.3, 1.3)]. Fig. 9 shows the analysis results
of three homogeneously distributed sites from each region.
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Fig. 9. Response pattern of GNSS ZTD significant change period amplitude
to EP-El Niño. (a) HISY_TPMZ. (b) QION_TPMZ. (c) YNMH_TPMZ.
(d) KMIN_SMZ. (e) LUZH_SMZ. (f) WUHN_SMZ. (g) CHUN_TMZ.
(h) BJFS_TMZ. (i) XIAA_TMZ. (j) YANC_TCZ. (k) DXIN_TCZ.
(l) HLAR_TCZ. (m) WUSH_MPZ. (n) DLHA_MPZ. (o) LHAZ_MPZ. Vari-
ation of (p) nine-month period and (q) 0.8–3 months period.

Fig. 9(a)–(c) shows that the amplitude of the nine-month
significant variation cycle of GNSS ZTD in the TPMZ during
the occurrence of EP-El Niño decreases to different degrees
compared with the three normal climate periods. The 2.5- and
0.9-month variation period amplitudes of GNSS ZTD at HISY
and QION sites have increased to different degrees, and the
3- and 1.5-month significant variation period amplitudes of
GNSS ZTD at the YNMH site have increased significantly.
Other regional sites [see Fig. 9(d)–(o)] are analyzed in the
same way. The analysis results of each station can be inte-
grated [see Fig. 9(p) and (q)]. Under the influence of the EP-El
Niño event, the amplitude of the nine-month significant change
cycle of GNSS ZTD in mainland China has different degrees
of decrease. In contrast, the amplitude of the 0.8-, 1.2-, 1.5-,
and 3-month significant change cycles have different degrees
of increase, and only individual stations have no change pat-
tern. These stations are located at higher latitudes in mainland
China, with small GNSS ZTD and inactive variations. The
northerly wind flow in the northern region is suppressed during
this EP-El Niño event, which affects the normal flow of PWV
in some regions [68].

Taking the CP-El Niño1 example, the analysis results of
three evenly distributed stations were selected from the five

Fig. 10. Response pattern of GNSS ZTD significant change period amplitude
to CP-El Niño. (a) HISY_TPMZ. (b) QION_TPMZ. (c) YNMH_TPMZ.
(d) KMIN_SMZ. (e) LUZH_SMZ. (f) WUHN_SMZ. (g) CHUN_TMZ.
(h) BJFS_TMZ. (i) XIAA_TMZ. (j) YANC_TCZ. (k) DXIN_TCZ.
(l) HLAR_TCZ. (m) WUSH_MPZ. (n) DLHA_MPZ. (o) LHAZ_MPZ. Varia-
tion of (p) nine-month period, (q) 0.8–3 months period, and (r) 1.2–1.5 months
period.

climatic type regions for display [see Fig. 10(a)–(o)]. The
duration of the CP-El Niño1 is ten months, and the FFT results
can only show the GNSS ZTD significant variation period
of 1.2–3 months [corresponding to the frequency interval of
(0.3, 0.8)] and the linear trend of the partial nine-month
significant variation period [see Fig. 10(p) and (q)]. The
duration of the CP-El Niño2 is five months, and the FFT
results only show the GNSS ZTD significant variation period
of 1.2–1.5 months [corresponding to the frequency interval
of (0.6, 0.8)] [see Fig. 10(r)]. Under the influence of the
CP-El Niño event, the amplitude of the nine-month significant
variation period of GNSS ZTD decreases for most stations in
mainland China. In contrast, the amplitude of the 1.2–3-month
significant variation period increases to different degrees, and
only some stations have no variation pattern, which is mainly
concentrated in the MPZ.

The effects of La Niña events on the GNSS ZTD significant
change period were analyzed using the above analysis method.
The aggregated results are shown in Fig. 11. Under the
influence of the EP-La Niña event, the amplitude of the nine-
month significant variation period of GNSS ZTD decreases
at most stations in mainland China [see Fig. 11(a), (c),
and (e)], and the amplitude of the significant variation period
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Fig. 11. Response pattern of GNSS ZTD significant change period amplitude
to La Niña. (a), (c), and (e) Nine-month period. (b) and (d) One to three
months period. (f) 1.2–3 months period.

within one to three months increases to different degrees [see
Fig. 11(b), (d), and (f)], while there is no variation pattern
at individual stations in the SMZ and the MPZ. The MPZ is
far from the origin of ENSO events, and the base of PWV
in the SMZ is large and active, so the amplitude of GNSS
ZTD significant variation cycle at individual stations shows
no variation pattern. The EP-La Niña2 lasts for a shorter time
frame. It has a weaker impact on the nine-month significant
cycle in China, so the number of stations showing no variation
pattern is high. Still, the stations with variation patterns all
show a decrease in amplitude.

In summary, the occurrence of ENSO events has an impact
on the GNSS ZTD significant variation period in mainland
China, which will lead to a decrease in the amplitude of the
GNSS ZTD nine-month significant period and an increase in
the amplitude of the significant period within 0.8–3 months.
Among the four types of ENSO events, the EP-El Niño event
has the strongest influence on the significant variation period
of GNSS ZTD in China and the most significant regional
pattern. In contrast, the CP-La Niña event has the weakest
influence on the significant variation period of GNSS ZTD in
China and the poor regional pattern.

V. ENSO EVENTS PREDICTION MODELS
BASED ON FFT-LSTME

LSTM can fully use long time series data, effectively solv-
ing the problem of gradient explosion and disappearance [69].
It introduces the cell state to store long temporal information
and can erase, store or write a cell state by controlling three
gates (see Fig. 12). The forget gate ft determines the retention
value of the previous cell state ct−1. It consists of the current
moment hidden state ht−1 and the current moment input
data xt stitched together and passed to the previous moment

Fig. 12. Structures of LSTM.

memory cell. The activation function σ before ft determines
the forgetting gate output value. The input gate it determines
the retention value of new information. The output gate ot

determines how much information in the memory cell needs
to be stored in the hidden state. c̃t is a candidate for updating
the value. ct is the memory unit of the current moment, which
consists of the previous moment’s memory unit multiplied by
the forgetting gate to discard part of the information, plus
the current moment’s content to be updated. ct becomes a
candidate for the output of the hidden layer after the activation
function (tanh). The calculation formula is as follows:

ft = σ(W f [ht−1, xt ] + b f ) (7)
it = σ(Wi [ht−1, xt ] + bi ) (8)

c̃t = tanh(Wc[ht−1, xt ] + bc) (9)

ct = ft ct−1 + it c̃t (10)
ot = σ(Wo[ht−1, xt ] + bo) (11)
ht = ot tanh(ct ). (12)

Previous studies have validated the good performance of
LSTM models in ENSO event prediction [36], [37], [38],
[39], [40]; however, the previous models have the following
drawbacks. Most LSTM prediction models are univariate and
mainly use the Nino3.4 index or SOI as predictors, and
the prediction time horizon is generally 6–12 months. The
prediction accuracy and timeliness of ENSO events need
to be improved. Aiming at the above problems, a better
discriminant index MEI for ENSO events is chosen for predic-
tion. In this study, an FFT-LSTME neural network prediction
model integrated with GNSS ZTD was proposed to achieve
the prediction of ENSO events for the next 12–24 months.
Fig. 13 shows the internal structure of the FFT-LSTME model.
The model mainly consists of five subunits, the input data
preparation unit [see Fig. 13(a)], the FFT unit [see Fig. 13(b)]
for extracting the best common period of each variable, the
time-sliding block setting unit [see Fig. 13(c)], the unit of
dividing the training set and testing set [see Fig. 13(d)], and
the LSTME unit [see Fig. 13(e)] for multisource data fusion
and prediction. The workflow of the FFT-LSTME model is
as follows: 1) First, the auxiliary input elements of the model
are preprocessed. The analysis results in Sections III and IV
show that the ENSO event affects the GNSS ZTD anomaly
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Fig. 13. Construction details of the FFT-LSTME model. (a) Gray dashed
box is the data preparation unit to extract the time–frequency feature terms
(D1/D3/GNSS ZTDA) of the GNSS ZTD response to the presence of ENSO
events using wavelet variation and reconstruct them. (b) Orange dashed box
is the FFT unit, which is used to extract the best common period between the
GNSS ZTD reconstruction terms and MEI and to provide a reference for the
sliding block setting of the model. (c) Black dashed box is the time-sliding
window setting unit, where T denotes the total duration and t denotes the
current moment. The yellow, pink, and blue solid boxes indicate the input
duration of each slider, and the dashed boxes indicate the output duration
of each slider. (d) Blue dashed box is the resulting plot of the division of
the training and testing sets. (e) Green dashed box is the LSTME model
unit, where the blue squares indicate MEI, the pink dots indicate GNSS ZTD
reconstruction sequences for each station in mainland China, and P1, P2, . . . ,
P12 indicate predicted MEI.

sequence and the nine-month and 0.8–3-month significant
variation period of GNSS ZTD. We reconstructed the GNSS
ZTD anomaly sequence, the D1 high-frequency term of the
GNSS ZTD containing significant periods of 0.8–3 months,
and the D3 high-frequency term of the GNSS ZTD containing
a significant period of nine months (Fig. 13(a) shows the
GNSS ZTD reconstructed sequence) for the BJFS site. Since
the GNSS ZTD reconstruction sequence for mainland China
responds significantly to the occurrence of ENSO events, it is
used as an auxiliary input to the prediction model to add
constraints and improve the prediction effectiveness. 2) The
GNSS ZTD reconstruction sequences of each station and the
MEI sequences of the same period are input into the FFT
unit [see Fig. 13(b)]. The FFT can extract the frequency
domain variation characteristics of the time series. We use
FFT to extract the best common period of MEI and auxiliary
elements as the input duration of the model to avoid the impact
of temporal heterogeneity between different elements on the
prediction accuracy. 3) We put up a temporal sliding block
for the prediction model to achieve long-term forecasts [see
Fig. 13(c)]. The optimal common period (18 months) of each
element derived from step (2) is used as the input duration of
each slider. Our previous study proposed an FFT-LSTM model
with a temporal sliding block of size (input duration + 1) set

Fig. 14. Temporal sliding block of the FFT-LSTM model. The solid box
indicates the input duration, and the dashed box indicates the output duration.

up inside (see Fig. 14). If the FFT-LSTM model is applied
to predict the ENSO event, the length of the temporal sliding
block is 19 months, and the total time series T will be divided
into (T-18) groups. Taking the 12-month prediction timeliness
as an example, the FFT-LSTM model predicts the MEI of
the coming month each time. The predicted value of each
experiment is put back into the time series, then trained
again, and so on 12 times. The model, however, has two
significant drawbacks. One is that putting the predicted values
back into the original time series each time will gradually
superimpose the prediction error and affect the final prediction
accuracy. Another drawback is that the cycle training (T-18)
group data will increase the model training time. Therefore,
the FFT-LSTME model proposed in this article adjusts the
temporal sliding block size to be (input duration + prediction
duration). Taking the 12-month prediction timeliness as an
example, the time-sliding block size of the FFT-LSTME model
is 30 months, and it divides the T into a total of (T-29)
groups. We adjust the other hyperparameters of the FFT-
LSTME structure to ensure predictive efficacy. 4) The training
and testing sets are randomly divided, where 80% of the
groups are used for model training and 20% for model testing.
The training and testing results of the model are shown
for the 12-month prediction time model as an example [see
Fig. 13(d)]. The best prediction results were obtained when the
loss rate was reduced to 0.01 and below. 5) The FFT-LSTME
model connects the auxiliary data and MEI into a unified
LSTM input feature vector to provide additional constrained
features for ENSO prediction model learning. We set two
hidden layers for the LSTM, integrated the main and auxiliary
outputs into the fully connected layer, and used the fully
connected layer to fuse the features of each element [see
Fig. 13(e)]. Finally, the prediction output is generated using the
fully connected layer. Normalize all the data before inputting
them into the FFT-LSTME model to avoid the impact of the
different magnitudes of each feature value and the target value
on the prediction performance and to speed up the gradient
descent at the same time. Before outputting the predicted
value, denormalize the data. After several experiments, the
hyperparameters of the FFT-LSTME model are set as follows
to achieve the best prediction effect: the iterations parameter
(epochs) is 200, the batch_size is 40, and the hidden layer
neurons are 48 (under 12-month prediction timeliness). Three
metrics were used as accuracy indicators to evaluate the
prediction performance of the FFT-LSTME model: RMSE;
mean absolute error (MAE); and index of agreement (IA).
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Fig. 15. Comparison of prediction accuracy of FFT-LSTME models with
different auxiliary inputs.

These indicators can be expressed as follows:

RMSE =
√

1
N

∑N

i=1
(Oi − Pi )2 (13)

MAE = 1
N

N∑
i=1

|Oi − Pi | (14)

IA = 1 −
∑N

i=1 (Oi − Pi )
2∑N

i=1 (
∣∣Oi − O

∣∣ + ∣∣Pi − O
∣∣)2

(15)

where N represents the sample number. Oi and Pi are the
actual value of MEI and predicted MEI, respectively. Ō is
the average MEI. The more minor the RMSE, the smaller the
discrepancy between the predicted and actual values. MAE
represents the mean of the absolute error between the predicted
and actual values. Compared to the RMSE, MAE is absolute
and has no positive or negative phase offset. IA indicates the
degree of similarity between the predicted and actual values.

VI. DISCUSSIONS

A. Applicability Analysis of GNSS ZTD Reconstruction
Sequences Participation in Modeling

Different regions of mainland China respond differently to
ENSO events. The TPMZ and SMZ are the closest regions to
the Pacific Ocean in mainland China, have abundant PWV,
and are significantly affected by ENSO events [19]. The
results of Section IV analysis show no response pattern of
GNSS ZTD significant variation period to ENSO events
at some stations. In order to forecast ENSO events with
high quality, the applicability of GNSS ZTD reconstruction
sequences for each region to the prediction model needs
to be analyzed. The model without any auxiliary input is
used as the control group. A total of seven experimental
groups were constructed using the GNSS ZTD reconstruction
series of the five major climate-type zones, TPM and SMZ,
and the entire mainland China, respectively, as auxiliary
input variables (see Fig. 15). Each model predicted five
sets of MEI of 12-month length. The prediction periods
include 2009/7–2010/6, 2011/3–2012/2, 2014/8–2015/7,
2016/4–2017/3, and 2018/1–2018/12. We compare the
predicted values with the actual values to evaluate the

Fig. 16. Evaluation of prediction accuracy of ANNs for ENSO events.
(a)–(c) Comparison results of MEI predicted by the four models. (d) Prediction
results of the FFT-LSTME model for future ENSO events. (a) 12-month,
(b) 18-month, and (c) 24-month predictive timeliness. (d) Predict future ENSO
using FFT-LSTME.

prediction accuracy of each model, and the evaluation results
are shown in Table V. The test results show that the prediction
accuracy of the models with the auxiliary data is better than
the univariate model. When the Chinese mainland’s GNSS
ZTD reconstruction sequence is used as the model auxiliary
input, the highest prediction accuracy is achieved, with an
RMSE of 0.216, an MAE of 0.160, and the IA can reach
95.88%. The different ENSO events cause various degrees of
impact on each region of mainland China. The FFT-LSTME
model can effectively analyze the nonlinear correlation
between the GNSS ZTD reconstruction sequences of different
stations and MEI, which plays a good constraint role in the
MEI prediction process. Therefore, the auxiliary input of
the FFT-LSTME model is the GNSS ZTD reconstruction
sequences of each station in mainland China.

B. FFT-LSTME Model Accuracy Evaluation

We chose the RBF, the traditional LSTM model, and
our previously proposed FFT-LSTM model [42] to test the
prediction performance of the FFT-LSTME model. This study
compared the prediction accuracy of the four models at 12, 18,
and 24-month prediction timescales and constructed a total of
12 models [see Fig. 16(a)–(c)].

1) The RBF is a feedforward neural network suitable for
nonlinear signal processing that can approximate any nonlinear
function with arbitrary accuracy and has good local stability
and fast convergence of the learning process [70]. Its oper-
ational structure consists of an input layer, an output layer,
and a hidden layer. Its learning algorithm still needs further
improvement. In this study, a Gaussian function with good
smoothness and local response characteristics was chosen as
the basic function of the hidden layer in the RBF model [71].
The purpose of introducing this model is to verify the superior
performance of the LSTM model in ENSO event prediction.
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TABLE V
COMPARISON OF PREDICTION ACCURACY OF GNSS ZTD
RECONSTRUCTION SEQUENCES IN DIFFERENT REGIONS

PARTICIPATING IN MODELING

2) The traditional LSTM model is suitable for predicting
nonlinear time series, but it can only capture the autocorrela-
tion in time and ignores the influence of external factors.

3) Our previously proposed FFT-LSTM model considers
external factors’ influence, but the temporal sliding block
method needs to be refined.

4) The FFT-LSTME model proposed in this study recon-
structs the time–frequency feature terms of the GNSS ZTD
response to the ENSO events as the auxiliary input to the
prediction model. The auxiliary input can constrain the MEI
prediction values and improve the prediction accuracy. The
temporal sliding block is constructed inside the model to
increase the forecast timeliness of the model.

The RBF and LSTM models do not add auxiliary inputs
among the four models, and the other two consider auxiliary
inputs. The temporal sliding block size is set to (input dura-
tion + 1 month) [42] for the FFT-LSTM model and (input
duration + prediction duration) for the other three models.
The hyperparameters, such as the neurons in the hidden layer,
the number of iterations (epochs), batch size, and the ratio
of the training set to the test set division, are set consistently
for the four models. Five prediction periods were randomly
selected from the complete time series. Each of the four
models predicted five sets of MEI. The predicted values were
compared with the actual values to evaluate the prediction
accuracy. The evaluation results of each model are shown in
Table VI. The results of the comparison experiments show
that the FFT-LSTME model can predict ENSO events in the
next 24 months with an IA of 91.56% and an RMSE of
0.25. The RMSE is optimized by 70.48%, 43.95%, and 11.6%
when compared with RBF, LSTM, and FFT-LSTM. The IA
of FFT-LSTME reaches more than 90% under 12–24 months
prediction timeliness.

In addition, we used the FFT-LSTME model to pre-
dict future ENSO events [see Fig. 16(d)]. Because of the
limited length of the acquired GNSS ZTD event series
(2008/1–2021/6), the available data were divided into two
major parts. The MEI and GNSS ZTD from January 2008 to
December 2019 as the model training part, and the training
set (80%) and the testing set (20%) were randomly divided.
The data set from January 2020 to June 2021 (18 months) as

TABLE VI
PREDICTION EFFICIENCY EVALUATION OF DIFFERENT

PREDICTION MODELS

model inputs. The MEI for the next 12, 18, and 24 months are
predicted. Currently, the MEI is updated to November 2022,
and the model’s predicted values match well with the known
values for 17 months. From the prediction results, it can be
concluded that global climate changes will continue to be
affected by La Niña events since July 2021, and this La Niña
event is expected to end in May or June 2023. According to
the above analysis results, the La Niña event increases the
PWV in mainland China. Strong cold air currents from the
south and warm air from the north collide, increasing the rain
and snow in north-central China. The relevant meteorological
departments should do a good job of early warning and
advance prevention to reduce or prevent the impact and loss
caused by extreme weather on people’s health and social
development.

C. Contributions and Limitations

This study analyzed the nonlinear correlation character-
istics between three ENSO discriminant indices and GNSS
ZTD anomaly using GAMs and screened out the best ENSO
discriminant index MEI. We explored the response patterns
of GNSS ZTD to different ENSO events in each region of
mainland China from the time domain and frequency domain,
respectively. An ENSO event prediction model incorporating
GNSS ZTD is constructed based on FFT-LSTME. The main
contributions of the study are as follows. 1) We determined that
MEI is the most significant ENSO event discriminant index
associated with the GNSS ZTD in mainland China through
experiments and analysis. 2) The response patterns of GNSS
ZTD time–frequency variations to ENSO events in different
climate-type regions of mainland China were investigated and
obtained. 3) An ENSO event prediction model (FFT-LSTME)
is established by incorporating GNSS ZTD based on LSTM.
The best common variation period of MEI and GNSS ZTD is
extracted using FFT. It is used to determine the input duration
of the model to decrease the effect of temporal heterogeneity
among variables on the model’s prediction accuracy. Moni-
toring and predicting ENSO events using GNSS ZTD is a
new prospective method. 4) A time-sliding block is established
inside the FFT-LSTME model to make the model can obtain
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the long-term variation pattern of time series and achieve
longer timeliness and higher accuracy prediction. It can pro-
vide references for relevant meteorological monitoring and
disaster prevention and control management departments. The
limitations of this study and the outlook for future work are
as follows. 1) ENSO events are interannual variability events.
The most extended time series of high-precision GNSS ZTD
provided by the CMTEMN is 14.5 years, which has some
limitations. ENSO events impact global climate changes, and
the analysis of the response pattern of GNSS ZTD to ENSO
events in China alone cannot be applied to other countries and
regions. In the future, we will accumulate more experimental
data and research the correlation between GNSS ZTD and
ENSO events on a global scale over a more extended period.
2) This study aims to verify the feasibility of using GNSS
ZTD to improve the prediction accuracy of ENSO events
and only introduces GNSS ZTD as an auxiliary variable.
ENSO events affect the changes of multiple meteorological
elements globally. The previous prediction approaches also
lacked the consideration of multiple external influences. In the
future, we will integrate multiple meteorological factors such
as solar activity, drought and flood indicators, and temperature
to build ENSO event prediction models and further improve
their accuracy. We will also try integrating the discrimi-
nant indices of different distribution types of ENSO events
(EP-ENSO index and CP-ENSO index) into the prediction
model to accurately predict different distribution types of
ENSO events.

VII. CONCLUSION

In response to the existing quantitative analysis of ENSO
event effects on the climate change in mainland China is
insufficient, we introduce GNSS ZTD into ENSO event moni-
toring and quantify the response pattern of GNSS ZTD time–
frequency variation to ENSO events. From the three common
ENSO discriminant indices, such as MEI, ONI, and SOI,
we selected the MEI with the most significant correlation
characteristics with GNSS ZTD for the study. It is concluded
that the MEI thresholds for the existence of response to
ENSO events are different for different climate-type regions
zones in mainland China. The MEI thresholds for GNSS ZTD
anomaly response to ENSO events are (−1.12, 1.92) for the
TPMZ, (−1.12, 1.61) for the SMZ, and (−1.19, 1.62) for
the TMZ. The TCZ is (−1.26, 1.64); the MPZ is (−1.22,
1.72). The ENSO event has an impact on the significant
variation period of GNSS ZTD in mainland China, which
will lead to a decrease in the amplitude of the nine-month
significant variation period of GNSS ZTD and an increase
in the amplitude of the significant variation period within
0.8–3 months.

Aiming at the problems of the prediction accuracy and
timeliness of ENSO events are still low, and the FFT-LSTME
prediction model was constructed. This model applies the
GNSS ZTD reconstruction sequence of mainland China as
an auxiliary input variable, reduces the influence of tem-
poral heterogeneity of different variables by using FFT,
and enhances the prediction timeliness using its internal
time-sliding block. Compared with the existing models, the

FFT-LSTME effectively improves the prediction accuracy and
achieves longer prediction. The RMSE of MEI prediction
values for the next 12, 18, and 24 months are 0.216, 0.238,
and 0.250, respectively, and the IA are 95.88%, 93.37%,
and 91.56%, respectively. The RMSE of the FFT-LSTME
model was optimized by 70.48%, 43.95%, and 11.6% over
RBF, LSTM, and FFT-LSTM, respectively, at a 24-month
prediction timescale. This study verified the feasibility of
using GNSS ZTD as an auxiliary variable to improve the
prediction efficiency of ENSO events and provided a new
ENSO event prediction method. The model can help relevant
meteorological departments to predict extreme weather more
accurately.

ENSO events are interannual variability events with global
impact. There are some limitations in this article’s study
duration and area. In the future, we will accumulate more
experimental data, expand the scope of the study, and consider
more meteorological factors such as solar activity, drought
and flood indicators, and temperature to build ENSO event
prediction models to improve their accuracy further. We will
also try integrating the discriminant indices of different distri-
bution types of ENSO events (EP-ENSO index and CP-ENSO
index) into the prediction model to accurately predict different
distribution types of ENSO events.
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