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A B S T R A C T   

The water levels of inland lakes on the Tibetan Plateau are extremely sensitive to global climate change and can 
objectively reflect the temporal and spatial changes in local water resources. However, monthly and seasonal 
variations in lake water levels are difficult to monitor due to the lack of sufficient in situ gauges across moun-
tainous areas. Moreover, GEDI products exhibit large uncertainties in mountainous surroundings. In this paper, 
taking Qinghai Lake as an example, we first refined the raw data of the GEDI and ICESat-2 missions by imple-
menting a quality control procedure involving outlier removal tailored to the characteristics of each mission; 
then, we analyzed the accuracy of each mission, especially targeting factors that affect the water level retrievals 
in the GEDI products. Third, the bias between the two missions was adjusted by selecting the overlapping or 
adjacent observation dates. Finally, we constructed dense temporal water-level data by integrating the refined 
ICESat-2 and GEDI data. Data from water level stations and the DAHITI and Hydroweb datasets were also utilized 
for validation. The results show that (1) very accurate results can be obtained from the ICESat-2 ATL13 product, 
and the standard deviations of most observed days are under 0.05 m; (2) the GEDI products derived from al-
gorithm 2 can offer more effective footprints than those from algorithm 1, with an improvement of approxi-
mately 9.78 %. Moreover, large differences exist among the different GEDI beams, and beams 1 and 2 are 
recommended for further analysis. Overall, most beams overestimated the lake levels with a bias of 0.264 ±
0.357 m; (3) the long-time-series water levels showed a mean increasing trend of 0.243 m/yr from 2018 to 2021. 
The relatively high-water-level periods were distributed mostly in August and September, while the low-water- 
level periods were distributed mostly in February and March. The combined water levels were very correlated 
with the DAHITI and Hydroweb datasets, with R values larger than 0.8, and highly consistent with the obser-
vations from hydrological stations (the inter-year change range spanned from 0.015 m to 0.327 m, and the intra- 
year difference range varied from 0.03 m to 0.16 m); and (4) Integrating the GEDI and ICESat-2 missions allowed 
us to capture the monthly, seasonal and annual dynamics of the lake water level, and the results indicate that the 
combined dataset presents a valuable resource for hydrological and climatic change studies.   

1. Introduction 

Water level fluctuations in endorheic lakes are sensitive to complex 
changes in regional precipitation, evapotranspiration, and glacier 
melting (Frappart et al., 2018; Kropáček et al., 2012; Talebmorad et al., 
2020). Thus, the dynamics of inland lakes are not only significant pa-
rameters for understanding the water balance in interior drainage basins 
but are also valuable indicators of climate change. The Tibetan Plateau 

(TP) has the greatest number of high-elevation inland lakes in the world, 
and Qinghai Lake possesses the largest area among them; in addition, 
this lake is located in a typical area that is sensitive to climatic change 
and ecologically fragile (Wang et al., 2019; Javadinejad et al., 2019). 
Therefore, case studies of Qinghai Lake’s water level changes are very 
important and valuable. However, due to the harsh natural physio-
graphic and climatic conditions in this region, it is difficult to conduct 
field measurements over TP lakes; even if some are accessible, 
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continually performing measurements and maintaining in situ gauges 
are costly endeavors (Luo et al., 2021). Fortunately, the Global 
Ecosystem Dynamics Investigation (GEDI) mission can provide multi-
track and high-temporal-resolution observations between the latitudes 
of 51.6◦ N and 51.6◦ S, and the advanced ICESat-2 that is the follow-up 
mission of the Ice, Cloud, and Land Elevation Satellite (ICESat) altimetry 
can also acquire unprecedented measurements of Earth’s surface; these 
satellite missions have thus brought great prospects for lake level change 
monitoring. 

In recent decades, satellite altimetry, including radar and laser 
altimetry, has been extensively applied to water level retrievals of inland 
water bodies (lakes, rivers, and reservoirs) (Talebmorad and Ostad-Ali- 
Askari, 2022; Busker et al., 2019; Crétaux et al., 2011; Velpuri et al., 
2012). Initially, radar altimeters were developed to monitor sea and 
ocean surface topography. Because of their ability to provide precise 
water surface elevations over large water bodies, all-weather opera-
bility, and global data coverage, radar altimeter missions (such as 
Geosat, ERS-1/2, Topex/Poseidon, Envisat, Jason 1/2/3, Cryosat-2, and 
Sentinel-3 A and B) are being used increasingly often for monitoring and 
evaluating water surface height levels of inland water bodies (Birkett 
and Beckley, 2010; Calmant et al., 2008; Kleinherenbrink et al., 2014; 
Ghashghaie et al., 2022). However, the accuracy of such measurements 
can be affected by the extents of individual water bodies and by the 
retracking methods applied to returned waveforms (Guo et al., 2009; 
Wang et al., 2019). Compared to radar altimeters, laser altimeters have 
smaller footprints and higher sampling densities, making them more 
suitable for small-water-body observations. Many previous studies have 
investigated lake level changes over the TP using the geoscience laser 
altimeter system (GLAS) carried by ICESat with decimeter accuracy. 
Zhang et al. (2011) analyzed the lake level variations of Qinghai Lake 
and identified a mean increasing rate of 0.11 m/yr from 2003-2009. 
Phan et al. (2012) found an average change rate of 0.20 m/yr for 154 
lakes (larger than 1 km2). Moreover, by investigating the water levels of 
105 closed lakes, Song et al. (2014) found that seasonal lake-level var-
iations featured strong spatial and temporal heterogeneities. 

ICESat-2 was launched in September 2018 and equipped with the 
Advanced Topographic Laser System (ATLAS), which is capable of 
detecting sensitivities at the photon level (Tian and Shan, 2021). The 
ATLAS instrument illuminates the Earth’s surface with six ground tracks 
simultaneously. Laser footprints are typically approximately 14 m (in 
diameter), and the distance between two footprints along the track is 
only 0.7 m. Compared with GLAS, ATLAS can produce data at a much 
higher spatial resolution and denser sampling frequency. Zhang et al. 
(2019) found that ICESat-2 data contained nearly twice the lake 
coverage of TP lakes compared with ICESat data and also had a higher 
altimetric accuracy (the elevation difference was 2 cm at Lake Qinghai 
when compared to gauge data). Yuan et al. (2020) evaluated the alti-
metric precision of ICESat-2 ATL13 data using gauge data collected from 
30 reservoirs and extensively studied large lakes (larger than 10 km2) in 
China. Their work showed that the ICESat-2 mission greatly updated its 
altimetric capability, and the relative altimetric error was 0.06 m, while 
some mountainous and shallow lakes tended to have relatively large 
uncertainties. Dandabathula and Rao (2020) validated the ATL13 
products with 46 observations consisting of near-real-time gauged data 
of 15 reservoirs and found that the maximum uncertainty observed was 
at the centimeter level. 

The GEDI, launched on December 5th, 2018, started collecting sci-
entific data in operational mode on March 25th, 2019, after a three- 
month on-orbit checkout. It was attached to the International Space 
Station and collected data globally between latitudes of 51.6◦ N and 
51.6◦ S; the instrument can measure forest canopy heights, canopy 
vertical structures, and surface elevations to characterize important 
carbon and water cycling processes, biodiversity, and habitats (Adam 
et al., 2020). Fayad et al. (2020) analyzed the quality of GEDI data over 
8 lakes in Switzerland and found that the bias between GEDI elevations 
and in situ data ranged from − 13.8 cm to +9.8 cm. Xiang et al. (2021) 

validated and compared the GEDI, ICESat, and ICESat-2 data using in situ 
data from 22 gauging stations over the Great Lakes and lower Mississippi 
River and reported that the root mean square errors of the three missions 
were 0.28 m, 0.10 m, and 0.06 m, respectively. 

With the goal of combining multiple altimeters for retrieving long- 
term lake level series, Wang et al. (2019) constructed the TOPEX/ 
Poseidon-family altimeter dataset from October 1992 to December 
2017, resulting in accuracies of ~17 cm for TOPEX/Poseidon and ~10 
cm for Jason-1/2/3 over Ngangzi Co. Using Cryosat-2, Jason-2/3, and 
Sentinel-3A data, Chen and Liao (2020) determined that the level of 
Qinghai Lake had an increase rate of 0.443 m/yr from 2016 to 2019. 
When analyzing lake level changes in the middle and lower Yangtze 
River Basin using the long-term (2002–2017) observations of ICESat, 
Envisat, and CryoSat-2, the authors found that there was a significant 
correlation between the satellite altimetry water levels and measured 
water levels (with R values between 0.908 and 0.989, P < 0.001) (Li 
et al., 2020). By integrating ICESat/ICESat-2 data, the Global Surface 
Water dataset, and the HydroLAKES dataset, Luo et al. (2021) proposed 
plateau-scale research of lake level changes over the TP from 2003 to 
2019. They reported 242 lakes with areas greater than 1 km2 that could 
be observed by combining ICESat and ICESat-2 data, and the mean water 
level change rate of these lakes was 0.20 ± 0.04 m/yr. Frappart et al. 
(2021) provided a comprehensive evaluation of the performances of the 
previous radar and lidar altimetry missions according to their acquisi-
tion in mountainous areas and revealed that very accurate results could 
also be obtained using ICESat-2 data; however, more contrasting results 
were obtained when using GEDI in a relatively short period. Xu et al. 
(2022) revealed the seasonal trends and cycles of lake level variations 
over the TP by combining ICESat, ICESat-2, Sentinel-3A/3B, and 
Cryosat-2 data, demonstrating that Qinghai Lake rose at a rate of 0.17 ±
0.001 m/yr from 2003 to 2020. 

In general, in the past two decades, the number of in situ hydrological 
stations in the world has declined (Lawford et al., 2013). Satellite 
altimetry is becoming an important tool for monitoring lake surface 
heights. However, lake surface level dynamic monitoring still faces 
many difficulties, such as large altimetric errors due to mixed signals 
contaminated by the surrounding lands, large spatial gaps between 
tracks, and temporal gaps that impede detailed variation descriptions. 
To date, the application and validation capacities of ICESat-2 and GEDI 
data over inland waters are very limited, as only 3 years of ICESat-2 data 
and 2 years of GEDI were accumulated at the time of their respective 
product releases. In particular, contradictory results have been obtained 
when applying GEDI data to study mountainous lakes. As ICESat-2 and 
GEDI are operating simultaneously, combining these two missions can 
provide a mutual accuracy verification and increase the temporal den-
sity of observations, allowing us to cope with temporal gaps in data. 
More analyses are necessary to determine the potential of using these 
missions to retrieve water levels. Therefore, the objectives of this paper 
are (1) to provide a robust strategy to delete outliers, generate accurate 
lake water levels from individual missions and analyze various factors 
that influence the accuracy of inland water level measurements derived 
from the GEDI laser altimetry platform; (2) to evaluate the performance 
of the combination of GEDI and ICESat-2 data in retrieving inland water 
dynamics; and (3) to track the latest dynamic water levels of Qinghai 
Lake. This paper is divided into five sections. A description of the 
altimetry datasets obtained for the studied lake and a detailed water- 
level extraction method are provided in Section 2. The individual 
water level results retrieved from both products and comparisons and 
validations of these data with the hydrostation data and two other public 
datasets are given in Section 3, followed by a discussion in Section 4. In 
the last section, the main conclusions are presented. 
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2. Data and methods 

2.1. Altimetric data in Qinghai Lake 

The latitude and longitude ranges of Qinghai Lake are 36◦32′N 
− 37◦15′ N and 99◦36′E − 100◦47′ E, respectively. As the largest inland 
lake in China, it is located on the northeast edge of the Qinghai Tibet 
Plateau. Located within the transition zone among the Qinghai Tibet 
alpine region, the Loess Plateau, and the northwest arid region, it is an 
ideal place to study climate responses, water balances, and hydrological 
processes (Zhao et al., 2017). In this study, we utilized the Level-2A 
GEDI product containing ground elevation, canopy top height, and 
relative return energy metrics derived from geolocated waveforms; the 
height data are based on the WGS 84 ellipsoid, and the inland surface 
water product ATL13 of ICESat-2 providing the along-track orthometric 
heights of lakes, rivers, and wetlands with reference to the Earth Grav-
itational Model 2008 (EGM2008) was obtained. When the first draft of 
this article was written, GEDI data from 25 April 2019 to 3 August 2021 
and ICESat-2 data from 31 October 2018 to 3 July 2021 were available 
(https://search.earthdata.nasa.gov/). Among the current available data 
products, the higher-quality V002 version of the GEDI product and V004 
version of the ICESat-2 product were adopted. The total available 
number of days in the GEDI and ICESat-2 datasets are 92 days and 76 
days, respectively (Table 1). Among them, the highest observation fre-
quency is 11 days in August 2020, while the observations frequencies of 
most months are 4–10 days. The specific laser footprints of the two 
missions were distributed over Qinghai Lake as shown in Fig. 2. 

2.1.1. GEDI L2a 
The GEDI instrument consists of 3 lasers producing a total of 8 

ground-transect beams spaced approximately 600 m apart on the Earth’s 
surface in the cross-track direction relative to the flight direction. Each 
beam transect consists of ~30-m-footprint samples spaced approxi-
mately every 60 m along the track. The “coverage” laser is split into two 
transects that are then each dithered in total, producing four ground 
transects. The other two full-power lasers are dithered, producing two 
ground transects each. The configuration of the ground tracks is shown 
in Fig. 1 (a) (Hofton et al., 2019); the instrument is a full-waveform lidar 
instrument that captures the shapes of the transmitted and reflected 
laser waveforms in real time. It enables a precise range to the reflecting 
surface to be calculated for every shot. Over flat terrain (e.g., plains or 
water surfaces), the shape of the received waveform looks similar to that 
of the transmitted pulse. However, photons may be reflected from 
multiple surfaces within the footprint over complex (e.g., stepped or 
sloped) terrain, resulting in a received waveform with multiple modes 
(Fayad et al., 2021). The interpretation of these laser pulses in post-
processing affects the accuracy of the surface elevation, vegetation 
structure, relative canopy height results, etc. As mentioned in the Al-
gorithm Theoretical Basis Document, the L1B product is issued by six 
configurations of algorithms (a1 to a6), each representing different 
thresholds and smoothing settings (Hofton et al., 2019). Correspond-
ingly, the L2A geolocated elevation and height products inherit the 

results of these multiple algorithm settings. The N in the parameter 
‘elev_lowestmode_aN’ represents the specific algorithm. 

The position of the ground return within a waveform is determined 
using the position of the last detected peak, which is dependent on the 
width of the second Gaussian filter (Smoothwidth_zcross). The widths of 
algorithm 1 and 4 were fixed to 6.5 ns, and the widths of the remaining 
algorithms (2, 3, 5 and 6) were set to 3.5 ns (Fayad et al., 2020). 
Therefore, the six algorithms could be divided into two groups. In our 
study, only algorithm 1 (A1) and algorithm 2 (A2), which can represent 
each group, were tested. Moreover, GEDI uses its own global positioning 
system, inertial measurement unit, and information from three star- 
trackers that permit its plane positioning accuracy to remain within 
10 m (1 σ) (Dubayah et al., 2020). The product contains a preliminary 
set of quality flags and metrics that can be used to filter shots with poor 
geolocation performances, waveforms of bad signal quality, and wave-
forms affected by clouds or other land surface conditions (Roy et al., 
2021). Thus, the ‘quanlity_flag_aN’ flag and ‘num_detectedmodes_aN’ 
metric were adopted in our study to obtain accurate water level 
retrievals. 

2.1.2. ICESat-2 ATL13 
ICESat-2 is placed at a ~500-km altitude in a 92◦-inclination sun- 

synchronous orbit with a 91-day repeat cycle and an equatorial 
ground-track spacing of approximately 28.8 km. The ATLAS instrument 
operates at a higher repetition rate, thus improving the along-track 
spatial resolution. ICESat-2 products are organized by ground track, 
with ground tracks 1L and 1R forming pair one, ground tracks 2L and 2R 
forming pair two, and ground tracks 3L and 3R forming pair three. The 
distance between the left and right beams of each pair is 90 m. Pair 
tracks are approximately 3 km and 2.5 km apart in the across-track and 
along-track directions, respectively (Fig. 1(b)) (Roy et al., 2021). The 
beams within each pair have different transmit energies, so-called weak 
and strong beams, with an energy ratio between them of approximately 
1:4. The relative position of the strong and weak beams on the ground 
depends on the orientation of the ICESat-2 observatory, which changes 
approximately twice per year to maximize solar illumination (Neumann 
et al., 2020). Numerous subproducts generated from the Level 2 master 
product called ATL03 are available to the public through the National 
Snow and Ice Data Center. One of these products, namely, ATL13, pro-
vides along-track and near-shore water surface height distributions 
within the water masks, along with the mean, standard deviation, and 
slope of each beam as well as statistics (Jasinski et al., 2019). The water 
surface heights offer geodetic heights above the WGS 84 ellipsoid 
(ITRF2014 Reference Frame) and orthometric heights based on the 
Earth Gravitational Model 2008 (EGM2008) geoid. 

2.1.3. Auxiliary data 
In this study, the boundary of Qinghai Lake was determined from its 

year 2018 vector format file (shapefile), which was downloaded from 
the National Basic Geographic Information Centre (http://NGCC.SBSM. 
Gov.cn); the lake boundary was then used to extract elevation footprints. 
To unify the vertical data of ICESat-2 and GEDI, we used the EGM2008 

Table 1 
The altimetric data sampling days distribution in each month (ICESat-2 red notes and GEDI blue notes).  
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model to convert the GEDI heights based on WGS84 to heights based on 
EGM2008. The conversion software tools of the EMG2008 geoid model 
can be downloaded from the GeographicLib (htttps://geographiclib. 
sourceforge.io/html/geoid.html). In addition, to verify the integrated 
water level results, the available in situ gauge data of Xiashe station from 
2018 to 2021 were collected from the Qinghai water conservancy in-
formation network (https://slt.qinghai.gov.cn/subject?cid=24). Time- 
series products from two other public databases were obtained to 
derive lake levels from multiple radar altimeters designed for inland 
water bodies, and these lake levels were used for comparison: the Hy-
drological Time-Series of Inland Waters (DAHITI) is maintained by the 
Deutsches Geodätisches Forschungsinstitut (Schwatke et al., 2015), and 
the Hydroweb database is constructed by the Laboratoire d’Etudes en 
Géophysique et Océanographie Spatiales (Yue et al., 2021). The eleva-
tion reference data were the GGM02C and EIGEN-6C4 gravity field 
models. 

2.2. Water level extraction 

Fig. 3 depicts the processing steps in the proposed method. First, the 
laser footprints over Qinghai Lake were roughly extracted using the lake 
boundary. Then, the outlier deletion of each mission was implemented. 

Subsequently, the water level at each track was extracted, and the cor-
responding accuracy assessment was conducted. The effective tracks 
were then used as the inputs on specific dates, and the final heights of 
each mission were estimated by calculating averages. To evaluate the 
lake level accuracies of the two missions, the standard deviation was 
selected to assess the single-track and mean lake levels of each indi-
vidual day derived from the effective tracks. Before integration, the bias 
between the two missions was adjusted using data from the overlapping 
or adjacent dates. Finally, the long-time-series lake levels and corre-
sponding accuracies were constructed and validated using the in situ 
data and the DAHITI and Hydroweb datasets. 

2.2.1. Outlier detection 
Due to the effects of atmospheric conditions and clouds, not all 

altimetric observations are effective (Hui et al., 2016). Therefore, out-
liers should be removed before estimating the mean lake levels. For 
example, the height distributions of 8 GEDI beams on 12 Sep 2019 
(Fig. 4(a)) and 6 ICESat-2 tracks on 7 Sep 2019 (Fig. 4(b)) illustrate that 
the height differences among different GEDI beams are larger than the 
differences among ICESat-2 tracks, and the GEDI data contain many 
extreme outliers, while the ICESat-2 data have small differences among 
different tracks and few extreme outliers. Thus, in this study, a 

Fig. 1. Ground sampling pattern and tracks (beams) distribution of two missions: (a) GEDI; (b) ICESat-2(the figures were quoted from the Algorithm Theoretical 
Basis Document of each mission (Hofton et al., 2019; Neumann et al., 2020)). 

Fig. 2. Footprints distribution of GEDI and ICESat-2 over Qinghai Lake spanning from October 2018 to August 2021.  
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combination of criteria was applied to remove outliers according to their 
characteristics. 

For GEDI L2A, in the first step, the quality flag (quality_flag_aN) and 
mode number flag (num_detectedmode_aN) contained in the products 
were used. A quality_flag_aN term the value equal to 1 indicates that the 
waveforms met the energy, sensitivity, amplitude, and real-time surface 
tracking quality criteria. Then, the num_detectedmode_aN flag value of 1 
was selected to guarantee that the waveform returned from the lake 
surface. Second, the estimation of the elevation bin with 1 interval was 
implemented. A step size of 1 m was used to address the water surface 
slopes associated with various causes. The lake water heights within the 
maximum bin that possess the highest frequency were preserved. The 
rest outside the 1 m interval from the maximum bin were discarded as 

outliers. Third, the mean water level was calculated based on the 
remaining heights, and the root mean square (RMS) values of the re-
siduals between the heights and the mean water level were estimated. 
The values were considered outliers if the absolute differences between 
the observations and the mean water level were greater than the 3-RMS 
criterion. Finally, even if a single beam met the above requirements, if 
the differences among different beams on the same day were larger than 
1 m, the mean value of the beams of the specific day was removed due to 
the large uncertainty. 

For ICESat-2 ATL13, the interquartile range (IQR) was adopted. The 
height outliers were defined using Eqs. (1) and (2). Then, the 3-RMS 
criterion was applied, in case the first step did not work well. Eqs. (1) 
and (2) are expressed as follows: 

in situ

Fig. 3. The flowchart of GEDI and ICESat-2 refinement over Qinghai Lake spanning from October 2018 to August 2021, and the construction and validation of long 
time-series water levels. 
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IQR = Q3 − Q1 (1)  

{
Houtlier < Q1 − 1.5IQR
Houtlier > Q3 + 1.5IQR (2)  

where Q1 is the first quartile, Q3 is the third quartile, and Houtlier is the 
abnormal height. 

2.2.2. Inter-mission bias adjustment 
It is very important to adjust the biases between different missions 

before combining multi-mission data and constructing time-series re-
cords. Absolute calibration using tide gauge data is the most common 
method (Schwatke et al., 2015). To avoid interference with altimetric 
signals, the fixed stations should be far enough from land and small 
enough such that the site does not impede the altimeter response; 
otherwise, the method may be unusable when measured data at fixed 
sites are lacking. In addition, two other methods, crossover analysis and 
collinear analysis, have also been employed to adjust the inter-satellite 
bias for global and regional studies (Bosch et al., 2014). However, in 
situ gauge stations and simultaneous crossover points are not available 
for most lakes, so these two methods were not options in this study. In 
this paper, a simple relative calibration method was employed to esti-
mate the bias between the GEDI and ICESat-2 datasets. Assuming that 
the surface of a lake is a flat plane, the lake levels observed by mission A 
should ideally be equal to those simultaneously measured by mission B. 
However, because of the existence of bias and noises such as waves and 
seiches, these differences are not equal zero in reality and are calculated 
as follows: 

Δi = HA
i − HB

i (3)  

where i = 1, 2, ⋯,K represents the number of pair samples in the 
overlapping period of the two missions; Δi is the difference between the 
pair samples; and HA

i and HB
i are the water levels observed by GEDI and 

ICESat-2, respectively. 
Generally, two missions do not overfly the same lake in the same 

epoch. Therefore, to ensure that there are enough pair samples to 
accurately estimate the bias, we broadly selected the data taken on the 
same or adjacent days for the bias adjustment process. Because inter-
polation among adjacent days might introduce interpolation errors 
when calculating the differences, we assumed that the lake level would 
not change suddenly among most adjacent dates; thus, in our study, we 
did not consider interpolation effect. In addition, Xiang et al. (2021) 
compared water level retrievals from ICESat-2 and GEDI, as well as 
ICESat-1, and validated them against in situ data from 22 gauging sta-
tions at various scales in the Great Lakes; the results showed that ICESat- 
2 can provide lake water level retrievals with an unprecedented accu-
racy (RMSE = 0.06 m, biases = 0.01 ± 0.05 m). Thus, if the differences 

between the pair samples are larger than 1 m, the observation result of 
ICESat-2 is taken as the water level of that day, and the GEDI observation 
results are discarded as abnormal values. Supposing the remaining dif-
ferences obey a normal distribution, the biases can be estimated from 
these differences using the maximum likelihood estimation method. 

2.2.3. Accuracy assessment and validation 
Altimetric errors can be quantitatively calculated when gauge water 

levels are available. However, gauge data are not accessible from most 
lakes in high-elevation areas. Therefore, in this study, the standard de-
viation (SD) of the mean water level height was taken as an indicator of 
the altimetric uncertainty to present the measurement error of the 
estimated water levels. Considering that the final lake water level was 
calculated from multi-beam observations taken over the water surface, 
the final lake water level would be precise if the measurement uncer-
tainty was low. To validate the accuracy of the water level extraction 
results, the monthly and yearly changes of the available in situ gauge 
data of Xiashe station, DAHITI, and Hydroweb database were compared 
and the differences were analyzed. 

3. Results and analysis 

After outliers were removed, the water levels of Qinghai Lake from 
October 2018 to August 2021 were derived from the two missions. Since 
no in situ gauge data of each GEDI observation day were available for 
absolute validation, ICESat-2 data were employed as the benchmark for 
the following validation and calibration of lake levels resulting from the 
GEDI mission. First, the processing algorithm, acquisition time, and 
beam intensity of the GEDI data that may have affected the water levels 
were discussed and quantitatively analyzed. Then, the biases between 
the two missions were adjusted, and long-time-series monthly lake-level 
time series were constructed. 

3.1. Lake levels retrieved by ICESat-2 

Fig. 5 displays the water level dynamics and SDs retrieved from each 
ICESat-2 observation. The lowest water level of 3196.87 m occurred on 
3 Dec 2018, and the highest water level of 3197.99 m occurred on 2 Oct 
2020. In 2019, the water levels presented an increase from January until 
August, when the lake reached its maximum water level, and then 
declined in September, before increasing again in October and 
November and finally declining in December. A similar trend occurred 
in 2020. Generally, the water level of Qinghai Lake has increased over 
the last three years. The SDs of most days were under 0.05 m, and the 
mean SD of all observations was 0.03 m. Therefore, the water levels of 
ICESat-2 could be taken as the benchmark to evaluate the GEDI obser-
vation results. 
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3.2. Lake levels retrieved by GEDI 

3.2.1. Algorithm 1 versus algorithm 2 
After removing the outliers, we found 59 days and 68 days effectively 

measured via algorithm A1 and A2, with effective rates of 64.13 % and 
73.91 % of the total 92 GEDI days, respectively; In the common 59 days 
obtained by both algorithms, the differences of the retrieved water levels 
between algorithm 1 and algorithm 2 were extremely small, with a mean 
value of approximately − 1 cm (Fig. 6), meaning that there were basi-
cally no differences between the lake water level retrieval results. The 
mean SDs of the corresponding retrieval results were 0.09 m and 0.12 m, 
respectively. Among the effective days obtained using algorithm 1 and 
algorithm 2, the numbers of days on which all 8 beams collected valid 
data were 30 days and 50 days, accounting for 50.84 % and 73.53 % of 
the total, respectively. Since there is no significant difference between 
the water level inversion results and accuracy, and the algorithm 2 has 
more effective data, in this paper, we selected the results of algorithm 2 
for the following analysis. 

3.2.2. Daytime observation versus nighttime observation 
The results from algorithm A2 were grouped by time: the temporal 

range from 8:00 to 20:00 was considered daytime, and the rest of the 24- 
hour cycle was considered nighttime. Fig. 7 shows the SD comparison of 
the GEDI daytime and nighttime observations. The results showed that 
the SDs varied from 0.018 m to 0.312 m for the 38 days acquired in the 
daytime, with a mean SD of 0.115 m. For the 30 days acquired in the 
nighttime, the SDs spanned from 0.019 m to 0.295 m with a mean of 
0.110 m. Overall, from the perspective of the average error, the influ-
ence of the observation time on water levels showed little difference 
between daytime and nighttime. 

3.2.3. Coverage beams versus full-power beams 
To examine the influence of the beam strength on the accuracy of the 

water level observations, the SDs of different beams were analyzed. The 
mean water levels were computed from the coverage beams (beam 
0000, beam 0001, beam 0010, and beam 0011 were marked 1, 2, 3, and 
4 in turn) and full-power beams (beam 0101, beam 0110, beam 1000, 
and beam 1011 were abbreviated as 5, 6, 7 and 8 in turn). Among the 68 
days considered, the numbers of lacking-data days were 11 days for the 

Fig. 5. Time-series lake water levels retrieved by ICESat-2 ATL13 and its uncertainty.  

Fig. 6. Comparison of lake water levels retrieved by common days of GEDI algorithm 1 and algorithm 2.  
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coverage beams and 2 days for the full-power beams. Fig. 8 shows the SD 
comparison of the coverage beams and full-power beams, showing that 
the SDs of the coverage beams were generally larger than those of the 
full-power beams. The average SDs of the coverage-beam and full- 
power-beam results were 0.116 m and 0.100 m, respectively. The 
number of days with full-power-beam observations and the corre-
sponding SDs revealed that the strong beams obtained more effective 
observations and had higher accuracies than the weak beams. Further-
more, Fig. 9 illustrates the differences between each GEDI beam and 
ICESat-2 track that were observed with the same or adjacent dates. The 
specific mean differences between each beam and the ICESat-2 results 
were 0.104 m, 0.054 m, 0.212 m, 0.214 m, 0.260 m, 0.293 m, 0.170 m, 
and 0.109 m. As a result, systematic differences were identified among 
the different beams, and the largest biases occurred in beams 3, 4, 5, and 
6, followed by beams 7 and 8; beams 1 and 2 had the smallest biases. 

3.3. Bias adjustment between GEDI and ICESat-2 

Twenty-two paired samples were found in the overlapping obser-
vations (obtained on the same or adjacent days) between the GEDI and 
ICESat-2 datasets. From Table 2, it can be seen that there were 4 days 
with same-date observations, and the intervals between the remaining 
instances were 1–5 days. Fig. 10 visually displays the differences be-
tween the GEDI and ICESat-2 datasets. The red dots are outliers that 

should be removed before estimating the mean bias. The mean bias and 
SD are represented by the green and red dashed lines, respectively. 
Compared to ICESat-2, the negative difference of 4 days means that 
these GEDI underestimated the lake levels on these observation days; the 
rest are all positive, meaning that most GEDI observations reflected 
overestimated water levels. There were 3 days on which the differences 
were larger than 1 m (October 6 and December 1 in 2019 and June 26 in 
2020, on which significant differences of 1.704 m, 1.449 m, and 1.663 
m, respectively, were observed). According to the bias adjustment 
principle discussed above, the corresponding GEDI-observed values 
were deleted as abnormal records, and the ICESat-2-observed values 
were thus kept as the water levels of the corresponding days. The mean 
bias of the remaining 19 days was 0.264 ± 0.357 m, revealing that GEDI 
overestimated the water levels. Therefore, the adjusted GEDI lake levels 
were calculated by subtracting the mean bias from the original values. 

3.4. Obtaining and validating long-time-series lake levels by integrating 
GEDI and ICESat-2 datasets 

Fig. 11 illustrates the integrated lake water level dynamics (the red 
crosses mark the adjusted GEDI results) and their corresponding SDs for 
the specifically acquired days spanning from October 2018 to July 2021. 
It can be seen that the combined dataset significantly densified the 
monitoring time compared to each mission alone. From the water level 

Fig. 7. The comparison between standard deviations of daytime and nighttime of algorithm A2.  

Fig. 8. The standard deviation comparison between coverage beams and full power beams of GEDI.  
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of an individual day, except for several relatively high adjusted water 
level days retrieved by GEDI, the overall days constituting the relatively 
high-water-level periods were distributed mostly in August and 
September, followed by October and November, while the days consti-
tuting relatively low-water-level periods were distributed mostly in 
February and March. Overall, the water levels showed upward trends. 

Assuming that the yearly water levels in 2018 and 2021 could be 
roughly expressed with observed months, the annual average water 
levels for 2018, 2019, 2020 and 2021 were 3197.019 m, 3197.252 m, 
3197.607 m, and 3197.748 m, respectively. Compared to each previous 
year, the yearly increases were 0.233 m 0.355 m and 0.141 m. The 
reference average annual growth value from 2018 to 2021 was 0.243 m/ 
yr, which should represent an underestimation of the yearly increasing 
rate due to the lack of data on the higher-level 2021 season. The cor-
responding annual average water level data from the Xiashe water level 
station showed water levels of 3195.41 m, 3195.97 m, 3196.34 m and 
3196.51 m, showing increases of 0.56 m, 0.37 m and 0.17 m compared 
to each previous year. The corresponding average annual increase was 

0.367 m/yr. Overall, from the perspective of inter-annual changes, it can 
be seen that the water level of Qinghai Lake showed an upward trend 
over the four years of study. 

To further evaluate the validity of our integrated results, we used 
monitoring data from the DAHITI and Hydroweb databases. The water 
levels and the uncertainty of each individual day are shown in Fig. 12. 
For the inter-year changes from 2018 to 2021, the increases in DAHITI 
were 0.539, 0.318 m and 0.146 m, with a mean rate of 0.334 m/yr, and 
those in Hydroweb were 0.416 m, 0.444 m and 0.216 m, with a mean 
rate of 0.359 m/yr. To compare the three datasets, the days with same- 
day observations or with an interval of two adjacent days were selected. 
From Fig. 13 (a), it can be seen that our combined results acquired more 
data in a relatively short period, and their water levels all presented 
upward trends from 2018 to 2021. The subfigure in the bottom right- 
hand corner displayed the change trend of the common eight days 
among these three datasets, demonstrating their good consistency. 
Fig. 13 (b) and (c) further illustrate the correlations (R values) between 
our results and the other two datasets. The overlapping days in the 

Fig. 9. The comparison between each beam of GEDI and ICESat-2 with same or adjacent dates.  

Table 2 
The sample pairs with the same or adjacent dates acquired by GEDI and ICESat-2 missions.  

Dates ICESat-2 average (m) Dates Times GEDI A2 average(m) Differences 
(m) 

Delta days 

20190501  3197.051 20190502 023839  3197.434  0.383 1 
20190510  3197.122 20190508 235552  3197.316  0.194 2 
20190603  3197.068 20190606 123324  3197.211  0.143 3 
20190711  3197.374 20190712 221016  3197.478  0.104 1 
20190809  3197.516 20190811 032443  3197.221  − 0.294 2 
20190829  3197.476 20190829 200012  3197.990  0.514 0 
20190907  3197.367 20190912 211407  3197.975  0.607 5 
20191006  3197.410 20191009 104136  3199.113  1.704 3 
20191108  3197.505 20191109 153117  3198.143  0.638 1 
20191201  3197.329 20191201 133657  3198.778  1.449 0 
20200128  3197.336 20200126 090346  3197.912  0.576 2 
20200405  3197.321 20200406 050300  3197.232  − 0.089 1 
20200428  3197.321 20200429 194548  3198.011  0.690 1 
20200502  3197.403 20200503 181134  3197.824  0.421 1 
20200504  3197.348 20200507 163718  3197.811  0.463 3 
20200629  3197.520 20200626 035415  3199.183  1.663 3 
20200728  3197.705 20200728 081942  3197.144  − 0.561 0 
20200830  3197.744 20200901 181701  3198.569  0.825 1 
20210329  3197.642 20210329 074921  3197.703  0.061 0 
20210506  3197.768 20210510 214734  3197.627  − 0.142 4 
20210529  3197.695 20210526 153558  3197.774  0.080 3 
20210604  3197.753 20210603 123028  3198.166  0.413 1  
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DAHITI and Hydroweb datasets were 41 and 17, respectively, and the R 
values of both exceeded 0.8, indicating the validity of our monitoring 
results. 

Fig. 14 further compares and analyses the inter-annual and intra- 
annual differences among the four data sources. Compared to the 
Xiashe station (Fig. 14 (a)), the differences between our results, the 
DAHITI dataset, and the Hydroweb dataset and the gauge data were 
− 0.33 m, − 0.02 m, and − 0.14 m, respectively, from 2018 to 2019. The 
large difference between our results and the water station data from 
2018 to 2019 may have been caused by the lack of data in the first three 
seasons of 2018. However, the corresponding differences were − 0.02 m, 
− 0.06 m, and 0.08 m, respectively, from 2019 to 2020, indicating that 
our retrieved results were more consistent with the gauging station data 
in this period. The differences for 2020 to 2021 were − 0.06 m, − 0.02 m 
and 0.05 m, respectively. The relatively small difference increase can be 
attributed to the limited data in 2021. Because 2019 and 2020 have 
complete whole-year observation data, we compared only the intra-year 
changes during these two years (Fig. 14 (b)). For 2019, the water levels 
revealed by our integrated results at the beginning and end of 2019 were 
3196.972 m and 3197.319 m, respectively, with an increase of 0.347 m 
throughout the year. The corresponding levels from Xiashe station were 
3195.71 m and 3196.09 m, respectively, and the water level rose by 

0.38 m. The difference was − 0.03 m, indicating that the integrated 
water levels were highly consistent with those measured at the hydro-
metric station. The increases in the DAHITI and Hydroweb data were 
0.364 m and 0.500 m, with differences from the Xiashe station data of 
− 0.02 m and 0.12 m, respectively. In 2020, the yearly increases in our 
results, the Xiashe station data, the DAHITI dataset and the Hydroweb 
dataset were 0.163 m, 0.32 m, 0.376 m, and 0.550 m, respectively; the 
differences between the three datasets and the Xiashe station data were 
− 0.16 m, 0.06 m and 0.23 m, respectively. Obviously, the increase from 
the beginning to the end of each year was relatively small in our results, 
which may have been affected by the fact that most of the dates used to 
retrieve the average water level in January came from GEDI (Table 1), 
which overestimated the early-season water levels. 

Fig. 15 shows the monthly average water levels. From the intra- 
annual changes in 2019, it can be seen that the lake water levels in 
January and February were relatively high before declining in March 
and subsequently gradually increasing from April to October; compared 
to the May and July levels, there was a downward fluctuation 
throughout June and August before the water level again reached higher 
levels in September and October. Finally, in winter (November and 
December), the water level dropped again. The year 2020 presented 
similar characteristics and trends: relatively low water levels occurred in 

Fig. 10. Differences between 22 pair samples of GEDI and ICESat-2 missions (Red dots are outliers; the green dashed line and the red dashed lines represent mean 
bias and SD). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. The mean and standard deviation of lake water level retrieved by integrating GEDI and ICESat-2 (the red cross marked adjusted GEDI results). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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February and March, while higher water levels occurred in August, 
September and October. However, there was an upward trend from 
February to April and a downward trend from May to July in 2021. On 
this basis, we also calculated statistics on seasonal changes. From 
October to December, the average water levels each year from 2018 to 
2020 were 3197.019 m, 3197.598 m and 3197.799 m, exhibiting in-
crease rates of 0.580 m/yr and 0.202 m/yr, respectively. The increase 
rates in the first three quarters of each year from 2019 to 2020 were 
0.423 m/yr, 0.491 m/yr, and 0.602 m/yr. Compared to 2020, the in-
crease rates in the first two quarters of the 2021 year were 0.342 m/yr 
and 0.140 m/yr. 

The corresponding monthly, seasonal and annual variations in the 
DAHITI and Hydroweb datasets were also analyzed (Fig. 16). Comparing 
the 2019 and 2020 data in Fig. 15 with those in Fig. 16, our results 
presented the variations within all months of the year; however, the 
DAHITI product lacked data for one month in 2020, and the Hydroweb 
dataset lacked records for half a year in 2019 and for one month in 2020, 
indicating that combining the ICESat-2 and GEDI datasets can reflect 
more detailed temporal changes. Excluding elevation deviations due to 
the instrument biases of altimeters and geoid differences, it can be seen 
that the water levels of both datasets reflected rising trends over the last 
four years. Relatively high-water level occurred in September and 
October, while low water levels occurred in February and March; these 

trends were consistent with our research results. 
However, obvious subseasonal differences occurred among the 

datasets. For example, in 2019, our data showed a downward trend from 
January to April, where an upward trend could be observed in both the 
DAHITI and Hydroweb datasets. A similar difference occurred in 2021, 
when our results indicated an increase from January to March while the 
DAHITI and Hydroweb datasets indicated decreases. Comparing to the 
results obtained for the month of April, neither of the two other datasets 
showed any large increase in May; however, our results showed a 
decline of approximately 0.265 m. 

4. Discussion 

When retrieving lake levels, whether directly using satellite alti-
metric data or integrating other remote sensing data, the key is to 
accurately extract the effective footprints over lakes and evaluate the 
accuracies of both the original data and extracted results. In this paper, 
we combined data from two newly launched laser altimetry missions, 
GEDI and ICESat-2, to monitor lake water level dynamics over the Ti-
betan Plateau area. Specifically, taking Qinghai Lake as an example, we 
obtained the daily, monthly, seasonal and yearly lake level variations 
from 2018 to 2021 from the GEDI L2A data product and ICESat-2 ATL13 
product. From the above results, two aspects could be further 

Fig. 12. Time-series water levels and their uncertainty of Qinghai Lake from two public datasets: (a) DAHITI; (b) Hydroweb.  
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Fig. 13. The comparison and cross validation of three datasets (the red dotted line is the trend line): (a) comparison of three datasets and the common days acquired 
at the same day or with an interval of two days (The x-axis time is based on our integrated data); (b) correlation between the integrated results and DAHITI; (c) 
correlation between the integrated results and Hydroweb. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 14. Annual growth comparison of the intra-year and inter-year changes: (a) annual growth from year 2018–2019, 2019–2020 and 2020–2021; (b) intra-annual 
growth of year 2019 and 2020. 
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investigated in future research. First, the accuracy of the current results 
should be improved, as discussed in Part 4.1. Second, the results and the 
factors that potentially caused the observed lake level changes should be 
linked, as described in Part 4.2. 

4.1. Factors affecting the lake level extraction accuracy 

The SDs of the GEDI data ranged from 0.018 m to 0.312 m, with an 
average of 0.109 m (Fig. 11). Because GEDI overestimated the water 
levels even after the bias adjustment, the GEDI’s overall water levels 
were relatively high, and the SDs were larger than those of ICESat-2. For 
example, the maximum GEDI-measured water level of 3198.365 m 
occurred on September 13, 2020, and the maximum SD of 0.312 m 
occurred on March 29, 2021. For the integrated total of 126 days, the 
SDs spanned from 0.005 m to 0.312 m with an average of 0.061 m. For 
most dates, the SDs were below 0.20 m. The specific dynamics of the 
individual days and uncertainties in the DAHITI and Hydroweb datasets 
are shown in Fig. 12. Fig. 12(a) indicates that the DAHITI dataset had 
dense data and a high precision. The uncertainty in this dataset ranged 
from 0.001 m to 0.095 m with a mean value of 0.008 m. Hydroweb 
presented relatively sparse data (Fig. 12(b)) with relatively large un-
certainties in 2018 and the first half of 2019, with the whole uncertainty 
range spanning from 0.017 m to 0.260 m with a mean of 0.113 m. 
Compared to the results obtained from DAHITI, the accuracy of our 
integrated results still needed to be further improved. 

In addition, our results and methodology were compared to the 
recent results and approaches of Yuan et al. (2020) and Fayad et al. 
(2020), who evaluated the performances of the ICESat-2 and GEDI 

datasets, respectively, with in situ data. Compared to their work, we 
performed a more rigorous method to remove outliers. In addition, the 
IQR, 3 Sigma criterion, and quality flags were also adopted to derive 
more accurate water levels with an average SD of 0.03 m for ICESat-2 
and an average SD of 0.109 m for GEDI. The relative altimetric error 
and uncertainty of ICESat-2 were reported to be 0.06 m and 0.02 m, 
respectively (Yuan et al., 2020), and in Fayad et al. (2020), the biases 
between the GEDI elevations and in situ data of eight studied lakes 
ranged from − 13.8 cm to +9.8 cm, with the SDs of the mean differences 
ranging from 14.5 to 31.6 cm. 

By comparison, it can be seen that our strict method improved the 
accuracy of the water level inversion results. Even so, in our results, 
some abnormal water levels and several relatively large differences 
occurred between the two missions (Table 2), illustrating that although 
tailored criteria were taken, some water levels from the GEDI still could 
not represent the real water levels, which may have been caused by the 
data product quality (Beck et al., 2020). Annual lake area changes may 
have also affected the screening of laser footprints over the lake. 
Therefore, for the next step, the lake-area variations were considered 
using annual high-resolution optical images. In addition, when the sat-
ellites had off-pointing angles, the plane position deviation would also 
affect the laser altimetry accuracy. Assume that the orbit height of the 
satellite is approximately H (400 km), the laser-pointing angle is ∅ with 
the measurement errorΔ∅, and the terrain slope is S, the elevation error 
(Δh) caused by the satellite pointing angle and terrain surface fluctua-
tions can be approximately expressed using Eq. (4) (Gardner, 1992). 

Δh = HΔ∅tan(S + ∅) (4) 

Fig. 15. The monthly average lake water level in the year 2018, 2019, 2020 and 2021.  

Fig. 16. Average water levels of each monthly and yearly variation of Qinghai Lake: (a) DAHITI; (b) Hydroweb.  
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When the off-nadir pointing angle is equal to 6◦ with a 1′′ measure-
ment error, assuming a water slope (s) of 0, the elevation error Δh is 
equal to 0.204 m. More elevation errors simulated under different 
conditions are listed in Table 3. When the slope and pointing measure-
ment error were constant, the pointing angle seriously affected the 
elevation accuracy. To ensure the accuracy of the water surface eleva-
tion measurements, data taken at small pointing angles should be 
selected in future studies. 

Similarly, the error in the ATL13 product may have been inherited 
from ATL03, which primarily contained geolocated ellipsoidal heights 
for each time-tagged photon event downlinked from the ATLAS sensor. 
Residual errors in the water-height backscatter model and related al-
gorithms may still influence the accuracies of these values due to 
specular-backscattered, Lambertian-backscattered, and solar 
Lambertian-backscattered light from the water surface. 

4.2. Factors driving lake water level variations 

Our results revealed that the lake level of Qinghai Lake increased by 
an average annual of approximately 0.24 m/yr from 2018 to 2021; this 
finding is consistent with the trends demonstrated by the latest studies 
(Chen and Liao, 2020; Xu et al., 2022). Among them, the largest annual 
increment of 0.56 m occurred in 2019 (Fig. 13(a)); this increase can be 
mainly attributed to abnormally high annual precipitation (457.3 mm) 
over the Qinghai Lake basin in this year. The Qinghai Meteorological 
Bureau also reported that 2019 was defined as an abnormal “wet year”, 
leading to the continuously increasing runoff of all rivers in the basin 
and causing the water level of Qinghai Lake to continue to rise. Fig. 17 
shows the precipitation changes at Buha station (the Buha River is the 
longest and largest river in the basin, contributing almost half of the 
total runoff to the lake (Zhang et al., 2011)). In the study area, precip-
itation months are mainly concentrated from July to September, further 
explaining why the relatively high-water levels occur mostly in August 
and September. 

Many previous studies have also revealed that over the past half 
century, the water level of Qinghai Lake presented increasing variations: 
a rapid increase in the lake area was observed from 2005 to 2016 caused 
by increased river runoff due to glacier ablation and precipitation (Tang 
et al., 2018). Fang et al. (2019) demonstrated that the major cause of 
water level changes (93.13 %) was the combined effect of precipitation 
and evaporation during the 1960–2016 period, while catchment modi-
fications induced by human activities were very limited during this 
period (6.87 %). Using a meteorological dataset collected from 1991 to 
2017, Chen et al. (2022) indicated that precipitation has the greatest 
impact on the water volume variations of Qinghai Lake, followed by the 
accumulated temperature and evaporation. Fan et al. (2021) investi-
gated the abnormal changes from 1970 to 2018 and revealed that the 
rapid water-level recovery observed in recent years can be attributed to 
the substantial increases in several key abnormal wet years, such as 
2005, 2012, 2015, 2017 and 2018. The lake level variations coincide 
with annual precipitation rather than temperature or evaporation. 

However, seasonal variations in lake levels and the spatial trend 
patterns differ considerably among different parts of the whole TP, and 

the factors driving lake distribution dynamics are still under debate 
(Phan et al., 2013). One viewpoint supports that increasing precipitation 
was the primary driver behind the rapid expansion of the lake, and 
permafrost degradation may have contributed a significant amount of 
water to accelerate the continuous lake expansion in the endorheic basin 
in recent years (Liu et al. 2021). Pang et al. (2021) showed that the rapid 
increase in the water volumes of closed lakes over different subzones of 
the TP could be used to partly explain the observed spatial and temporal 
heterogeneities of precipitation and temperature. Therefore, in further 
studies, the use of additional available data, such as direct precipitation, 
snow melt, glacial melt, moisture condition, evaporation and rainwater 
runoff data, would promote our further understanding of the driving 
factors of lake dynamics and global climate change over the TP. 

5. Conclusion 

Obtaining accurate lake level fluctuations is necessary for solving the 
high uncertainties regarding the water balance of the Tibetan Plateau 
basin. Lakes located in this region are surrounded by high-elevation, 
rough terrain, the surface environment of which varies seasonally, and 
it is more difficult to measure the dynamics of these lakes than of lakes 
elsewhere. New altimetry satellites provide a solution for monitoring 
water level changes in areas without in situ gauging data. 

In this study, the recent water level dynamics of Lake Qinghai are 
examined by integrating refined ICESat-2 and GEDI data. A tailored 
scheme is implemented to refine the raw data products first, and then 
the factors that affected the accuracy of the GEDI data were analyzed. 
The ICESat-2 laser altimetry data exhibit a strong capability for moni-
toring the lake level with a very high accuracy. The GEDI dataset has a 
dense temporal advantage and can monitor the lake level for a maximum 
of 8 days in a month, though the accuracy of these data is inferior to that 
of the ICESat-2 data, and large differences exist among different beams, 
most of which overestimated the water levels by 0.264 ± 0.357 m. The 
availability of the GEDI algorithm-2 footprints was higher than that of 
the algorithm 1 footprints, and beams 1 and 2 were recommended for 
further application. Compared to the results obtained from the DAHITI 
dataset, the accuracy of our integrated results still needs to be further 
improved, and the factors affecting the accuracy extraction, such as the 
slant angle and pointing measurement error of the GEDI data, need to be 
further investigated. 

Our integrated results, the in situ measurements, the DAHITI dataset, 
and the Hydroweb dataset demonstrate increase rates ranging from 
0.243 to 0.367 m/yr during the 2018 to 2021 period. The relatively 
high-water-level periods are distributed mostly in August and 
September, followed by in October and November, while the lower- 
water-level periods are distributed mostly in February and March. The 
main driving factor inducing high water levels was surging annual 
precipitation, especially in 2019. The inter-year and intra-year com-
parisons between the above four sources showed that the validation of 
our results and the intra-year changes in 2019 with relatively rich 
observation data over all 12 months were strongly consistent with the in 
situ lake-level measurements, with a difference of 0.03 m; this finding 
confirms that the constructed long-time-series lake-level dataset allows 
us to capture the monthly, seasonal, and annual cycles of lake level 
variations and can serve as a valuable tool for hydrological and climatic 
studies when hydrological station-measured data are lacking. Compre-
hensive examinations of lake level changes will become possible once 
rich GEDI and ICESat-2 data become available in the next few years. 
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Table 3 
The corresponding range error/m caused by satellite slant angle and pointing 
measurement error.  

Off-nadir (◦)/Uncertainty (′′) Slop(◦) 

0 0.5 1 1.5  

6/2.5  0.509  0.552  0.595  0.638  
5/2.5  0.424  0.467  0.509  0.552  
4/2.5  0.339  0.381  0.424  0.467  
3/2.0  0.203  0.237  0.271  0.305  
2/1.5  0.102  0.127  0.152  0.178  
1/1.0  0.034  0.051  0.068  0.085  
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