# Very Long Baseline Interferometry (VLBI) Lecture I

## H. Schuh, L. Plank

#### 1. Introduction:

## Very Long Baseline Interferometry

- 1933 (Karl Jansky): 1st measurement of radio signals
- Fast development after WW2 (parabolic antenna)
- Increasing resolution through local inteferometry (100-200 m)
- Local radio interferometry connected by cables
- Atomic clocks (1960ies)
- 1976: Very Long Baseline Interferometry (VLBI)
  - $\rightarrow$  increase the distance (very long baseline)
  - $\rightarrow$  no longer connected by cables

VLBI is interesting for geodesy, because the basic equation of radio interferometry includes besides the **position of the radio source** also the **orientation and length of the baseline vector between the antennas**. Nevertheless, in order to derive from the quite weak and noisy signals geodetic parameters with high precision, a strong cooperation with other disciplines is needed.

#### 2. VLBI - basics:

## Components







At least 2 radio telescopes with highly precise atomic clocks



Recording unit (tapes, magnetic discs)



signal (radiation of a quasar)



#### 2.1. Measurement: Technical aspects of measurement

- Recording of radio signals
  - 8 channels X-band

(8,4 GHz ~ 3,5 cm)

- 6 channels S-band
   (2,3 GHz ~ 13 cm)
- datastream 1 Gbit/s
- Time & frequency
  - (DF/F ~ 10<sup>-15</sup>)
- Data units
  - Magnetic tapes (until MK-4)
  - hard discs (from MK-5)
- Correlation
  - *τ* ~ 10 ....30 ps

## **Basic equation**



#### **b** WSNP k

## <u>Transformation CRS $\rightarrow$ TRS:</u>

- W... rotational matrix for polar motion
- matrix for Earth's S ... rotation (UT1)
- Ν... Nutation
- Precession



# **Carrying out a VLBI-experiment**

# 1. PLANNING

3. :

- 2. OBSERVATION
- 3. CORRELATION
- 4. ANALYSIS

#### 3.1. Planning:

- Define a time schedule (*scheduling*)
- The schedule is decisive for the accuracy of the target parameters
- ~50 Stations, >1000 sources
- Scheduling is coordinated by the IVS
- Minimum 1 observation per parameter; in reality highly redundant
- E.g. ~100 observations per baseline

# 3.1.2. **VLBI Stations** (Components of the IVS))



8

## 3.1.3 Scheduling

Depends on:

- observation window (sub-netting)
- predefined network
- goal of the session
- length of observation: SNR = f(source, antenna size)
- spin velocities of the antennas
- optimization:

-...?

- high number of observations
- uniform sky coverage
- short idling (energy!)
- the scheduling problem is not fully solved!







### **Radio source structure**



Patrick Charlot (Observatoire de Bordeaux)

#### Frequency dependence of the point of maximal intensity



# **SKED - file**

**Observing stations** 

|          |      |        |                |     |       |   |        |               |          | $\langle \rangle$ |
|----------|------|--------|----------------|-----|-------|---|--------|---------------|----------|-------------------|
|          | 7    |        |                |     |       |   |        |               |          |                   |
| \$SKED   |      |        |                |     |       |   |        |               |          |                   |
| 0537-441 | 10 5 | X FRE  | OB 10228170000 | 43  | MIDOB | 0 | POSTOB | H-A- 1F000000 | 1700000  | O YYNN            |
| 1732+389 | 10 5 | X PRE  | OB 10228170000 | 172 | MIDOB | 0 | POSTOB | J-O-B-CWE- 1F | 000000 1 | F000000           |
| 0016+731 | 10 5 | X PRE  | OB 10228170247 | 43  | MIDOB | 0 | POSTOB | BWO-CW 1F0000 | 00 1F000 | 000 1F0(          |
| 2106+143 | 10 5 | X PRE  | OB 10228170738 | 165 | MIDOB | 0 | POSTOB | H-OWBWC- 1F00 | 0000 1F0 | 00000 11          |
| 1124-186 | 10 5 | X PRE  | OB 10228170746 | 206 | MIDOB | 0 | POSTOB | J-ACE- 1F0000 | 00 1F000 | 000 1FO(          |
| 0727-115 | 10 3 | SX PRE | OB 10228171207 | 43  | MIDOB | 0 | POSTOB | ACE- 1F000000 | 1F00000  | O YYNN            |
| 0013-005 | 10 5 | X PRE  | OB 10228171222 | 83  | MIDOB | 0 | POSTOB | OWH-C- 1F0000 | 00 1F000 | 000 1FO(          |
| 0955+326 | 10 3 | X PRE  | OB 10228171327 | 237 | MIDOB | 0 | POSTOB | BWAC 1F000000 | 1F00000  | O YYNN            |
| 0234+285 | 10 2 | X PRE  | OB 10228171539 | 43  | MIDOB | 0 | POSTOB | OWH-C- 1F0000 | 00 1F000 | 000 1F0(          |
| 0403-132 | 10 5 | X PRE  | OB 10228171832 | 155 | MIDOB | 0 | POSTOB | H-OWA- 1F0000 | 00 1F000 | 000 1FO(          |
| 0133+476 | 10 5 | X PRE  | OB 10228171931 | 43  | MIDOB | 0 | POSTOB | E-CWBW 1F0000 | 00 1F000 | 000 1FO(          |
| 0215+015 | 10 5 | SX PRE | OB 10228172238 | 43  | MIDOB | 0 | POSTOB | OWC-H- 1F0000 | 00 1F000 | 000 1F0(          |
| 1324+224 | 10 5 | X PRE  | OB 10228172510 | 110 | MIDOB | 0 | POSTOB | J-B-ACE- 1F00 | 0000 1F0 | 00000 11          |
| 0104-408 | 10 3 | X PRE  | OB 10228172517 | 43  | MIDOB | 0 | POSTOB | H-OWC- 1F0000 | 00 1F000 | 000 1FO(          |
| 0657+172 | 10 5 | SX PRE | OB 10228172812 | 217 | MIDOB | 0 | POSTOB | ACE- 1F000000 | 1F00000  | O YYNN            |
|          |      |        |                |     |       |   |        |               |          |                   |
|          |      |        |                |     |       |   |        |               |          |                   |

Observed source

Frequency bands

time [yy dd hh mm ss] day of year: 228 (=17. Aug.)

Variation of the interference due to Earth rotation, fringe frequency f(t):

$$f(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt} \qquad \Phi(t)... \qquad Phase difference of the observed radiation$$
Phase meas.:
$$\Phi(t) = -2\pi \frac{f}{c} \cos \psi(t) \cdot b \qquad f... \qquad \text{frequency}$$

$$b... \qquad \text{baseline}$$

$$\psi(t)... \qquad \text{angle between } b \text{ and source direction}$$

$$d(t) = c \cdot \frac{\Phi(t)}{2\pi f} + N \cdot \lambda \qquad d(t)... \qquad \text{travelled distance of the signal ('group delay')}$$

$$\lambda ... \qquad \text{wavelength}$$

$$d = c \cdot \frac{V}{r} = \frac{V}{r} + \frac{$$

 $\rightarrow$  Phase stability (technical issue)

# **Resolving the ambiguities**

- Depends on the wavelength and the length of the baseline
   → longer baselines & higher frequencies need better a priori models
- Short baselines: phase delay solution is already possible
- Long baselines: group delay solution (= derivative of the phase w.r.t. frequency)

$$\tau = \frac{d\Phi}{d\omega}$$

• Replace  $\Phi$  by the station dependent source vector *k* and  $\omega$ =2 $\pi$ f:

$$\tau(t) = -\frac{k \cdot b(t)}{c} + \text{ instrumental und atmospheric errors}$$

... basic equation of VLBI

η

 $F_{d}$ 

k

B

Т

# Sensitivity of the VLBI system

$$SNR = \eta \frac{F_d}{2k} \sqrt{\frac{A_1 \cdot A_2}{T_{S_1} \cdot T_{S_2}}} \cdot \sqrt{2BT}$$

## 10 < SNR < 100

- SNR ... signal to noise ratio
  - ... factor representing energy loss due to digitalization, filtering, ...  $1 Jy = \frac{1 \cdot 10^{-26} W}{2}$ 
    - ... flow density of the source [Janksy]
    - ... Boltzmann constant  $E_{kin} = \frac{1}{2}k \cdot T$
- ... effective diameter of the antenna (geom. diameter \* efficiency) A1=20m,  $A_1, A_2$ A2=20m  $\leftrightarrow$  A1=10m, A2=40m  $\leftrightarrow$  A1=4m, A2=100m
- $T_{S_1}$ ,  $T_{S_2}$ , ... noise temperature of the receivers [Kelvin], nowadays: 40-50 K
  - ... bandwidth of the receiving system
    - ... coherent time of integration [< 10 min] (=time of one scan)

## Accuracy of VLBI group delay measurement

| $\sigma_{t} = \pm \frac{1}{2\pi} \cdot \frac{1}{SNR + B}$ b) multi band delay (e.g. X-Band, 8 x 2 MHz):<br>covered bandwidth $\Delta B = f_{max} - f_{min}$ effective bandwidth $\Delta B = f_{max} - f_{min}$ $B_{eff} = \sqrt{\frac{\sum (f_{i} - f_{m})^{2}}{N}}$ $\sigma_{i} = \pm \frac{1}{2\pi} \cdot \frac{1}{SNR + B_{eff}}$ (Example: MkIII, X-Band, $\Delta B$ =360 MHz, $B_{eff}$ =140,22 MHz)<br>c) Examples: $F_{d} = 1JANSKY , d_{1}, d_{2} = 30 m, Effciency = 50 \%, T = 300 sec$ $T_{s_{1}}, T_{s_{2}} = 160 °K (uncooled ), B_{eff} = 140, 22 MHz \Rightarrow SNR \approx 27 \Rightarrow \sigma_{i} = \pm 0,041 n sec(= 1,4cm)$ | a) single band delay:                                                                                                                                               | with bandwidth                                                                                                 | B = 2 MHz                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>b)</b> multi band delay (e.g. X-Band, 8 x 2 MHz):<br>covered bandwidth $\Delta B = f_{max} - f_{min}$<br>effective bandwidth $\Delta B = f_{max} - f_{min}$<br>effective bandwidth $B_{eff} = \sqrt{\frac{\sum (f_i - f_m)^2}{N}}$<br>N - number of channels<br>$f_m - mean frequency$<br>(Example: MkIII, X-Band, $\Delta B$ =360 MHz, $B_{eff}$ =140,22 MHz)<br><b>c)</b> Examples:<br>$F_d = 1JANSKY$ , $d_1, d_2 = 30 m$ , Effciency = 50 %, $T = 300$ sec<br>$T_{s_1}, T_{s_2} = 160 °K$ (uncooled ), $B_{eff} = 140$ , 22 MHz $\Rightarrow$ SNR $\approx 27 \Rightarrow \sigma_1 = \pm 0.041 n \sec(=1.4 cm)$                            | $\sigma_t = \pm \frac{1}{2\pi} \cdot \frac{1}{SNR + R}$                                                                                                             |                                                                                                                | $SNR \approx 18 $ $\Rightarrow \sigma_t \approx \pm 50 \ cm$                                                                                                                              |
| effective bandwidth<br>N = number of channels<br>$f_m = mean frequency$<br>(Example: MkIII, X-Band, $\Delta B=360$ MHz, $B_{eff}=140,22$ MHz)<br>C) Examples:<br>$F_d = 1 JANSKY$ , $d_1, d_2 = 30$ m, Effciency = 50 %, $T = 300$ sec<br>$T_{s_1}, T_{s_2} = 160$ °K (uncooled ), $B_{eff} = 140,22$ MHz $\Rightarrow SNR \approx 27 \Rightarrow \sigma_t = \pm 0,041$ n sec(= 1,4 cm )                                                                                                                                                                                                                                                          | b) multi band delay (e.g. X                                                                                                                                         | -Band, 8 x 2 MHz):                                                                                             | <b>Bandwidth synthesis:</b> it is not<br>necessary to cover the whole<br>bandpass with frequencies; instead, it<br>is enough to record signals at the<br>edges and on certain channels in |
| $N - \text{number of channels}$ $f_m - \text{mean frequency}$ $\sigma_t = \pm \frac{1}{2\pi} \cdot \frac{1}{SNR + B_{eff}}$ (Example: MkIII, X-Band, $\Delta B$ =360 MHz, $B_{eff}$ =140,22 MHz)<br><b>c) Examples:</b><br>$F_d = 1 JANSKY  , d_1, d_2 = 30 \text{ m}, Effciency = 50 \%, T = 300 \text{ sec}$ $T_{s_1}, T_{s_2} = 160 \ ^{\circ}K (uncooled \ ), B_{eff} = 140 \ ,22 \ MHz \Rightarrow SNR \approx 27 \Rightarrow \sigma_t = \pm 0,041 \ n \sec(=1,4 \ cm)$                                                                                                                                                                      | effective bandwidth                                                                                                                                                 | $\Delta B = f_{\text{max}} - f_{\text{min}}$ $B_{eff} = \sqrt{\frac{\Sigma (f_i - f_m)^2}{N}}$                 | between.                                                                                                                                                                                  |
| (Example: MkIII, X-Band, $\Delta B$ =360 MHz, $B_{eff}$ =140,22 MHz)<br>c) Examples:<br>$F_d = 1 JANSKY$ , $d_1, d_2 = 30 m$ , Effciency = 50 %, $T = 300$ sec<br>$T_{s_1}, T_{s_2} = 160 \ ^{\circ}K$ (uncooled ), $B_{eff} = 140$ , 22 MHz $\Rightarrow$ SNR $\approx 27 \Rightarrow \sigma_1 = \pm 0,041 n \sec(=1,4 cm)$                                                                                                                                                                                                                                                                                                                      | N – number of channels<br>$f_m$ – mean frequency                                                                                                                    |                                                                                                                | $\sigma_{t} = \pm \frac{1}{2\pi} \cdot \frac{1}{SNR \cdot B_{eff}}$                                                                                                                       |
| $F_{d} = 1 JANSKY , d_{1}, d_{2} = 30 m, Effciency = 50 \%, T = 300 sec$<br>$T_{s_{1}}, T_{s_{2}} = 160 \circ K (uncooled), B_{eff} = 140 , 22 MHz \implies SNR \approx 27 \implies \sigma_{t} = \pm 0,041 n sec(=1,4 cm)$                                                                                                                                                                                                                                                                                                                                                                                                                        | (Example: MkIII, X-Band, ΔB<br>c) Examples:                                                                                                                         | =360 MHz, <i>B<sub>eff</sub></i> =140,2                                                                        | 2 MHz)                                                                                                                                                                                    |
| $T_{\alpha}, T_{\alpha} = 60 \circ K \text{ (cooled )}, B_{\alpha} = 140 \text{ ,} 22 \text{ MHz} \implies SNR \approx 75 \implies \sigma = \pm 0.013 \text{ n sec}(=0.4 \text{ cm})$ 17                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $F_{d} = 1 JANSKY , d_{1}, d_{2} = 30 m, Effcien$ $T_{S_{1}}, T_{S_{2}} = 160 °K (uncooled), B_{eff} = 10$ $T_{T_{1}}, T_{T_{2}} = 60 °K (cooled), B_{T_{1}} = 140$ | ncy = 50 %, T = 300  se<br>140 ,22 MHz $\Rightarrow$ SNR $\approx$<br>,22 MHz $\Rightarrow$ SNR $\approx$ 75 = | c<br>$27 \implies \sigma_t = \pm 0,041 \ n \sec(=1,4 \ cm)$ $\Rightarrow \sigma_t = \pm 0,013 \ n \sec(=0.4 \ cm)$ 17                                                                     |

## 3.2.1 Signal:

- 'Geodetic' frequencies in the range 0.4-30.0 GHz (100 GHz in astronomy)
- Standard since 1979: S-band: 2.3 GHz (13 cm), X-band: 8.4 GHz (3.5 cm)
- We are observing only slight deviations (0.1%) from the general background noise of the sky

Radioloud Sun Quiet Sun SNR Cassiopeia A Radiogalaxy Cygnus A Cell phone on Moon M1 = Taurus A Usual radio sources

100.000.000 Jy 100.000 Jy 3.400 Jy 2.200 Jy 1.000 Jy 900 Jy 0.1 - 10 Jy

Radio intensities for some transmitters on the northern sky at 900 MHz

- As big as possible (good SNR)
- Surface accuracy 1/20 of the wavelength

 $\rightarrow$  8,4 GHz  $\rightarrow$  3,6 cm  $\rightarrow$  5% = 1,8 mm

 Moving main reflector, with feed horn in the primary/secondary focus (with subreflector)



- Reference point
  - Reference for group delays : Intersection between azimuth and elevation axis
  - Path length form radio reference point to geometric reference point is calibrated by cable cal measurement



Fig. 9. The 20 m radiotelescope of the geodetic fundamental station Wettzell, Bavaria, Germany

# critical: - external influences (Sun, temperature, wind) - self-gravitation



Ex.: temperature sensors on the telescope Wettzell



- critical: external influences (Sun, temperature, wind)
  - self-gravitation
- radome
- Log-file: temperature, air pressure, humidity
- aims:
- high speed,
- high SNR,
- high sensitivity,
- sufficient surface accuracy



**Onsala Space Observatory (20m)** 

After the signals enter the feed, they are sparated into two bands



2 frequency bands → dispersive influences (lonosphere)

$$\Delta \tau_{x}^{ion} = (\tau_{x} - \tau_{s}) \cdot \frac{f_{s}}{f_{x}^{2} - f_{s}^{2}}$$

<u>2</u>

- Processing on two separate routes
- Down-converted on a bandwidth of 400 MHz (today ~700 MHz)
- Phase-stable down-converting with a local oscillator (gets its signal from the H-maser)



Several channels, each covering 2 MHz (high synthetic bandwidth)

|       | X-Band                  | S-Band                   |
|-------|-------------------------|--------------------------|
| 1     | 8182,99 MHz             | $2212,\!99~\mathrm{MHz}$ |
|       | 8222,99 MHz             | $2222,\!99~\mathrm{MHz}$ |
|       | $8422,99 \mathrm{~MHz}$ | $2257{,}99~\mathrm{MHz}$ |
| 680   | $8562,99 \mathrm{MHz}$  | $2297,99 \mathrm{~MHz}$  |
| MHz ] | $8682,99 \mathrm{~MHz}$ | $2317{,}99~\mathrm{MHz}$ |
| -     | $8782,99 \mathrm{~MHz}$ | $2322,99 \mathrm{~MHz}$  |
|       | $8842,99 \mathrm{MHz}$  |                          |
| l     | 8862,99 MHz             |                          |

X-Band und 6 S-Band Frequenzbänder des Mk 4 Systems

- Formatter:
  - Digitizes the signals
  - Time stamp from station clock (time of reception)
  - Writes data on magnetic bands/discs







- Shipping by airplane to the correlator
- e-transfer: 1st step to real time VLBI currently: only for Intensives (turnaround time: a few hours)
- Extremely high data rate: 512 Mb/sec resp. 1 Gb/sec; too large for the internet; data transfer via broadband communication networks



Real-time e-VLBI demo at Super Computer Conference (Whitney 2005)

# e-VLBI Intensives (1h)

- Ultra-rapid Intensives between Europe and Japan
- Onsala-Tsukuba Metsähovi-Kashima
- UT1 solution
   < 30 min.</li>
  - 21. Feb. 2008: Results within 4' after the last scan [Matsuzaka et al., 2008]



[Haas et al., 2011: Ultra-rapid dUT1-observations with e-VLBI]

#### 3.2.4 Instrumental erros:

- Differences in the signal path between receiving (arrival at the antenna) and the input of the time stamp
- Cable: strain, temperature
- Delay calibration system: test-signal
- Sign?: cable calibration (1 µsec)
- Phase calibration: calibration necessary for each channel
- Deformation of the antenna:
  - gravitation
  - wind pressure
  - temperature
  - → Models (e.g. thermal antenna deformation)

#### 3.2.4 Instrumental errors:



30

#### 3.2.4 Instrumental errors:



#### 3.3 Correlation:

**Correlation function:** 

 $C_{\max} = \sum_{i=1}^{N} y(t_i) x(t_i - \tau)$ 

Correlator:

Indentifying two identical signal components is successful, when the correlation amplitude is above a certain noise-level.

A-priori values are needed for

- station positions
- source positions
- clock rate differences

to calculate theoretical delays. This gives a search window of a few µsec for the correlation.

#### **Differential Doppler shift due to Earth rotation (fringe stopping)** ٠

second observable  $\dot{\tau}$  $\rightarrow$ 

#### 3.3 Correlation:



Correlator output signal, maximum at τ

Signal is shifted for 0,25  $\mu$ s; amplitude is shown at the right; there, a sinx <sup>x</sup> function is fitted, then the maximum is determined.



#### **Geodetic analysis**

- Determination of the theoretical delay with a priori station positions and source coordinates, with actual Earth orientation and by correcting for local and global (tidal) deformations.
- Comparison with the measured time delay (observed minus computed)
- Adjustment procedure (e.g. least-squares)
- Solving for global and/or local parameters



#### Size of corrections & error model

|                          | maximaler | derzeitiger |    |
|--------------------------|-----------|-------------|----|
| Modellkomponente         | delay     | Fehler      |    |
| BASISLINIE               |           |             |    |
| Geometrie                | 6000 km   |             |    |
| Erdorbit (Abberation)    | 600 m     | 1 mm        |    |
| Gravitativer delay       | 2 m       | 2 mm        |    |
| STATIONSPOSITIONEN       |           |             |    |
| Tektonik                 | 10 cm     | 1 mm        |    |
| Gezeiten                 | 50 cm     | 3 mm        |    |
| weitere Stationsbewegung | 5 cm      | 5 mm        |    |
| ERDORIENTIERUNG          |           |             |    |
| UT1, Polbewegung         | 20 m      | 2 mm        |    |
| Nutation/Präzession      | 300 m     | 3 mm        |    |
| RADIOQUELLENSTRUKTUR     | 5 cm      | 10 mm       |    |
| ANTENNE                  | 10 m      | 10 mm       |    |
| INSTRUMENTENFEHLER       | 300 m     | 5 mm        |    |
| ATMOSPHÄRE               |           |             | 1  |
| Ionosphäre               | 1 m       | 1 mm        | 1  |
| Troposphäre              | 20 m      | 20 mm       | [5 |

Sovers et al., 1998] <sup>35</sup>

#### 3.4 Analysis: Size of corrections

### Ex.: 1 baseline (WEST-WETT), 14 days VieVS Delay



## **Ocean loading**



Ocean loading effetcs during July 1997 calculated for the inland site Madr (Spain), the coastal site Fortaleza (Brazil) and the island site Ny Ålesund (Spit bergen, Norway) with model M-S [SCHERNECK, 1991].

## **Atmospheric loading**

Radiale Verschiebungen von VLBI-Stationen aufgrund atmosphärischer Auflasten (Modell: MANABE et al., 1991)



38

DGF

**Clock drift 98APR20** 

left:residuals without including a clock driftright:clock function



## **Clock drift**





**Delay in BRS:** 

$$\tau_{BRS} = \frac{\vec{k} \cdot \vec{b}_{BRS}}{1 - (\vec{k} \cdot v_2)}$$
Movement of station 2,  
retarded baseline  
correction

#### **Differential gravitational delay:**

$$\Delta T_{grav} = \sum_{j} 2 \frac{GM_{j}}{c^{3}} ln \frac{|\vec{R}_{1j}| + \vec{k} \cdot \vec{R}_{1j}}{|\vec{R}_{2j}| + \vec{k} \cdot \vec{R}_{2j}}$$

1,2 ..... station j ..... disturbing body (Sun, Moon, Planets)

#### Geocentric delay, 'Consensus' model:

$$\tau_{geo} = \frac{\Delta T_{grav} - \frac{\vec{K} \cdot \vec{b}}{c} \left[ 1 - \frac{(1+\gamma)U}{c^2} - \frac{v_{earth}^2}{2c^2} - \frac{v_{earth} \cdot v_{station2}}{c^2} \right] - \frac{\vec{v}_{earth} \cdot \vec{b}}{c^2} (1 + \vec{K} \cdot \vec{v}_{earth}/2c)} + \frac{\vec{K}(\vec{v}_{earth} + \vec{v}_{station2})}{c}$$
Source vector:  

$$\vec{K} = \begin{pmatrix} -\cos\alpha \cdot \cos\delta \\ -\sin\alpha \cdot \cos\delta \\ -\sin\beta \end{pmatrix}$$
42

3. Der relativistische Gravitationseinfluß auf die VLBI - Beobachtungen

$$\tau_{grav}^{s} = (r_{g}^{s}/c) \cdot \ln \left[ \left( \left| \overrightarrow{R_{1}^{s}} \right| + \overrightarrow{R_{1}^{s}} \cdot \overrightarrow{k} \right) / \left( \left| \overrightarrow{R_{2}^{s}} \right| + \overrightarrow{R_{2}^{s}} \cdot \overrightarrow{k} \right) \right]$$

 $r_g^s$  – Schwarzschild-Radius der Sonne

$$r_g^s = (1+\gamma) \cdot G \cdot M^s / c^2$$

mit  $M^{s}$ -Masse der Sonne, G-Gravitationskonstante:  $r_{g}^{s} \approx 3 \text{ km}$ 



DGFI

Maximale Laufzeitkorrekturen  $\tau_{grav}^{s}$  wegen des relativistischen Gravitationseinflusses der Sonne

| Θ[°]  | $\tau^{s}_{grav}$ [nsec] |  |  |
|-------|--------------------------|--|--|
| 0,267 | 169,52                   |  |  |
| 1     | 45,30                    |  |  |
| 5     | 9,06                     |  |  |
| 10    | 4,54                     |  |  |
| 30    | 1,53                     |  |  |
| 60    | 0,79                     |  |  |
| 90    | 0,56                     |  |  |
| 120   | 0,46                     |  |  |
| 150   | 0,41                     |  |  |
| 180   | 0,40                     |  |  |

mit  $\Theta - \triangleleft$  Radioquelle, Sonnenzentrum und b = 6000 km



43



44

#### 3.4.2 Adjustment:



The design matrix includes the partial derivatives of the parameters of interest w.r.t. the observable:

$$\frac{\partial \tau}{\partial VAR} = \frac{1}{\mathsf{c}} \cdot \frac{\partial (\vec{k} \cdot \vec{b})}{\partial VAR}$$

# **IVS Products**

- Earth Orientation Parameters (EOP):
  - 24-hour sessions (all EOP)
  - 1-hour Intensives (UT1–UTC)
- Terrestrial Reference Frame (TRF)
  - VLBI Terrestrial Reference Frame (VTRF)
- Celestial Reference Frame (CRF)
- Daily EOP+station coordinates (SINEX-files)
  - Tropospheric Parameters (TROPO)
- Baseline Lengths (BL)

# Combined EOP are regular IVS products

Analysis Coordinator: Axel Nothnagel, Univ. Bonn, Germany

Combined solution; every combination is more accurate than a single solution (robustness, reliability)



http://vlbi.geod.uni-bonn.de/IVS-AC]

# **VLBI product: EOP**

- Earth rotation parameters xpole, ypole, dUT1
  - Precession / Nutation parameters

nutation period: 18.6 y





# **VLBI product: Station velocities**



### IVS Pilot Project: Time Series of Baseline Lengths

Plate motion: 2 stations per plate  $\rightarrow$  transformation verctor + rotation  $\rightarrow$  convert to horizontal movement



shown: evolution of the distance between the stations Westford (US) and Wettzell (EUR); ~ 6000 km Observe the increase of accuracy!

## **Displacement of TIGO Concepción**

- The Earthquake moved
   Concepción by about 3 m to the west
- Similar results are obtained from GPS measurements



## **VLBI product: Station motions**

Displacement of the TIGO radio telescope in Concepción caused by the magnitude 8.8 Earthquake on Feb 27, 2010.





## **Climate studies using VLBI**

- Long time-series of Zenith Wet Delays
   (ZWD) can be used for climate studies
- To detect climate change series with high stability are needed

see also: R. Heinkelmann, 2008



Wet zenith delays (blue) at Wettzell from VLBI obtained at IGG, annual and semiannual signal (red), linear trend (green).

# **IVS Products**

### Relativistic PPN parameter y

| γ                            | "Mass-induced spatial curvature"<br>Light deflection                                                                                                                                                                              | ≡ 1 (GR-<br>Einstein) |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| • <b>G</b><br>$\tau_{g,n} =$ | Gravitational delay of mass n<br>$(1 + \gamma) \cdot \frac{GM_{n}}{c^{3}} \cdot \ln \left( \frac{\left  \vec{x}_{1,n} \right  + \vec{x}_{1,n} \cdot \vec{k}}{\left  \vec{x}_{2,n} \right  + \vec{x}_{2,n} \cdot \vec{k}} \right)$ |                       |  |  |

Higher order effect, relevant for small angular distances

$$\tau_{\text{ppn},n} = (1 + \gamma)^2 \cdot \frac{(GM_n)^2}{c^5} \cdot \frac{\vec{b} \cdot \vec{k}}{|\vec{x}_{1,n}| + \vec{k}}$$

$$(\vec{k}_{1,n} + \vec{k})^2$$

#### **Relativistic PPN parameter y from VLBI**

→ Confirmation of Einstein's theory



## The IVS delivers unique parameters...

[M. Rothacher]

| Parameter Type       | VLBI | GNSS | DORIS | SLR | LLR | Altimetry |
|----------------------|------|------|-------|-----|-----|-----------|
| ICRF (Quasars)       | X    |      |       |     |     |           |
| Nutation, Precession | X    | (X)  |       | (X) | Х   |           |
| Polar Motion         | Х    | Х    | Х     | Х   | Х   |           |
| UT1                  | X    |      |       |     |     |           |
| Length of Day        | (X)  | Х    | Х     | Х   | Х   |           |
| ITRF (Stations)      | Х    | Х    | Х     | Х   | Х   | (X)       |
| Geocenter            |      | Х    | Х     | Х   |     | Х         |
| Gravity Field        |      | Х    | Х     | Х   | (X) | Х         |
| Orbits               |      | Х    | Х     | Х   | Х   | Х         |
| LEO Orbits           |      | Х    | Х     | Х   |     | Х         |
| lonosphere           | Х    | Х    | Х     |     |     | Х         |
| Troposphere          | Х    | Х    | Х     |     |     | Х         |
| Time Freq./Clocks    | (X)  | Х    |       | (X) |     |           |

# **VLBI for space applications**

#### Satellite VLBI

- Tracking of GNSS satellites (e.g. Tornatore et al., 2010)
- e.g. Geodetic Reference Antenna in Space (GRASP) (Y. Bar-Sever)
- e.g. Microsatellites for GNSS Earth Monitoring (MicroGEM)

## Differential VLBI (D-VLBI)

- Quasar space craft (SC)
  - Deep space navigation
  - DSN, ΔDOR
  - NASA, ESA
- SC SC
  - multi-frequency method
  - same beam method
  - e.g. SELENE (JAXA)



# Importance of VLBI for Geodesy and Astronomy

- VLBI is crucial for the
- realization of the international terrestrial reference frame (ITRF) – particularly for the scale
- measurement of polar motion and lots of other geodynamic/astronomic parameters (Love and Shida numbers, loading coefficients, relativistic parameter γ...)

# Importance of VLBI for Geodesy and Astronomy

- VLBI is essential for the
  - measurement of UT1 and of Nutation/Precession





# Importance of VLBI for Geodesy and Astronomy

- VLBI ist essential for the
  - measurement of UT1 and of Nutation/Precession

 Realization of the celestial reference frame (ICRF) of extragalactic radio sources